wp4 textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › wp4_ntt2.pdf ·...

14
Bioprocessing for Sustainable production of COLoured textiles Çerkezköy July 11 th , 2013 WP4 WP4 Textile pre Textile pre treatment treatment BISCOL BISCOL ECO/09/256112 ECO/09/256112

Upload: others

Post on 24-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Bioprocessing for Sustainable production of COLoured textiles

Çerkezköy July 11th, 2013

WP4 WP4 Textile preTextile pre‐‐treatmenttreatment

BISCOLBISCOLECO/09/256112ECO/09/256112

Page 2: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Characterisation of the plasma treated fabrics

Optimal process parameters for the treatment of woollen fabric are listed in the table below, implemented in the machinery.

Carrier Gas Helium 25 NL/min

Process Gas Nitrogen 2 NL/min

Treatment speed 8 m/min

Electrode number 8

Fabric width 600 mm

Fabric Thickness < 2 mm

Relative Power 12.5%

Nominal Power 565 W

Specific Power  1800 W min/m2 (904 W min/m2 per side)

Passes 2 (1 for each side)

Page 3: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Characterisation of the plasma treated fabrics

By applying those conditions the following benefits can be achieved:

Complete removal of the epicuticle layer without affecting bulk properties of the fibres

Increase in the wettability of the woollen fibres over 72 mN/m

Increase in the absorption rate constant for small molecules including Acid dyestuffs (up to 20‐25%)

Good Dimensional Stability Properties as per WIRA steam relaxation test

Improved mechanical properties 

Page 4: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Protocol of dyeing

Dyeing protocol applied for woollen fabrics dyed with a commercial acid dyestuffscommercial acid dyestuffs by using the two auxiliaries set‐up by ACHIMO

Page 5: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Protocol of dyeingDyeing protocol applied for woollen fabrics dyed with byodye SIALB 1byodye SIALB 1 by using the two auxiliaries set‐up by ACHIMO

In  order  to  identify  the  most  proper  temperature  enabling  to  dyeing  the  selected substrates, exhausted baths have been sampled at different temperature  in the range 40 – 98 °C for Auxiliary 1 and 40 – 80 °C for the Auxiliary 2.

Page 6: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Conventional dyestuff + BISCOL Auxiliaries

The  study  carried out with  the  conventional dyestuff  is  showing  that a  significant reduction in the energy required for the fibres dyeing has been achieved.

Dyestuff absorption trend for the untreated samples and plasma treated samples in function of the temperature for Auxiliary 1 and 2.

Auxiliary 1 Auxiliary 2

Page 7: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Conventional dyestuff + BISCOL Auxiliaries

Auxiliary 1

• The removal of the fatty layer and the ablation of the fibres surface is promoting dyestuff uptake enabling to reach the same colour tone and shade by reducing the temperature up to 86 °C. • This induces a reduction of the energy consumed to heat the dyeing bath of 2.7 MJ/Kg (‐19.6%) in comparison with conventional conditions currently applied in dyehouses.

Auxiliary 2

• A lower improvement in the dyeing temperature reduction has been achieved since the levelling  agent  is  representing  a  limitation  to  achieve  additional  benefit  since  it  is specifically designed to delay dyestuff adsorption. 

• In any case, this additional reduction that it’s allowing to achieve same colour tone and shade that conventional process and products by reducing energy consumption up to 4.8 MJ, meaning that up to 35% of the total energy can be saved.

Page 8: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Bio‐dyestuff + BISCOL Auxiliaries

The same results observed for the conventional dyestuff has been recorded also for theBiodyes. In the picture, the behaviour for SIALB is reported even if all tested biodyes are showing the same trend. 

Dyestuff absorption trend for the untreated samples and plasma treated samples in function of the temperature for Auxiliary 1 (a) and Auxiliary 2 (b).

(a)

Page 9: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Bio‐dyestuff + BISCOL Auxiliaries

• For both the untreated and plasma treated samples a lower optimal temperature is recorded because of the smaller MW of the bio‐synthesised dyestuffs. 

• Energy  saving  for  both  auxiliaries  plasma  treatment  is  promoting  energy  saving  up  to  2.5 MJ/kg  for  the auxiliary 1 and 1.4 MJ/kg for auxiliary 2 respectively. In the overall, in comparison with optimal dyeing process with biodyes without plasma pre‐treatment an overall reduction of the energy is estimated up to 3.9 MJ/Kg.  

