worldline approach to the casimir effect

95
Worldline Approach to the Casimir Effect Holger Gies Institute for Theoretical Physics Heidelberg University Holger Gies Worldline Approach to the Casimir Effect

Upload: others

Post on 09-Feb-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Worldline Approach to the Casimir Effect

Holger Gies

Institute for Theoretical PhysicsHeidelberg University

Holger Gies Worldline Approach to the Casimir Effect

”during my first years at Philips I did some workthat even Pauli regarded as physics ...

H.B.G. Casimir, Autobiography, 1983

Holger Gies Worldline Approach to the Casimir Effect

A view on the quantum vacuum.

Holger Gies Worldline Approach to the Casimir Effect

A view on the quantum vacuum.

Holger Gies Worldline Approach to the Casimir Effect

A view on the quantum vacuum.

Holger Gies Worldline Approach to the Casimir Effect

A view on the quantum vacuum.

Holger Gies Worldline Approach to the Casimir Effect

A view on the quantum vacuum.

a

Holger Gies Worldline Approach to the Casimir Effect

Casimir effect.

B origin:

E =12

∑~ω[a]− 1

2

∑~ω[∞]

B Hendrik B.G. Casimir 1948:

FA

= − π2

240~ ca4

relativistic: cquantum: ~“universal”: no other parameters

kgm · s2 =

kg ·m2

sms

1m4

Holger Gies Worldline Approach to the Casimir Effect

Casimir’s derivation

B boundary conditions:

Et

∣∣∣plates

= Bn

∣∣∣plates

= 0

a

B “vacuum energy”

12

∑~ω =

~2

A∫

d2kt

(2π)2

∞∑n=−∞

ω~kt ,n, ω~kt ,n

= c

√~k2

t +(πn

a

)2

Holger Gies Worldline Approach to the Casimir Effect

Casimir’s derivation

B boundary conditions:

Et

∣∣∣plates

= Bn

∣∣∣plates

= 0

a

B “vacuum energy”

12

∑~ω =

~2

A∫

d2kt

(2π)2

∞∑n=−∞

ω~kt ,n, ω~kt ,n

= c

√~k2

t +(πn

a

)2

→∞

Holger Gies Worldline Approach to the Casimir Effect

Casimir’s derivation

B boundary conditions:

Et

∣∣∣plates

= Bn

∣∣∣plates

= 0

a

B subtract energy for very large separations: lima→∞nπa = kz

∆E(a) =~cA4π

∫dkt kt

[ ∞∑n=−∞

ω~kt ,n− 2a

π

∫dkz

√k2

t + k2z

]

B difference of two divergent quantities: Regularization required !

Holger Gies Worldline Approach to the Casimir Effect

Casimir’s regulator

B smooth cutoff function F (k/km)

F (k/km) = 1 for k � km

F (k/km) = 0 for k →∞

“The physical meaning is obvious: for veryshort waves (X-rays, e.g.) our plate ishardly an obstacle at all and therefore thezero-points energy of these waves will notbe influenced by the position of the plate.”

Holger Gies Worldline Approach to the Casimir Effect

Casimir’s regulator

B smooth cutoff function F (k/km)

F (k/km) = 1 for k � km

F (k/km) = 0 for k →∞

B regularization~2

∑ω → ~

2

∑ω F (ω/km)

B remove the regulator

∆E(a) = limkm→∞

∆E reg(a) = −c~π2A720a3

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

B ρ→ 0: “pneumatic vacuum”

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

B QFT: quantum fluctuations BUT: . . . just a picture !

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

B Boundary conditions: Casimir effect

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

B Probing the quantum vacuum, e.g., by external fields:“modified quantum vacuum”

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

=⇒ modified light propagation: “QV ' medium” (PVLAS,BMV,Q&A)

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

B Heat bath: quantum & thermal fluctuations

Holger Gies Worldline Approach to the Casimir Effect

Another view on the quantum vacuum.

+++++

−−−−−

ee + −

B electric fields: Schwinger pair production “vacuum decay”

Holger Gies Worldline Approach to the Casimir Effect

Universal tool: effective action Γ.

B Quantum vacuum with background A∫fluctuations → Γ[A]

Γ[A] =⇒

δΓ[A]δA = 0, quantum Maxwell equations → (light prop.)

EQV = Γ[A]T , FCasimir = −∂EQV

∂A , Casimir force

W = 2Im Γ[A]VT , Schwinger pair production rate

(HEISENBERG&EULER’36; WEISSKOPF’36; SCHWINGER’51)

(CASIMIR’48)

Holger Gies Worldline Approach to the Casimir Effect

Universal tool: effective action Γ.

B Quantum vacuum with background A∫fluctuations → Γ[A]

Γ[A] = − ln∫Dφe−

R−|D(A)φ|2+m2|φ|2 =

=∑

λ

ln(λ2 + m2

)

B spectrum of quantum fluctuations:

ScQED: −D(A)2 φ = λ2 φScalar: (−∂2 + A(x))φ = λ2 φ

Holger Gies Worldline Approach to the Casimir Effect

Universal tool: effective action Γ.

Γ[A] =∑

λ

ln(λ2 + m2

)=

Problem solved, “in principle”

find spectrum λ for a given background Asum over spectrum

Holger Gies Worldline Approach to the Casimir Effect

Universal tool: effective action Γ.

Holger Gies Worldline Approach to the Casimir Effect

Universal tool: effective action Γ.

Holger Gies Worldline Approach to the Casimir Effect

Universal tool: effective action Γ.

Γ[A] =∑

λ

ln(λ2 + m2

)=

BUT:

In general practice:

spectrum {λ} not knownanalyticallyspectrum {λ} not bounded∑

λ →∞ (regularization)renormalization

Holger Gies Worldline Approach to the Casimir Effect

Measurements of the Casimir force.

B Experimental milestones

Sparnaay 1958,van Blokland & Overbeek 1978,Lamoreaux 1997,Mohideen & Roy 1998,

∆FF ' 100%

∆FF ' 50%

∆FF ' 5%

∆FF ' 1%

B Sparnaay’s fundamental requirements:

clean plate surfacesprecise measurement of separation acontrol of electrostatic potentials Vres

Holger Gies Worldline Approach to the Casimir Effect

Casimir meets AFM.

Atomic-Force-Microscope Measurements(MOHIDEEN ET AL.’98)

B Sphere-Plate configuration (DERJAGUIN ET AL.’56)

Force sensitivity: 10−17 N

Holger Gies Worldline Approach to the Casimir Effect

Casimir meets AFM.

Atomic-Force-Microscope Measurements(MOHIDEEN ET AL.’98)

200 µm polystyrene sphere with gold coating 85.6± 0.6 nm

Holger Gies Worldline Approach to the Casimir Effect

Casimir meets AFM.

Atomic-Force-Microscope Measurements(MOHIDEEN ET AL.’98)

B Sphere-Plate configuration (DERJAGUIN ET AL.’56)

B Results

B Corrections:

material

{surface roughness

finite conductivity

finite temperature

geometry

}QFT

Holger Gies Worldline Approach to the Casimir Effect

Casimir Morphology.(BINNS’05)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Morphology.

a

R

F = − π2

240~ ca4 A F = ? F = ?

Holger Gies Worldline Approach to the Casimir Effect

Casimir vs. Newton.

B gravity:

F12 = − Gm1m2

|r1 − r2|2r12

B quantum force:

F‖ = − π2

240~ ca4 A

?Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = − π2

240~ca4 · A

F1si = ?

(CF. BRESSI,CARUGNO,ONOFRIO,RUOSO’02)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = − π2

240~ca4 · A

B parallel-plate

energy density

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = − π2

240~ca4 · A

F1si = ?

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = − π2

240~ca4 · A

F1si = ?

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = − π2

240~ca4 · A

F1si = ?

Holger Gies Worldline Approach to the Casimir Effect

Worldline representation of Γ.

B pedestrian approach

Γ[A] =∑

λ

ln(λ2 + m2

)= Tr ln

[−(D(A))2 + m2

]

= −∞∫

1/Λ2

dTT

e−m2T Tr exp[D(A)2 T

]︸ ︷︷ ︸

=〈x|eiH(iT )|x〉

= −∞∫

1/Λ2

dTT

e−m2T N∫

x(T )=x(0)

Dx(τ) e−

TR0

dτ“

x24 +ie x·A(x(τ)

Holger Gies Worldline Approach to the Casimir Effect

Worldline representation of Γ.

B pedestrian approach

Γ[A] =∑

λ

ln(λ2 + m2

)= Tr ln

[−(D(A))2 + m2

]

= −∞∫

1/Λ2

dTT

e−m2T Tr exp[D(A)2 T

]︸ ︷︷ ︸

=〈x|eiH(iT )|x〉

= −∞∫

1/Λ2

dTT

e−m2T N∫

x(T )=x(0)

Dx(τ) e−

TR0

dτ“

x24 +ie x·A(x(τ)

Holger Gies Worldline Approach to the Casimir Effect

Worldline representation of Γ.