• If the BISCOL dyeing process is compared with Conventional dyeing process an overall reduction up to 5.7 MJ/kg can be achieved (42% reduction).

(b)

Page 10: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Economical evaluation of plasma pre‐treatment 

Additional costs induced by the implementation of the machinery per ton of fabric. 

Cost Category Product Unit cost Cost per kg1.

Investment costs Plasma Machinery 150,000 – 180,000 0.0180

Machinery Electrode replacement 450 0.0004

Consumables Helium [m3] 6.88 0.0215

Nitrogen [m3] 5.16 0.0171

Energy Electricity 0.12 kWh 0.0115

TOTAL 0.0686

1 According to dyehouse production capability of 1,000 ton

Page 11: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Economical evaluation of plasma pre‐treatment

Breakdown of the costs for woollen fabric dyeing with and without the plasma pre‐treatment – Conventional dyestuffs

Cost per production chain Conventional

Cost per Kg

Cost per production chain Conventional

Cost per Kg

Cost per production chain BISCOL

Cost per kg1.

NO Pre-treatment - BASOLAN 0.27 PLASMA 0.069

Dyeing Dyeing Dyeing

Consumables 0.108 Consumable 0.108 Consumable 0.108

Energy Aux 2Energy Aux 1

0.3810.458

Energy Aux 2Energy Aux 1

0.3810.458

Energy Aux2Energy Aux 1

0.2980.366

TOTAL Aux 2TOTAL Aux 1

0.4890.566

TOTAL Aux 2TOTAL Aux 1

0.7590.836

TOTAL Aux 2TOTAL Aux 1

0.474 0.543

Page 12: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Economical evaluation of plasma pre‐treatment

• Energy  saving is  induced  a  reduction  in  the  process  costs  for  the dyeing process  that  it  is  in  the  range 0.025 – 0.03 €/kg of  fabrics. Considering  the  application  of  conventional  process  without  the implementation of the Auxiliaries it reach up to 0.09 €/Kg of fabrics.

• Considering  that  the  overall  capability  of  a  small  to  mediumdyehouse is around 1,000 tonns per year, the implementation of the combined  process  (Plasma  pre‐treatment  +  New  auxiliaries)  can induce a total cost saving up to 92,000 €/year. The benefit  induced by plasma treatment  is around 23,000 €/year (meaning at  least 4% of  the total economical benefits)

• If the replacement of the chemical anti‐felting finishing is considered up to 58% of the costs can be saved with an overall benefit up to 362,000 euro can be achieved.

Page 13: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Economical evaluation of plasma pre‐treatment

Breakdown of the costs for woollen fabric dyeing with and without the plasma pre‐treatment – Biodyes dyestuffs

Cost per production chain Conventional

Cost per Kg

Cost per production chain Conventional

Cost per Kg

Cost per production chain BISCOL

Cost per kg1.

NO Pre-treatment - BASOLAN 0.27 PLASMA 0.069

Dyeing Dyeing Dyeing

Consumables 0.108 Consumable 0.108 Consumable 0.138

Energy Aux 2Energy Aux 1

0.3810.458

Energy Aux 2Energy Aux 1

0.3810.458

Energy Aux2Energy Aux 1

0.2860.267

TOTAL Aux 2TOTAL Aux 1

0.4890.566

TOTAL Aux 2TOTAL Aux 1

0.7590.836

TOTAL Aux 2TOTAL Aux 1

0.474 –0.492

Page 14: WP4 Textile pre treatment - unisi.it › wp-content › uploads › 2010 › 08 › WP4_NTT2.pdf · Protocol of dyeing Dyeing protocol applied for woollen fabrics dyed with byodye

Economical evaluation of plasma pre‐treatment

The  benefit  induced  by  the  combination  of  the  plasma  pre‐treatment and biodyes is not  inducing a significant reduction of the costs for Aux 2 since the energy benefits have been balancedby  the  increase  of  the  dyestuff  costs  (figure  provided  by WETLANDS). 

In  any  case,  cost  range  have  been  reduced  in  comparison  to conventional  dyestuff  up  to  a  value  of  0.492  €/kg,  with  a reduction  from  the maximum  value of  0.05  €/kg. According  to that minimum  costs  saving  is  around  74,000  €/year (maximum value is still 92,000 €/year).