Γ[A] = −∞∫

1/Λ2

dTT

e−m2T N∫

x(T )=x(0)

Dx(τ) e−

TR0

dτ“

x24 +ie x·A(xτ)

x(T ) =

(FEYNMAN’50)

...(HALPERN&SIEGEL’77)

(POLYAKOV’87)

(FERNANDEZ,FRÖHLICH,SOKAL’92)

...(BERN&KOSOWER’92; STRASSLER’92)

(SCHMIDT&SCHUBERT’93)

(KLEINERT’94)

Holger Gies Worldline Approach to the Casimir Effect

Worldline representation of Γ.

Γ[A] = −∞∫

1/Λ2

dTT

e−m2T N∫

x(T )=x(0)

Dx(τ) e−

TR0

dτ“

x24 +ie x·A(xτ)

x(T ) =

Worldline approach:

effective action Γ ∼∫

closed worldlines x(τ)

worldline ∼ spacetime trajectory of φ fluctuationsgauge-field interaction ∼ “Wegner-Wilson loop”finding {λ} and

∑λ done in one finite (numerical) step (HG&LANGFELD’01)

Holger Gies Worldline Approach to the Casimir Effect

Worldline Numerics.

∫x(1)=x(0)

Dx(t) −→nL∑

l=1

, nL = # of worldlines

→ statistical error

x(t) −→ x i , i = 1, . . . ,N (ppl)→ systematical error

−→ → spacetime remains continuous

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B Feynman diagram (conventionally in momentum space)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline (artist’s view)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 4 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 10 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 40 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 100 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 1000 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 10000 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Trajectory of a Quantum Fluctuation.

B worldline numerics: N = 100000 points per loop (ppl)

Holger Gies Worldline Approach to the Casimir Effect

Propertime T .

T ∼ regulator scale of smeared momentum shells

Holger Gies Worldline Approach to the Casimir Effect

Propertime T .

B “Measuring” the Wegner-Wilson loop exp(−ie

∮dx · A

)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect.

B Casimir effect = “strong-field QFT”

S =12

(∂φ)2 +m2

2φ2 + Aφ2

A(x) = λ

∫S

dσ[δ(x − xσ) + δ(x − xσ)

]

(BORDAG,HENNIG,ROBASCHIK’92; GRAHAM ET AL.’03)

B Casimir energy on the worldline:

E [A] = −12

∞∫0

dTT

e−m2T N∫

x(T )=x(0)

Dx(τ) e−

TR0

dτ“

x24 +A(x(τ))

Holger Gies Worldline Approach to the Casimir Effect

Benchmark test: parallel plates

Holger Gies Worldline Approach to the Casimir Effect

Benchmark test: parallel plates

Holger Gies Worldline Approach to the Casimir Effect

Benchmark test: parallel plates

B for finite m, λ, a

(BORDAG,HENNIG, ROBASCHIK ’92) (HG,LANGFELD,MOYAERTS ’03)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect: curvature effects on the worldline

S2

(a) (b) (c)

S1

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect: curvature effects on the worldline

−εR

4

0.012

0.01

0.008

0.006

0.004

0.002

0

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect: curvature effects on the worldline

(THANKS TO K. KLINGMULLER)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect: sphere above plate.

0.001 0.01 0.1 1 10 100a/R

0

0.5

1

1.5

2

EC

asim

ir/E

PFA

(a/R

<<

1)

PFA plate-basedPFA sphere-based

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect: sphere above plate.

0.001 0.01 0.1 1 10 100a/R

0

0.5

1

1.5

2E

Cas

imir/E

PFA

(a/R

<<

1)

PFA plate-basedPFA sphere-basedworldline numerics

Holger Gies Worldline Approach to the Casimir Effect

Casimir Effect: sphere above plate.

0.001 0.01 0.1 1 10 100a/R

0

0.5

1

1.5

2E

Cas

imir/E

PFA

(a/R

<<

1)

PFA plate-basedPFA sphere-basedoptical approximationworldline numerics"KKR" multi-scattering map

(HG,LANGFELD,MOYAERTS’03; JAFFE,SCARDICCHIO’04; BULGAC,MAGIERSKI,WIRZBA’05; HG,KLINGMÜLLER’05)

Holger Gies Worldline Approach to the Casimir Effect

Future Casimir curvature measurements.

B cylinder-plate geometry (BROWN-HAYES,DALVIT,MAZZITELLI,KIM,ONOFRIO’05)

(EMIG,JAFFE,KARDAR,SCARDICCHIO’06; HG,KLINGMULLER’06; BORDAG’06)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = −γ‖~ca4 · A

F1si = ?

(CF. BRESSI,CARUGNO,ONOFRIO,RUOSO’02)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = −γ‖~ca4 · A

F1si = ?

(CF. BRESSI,CARUGNO,ONOFRIO,RUOSO’02)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

F‖ = −γ‖~ca4 · A

F1si = ?

(CF. BRESSI,CARUGNO,ONOFRIO,RUOSO’02)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

Σ2

aΣ1

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

εC

asim

ira

4

0

-0.002

-0.004

-0.006

-0.008

-0.01

-0.012

-0.014

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

B effective description of a finite plate

area A boundary C

F = −γ‖~ca4 Aeff,

B effective area: Aeff ' A + γ1siγ‖

aC, γ1si = 5.23(2)× 10−3

(HG,KLINGMULLER’06)

Holger Gies Worldline Approach to the Casimir Effect

Casimir Edge Effects.

B effective description of a finite plate

area A boundary C

F = −γ‖~ca4 Aeff,

B effective area: Aeff ' A + γ1siγ‖

aC, γ1si = 5.23(2)× 10−3

(HG,KLINGMULLER’06)

Holger Gies Worldline Approach to the Casimir Effect

Further Worldline Applications.

Heisenberg-Euler effective actions, spinor QED,flux tubes, quantum-induced vortex interactions

(HG,LANGFELD’01; LANGFELD,MOYAERTS,HG’02)

thermal fluctuations, free energies(HG,LANGFELD’02)

+++++

−−−−−

ee + − “spontaneous vacuum decay”, Schwinger pairproduction in inhomogeneous electric fields

(HG,KLINGMÜLLER’05)

nonperturbative effective actions(HG,SÁNCHEZ–GUILLÉN,VÁZQUEZ’05)

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Feynman diagrammar:

∼∫

dDp1

(2π)D

∫dDp2

(2π)D

∏i

∆i(qi)

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Worldline:

∼∫

T

⟨ ∫dτ1dτ2 ∆(x(τ1), x(τ2))

⟩x

B photon propagator in coordinate space

∆(x1, x2) =

∫dDp

(2π)D1p2 eip(x1−x2) =

Γ(D−2

2

)4πD/2

1|x1 − x2|D−2

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Worldline:

∼∫

T

⟨e−ie

Hdx·A(x)

∫dτ1dτ2 ∆(x(τ1), x(τ2))

⟩x

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Feynman diagrammar:

+ ∼∫

dDp1

(2π)D

∫dDp2

(2π)D

∫dDp3

(2π)D

∏i

∆i(qi)

+

∫dDp1

(2π)D

∫dDp2

(2π)D

∫dDp3

(2π)D

∏i

∆i(qi)

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Worldline:

+

∼∫

T

⟨ ∫dτ1dτ2dτ3dτ4 ∆(x(τ1), x(τ2))∆(x(τ3), x(τ4))

⟩x

B both diagrams in one expression

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Worldline:

+

∼∫

T

⟨ (∫dτ1dτ2 ∆(x(τ1), x(τ2))

)2 ⟩x

B both diagrams in one expression

Holger Gies Worldline Approach to the Casimir Effect

Higher loops per pedes

B Worldline, all possible photon insertions:

∑∼

∫T

⟨exp

(−e2

2

∫dτ1dτ2 ∆(x(τ1), x(τ2))

) ⟩x

=⇒ “quenched approximation” (further charged loops neglegted)(FEYNMAN’50)

Holger Gies Worldline Approach to the Casimir Effect

Systematics: small-Nf expansion

+ + + . . .

∼ Nf

∫T

⟨e−

e22

R R∆

⟩x

+ N2f

∫T 1,T 2

⟨F2{x1, x2}

⟩x1,x2

+ N3f

∫T 1,T 2,T 3

⟨F3{x1, x2, x3}

⟩x1,x2,x3

+ . . .

=⇒ “particle-~ expansion” (HALPERN&SIEGEL’77)

=⇒ arbitrary g, “small” A (. . . but not perturbative in A)

Holger Gies Worldline Approach to the Casimir Effect

A scalar model in quenched approximation

φ: “charged” matter field, A: “scalar” photon

L(φ,A) =12

(∂µφ)2 +12

m2φ2 +12

(∂µA)2 − i2

h Aφ2.

well-defined perturbative expansionwell-defined small-Nf expansion∼ h Aφ2 superrenormalizable, [h] = 1, in D = 4imaginary interaction ∼ QED

(. . . imaginary Wick-Cutkosky model)

Holger Gies Worldline Approach to the Casimir Effect

Photon effective action

B quenched approximation

ΓQA[A] =

∫x

12

(∂µA)2 − 12(4π)2

∫ ∞

0

dTT 3 e−m2T

⟨eih

RdτA e−h2 V [x ]

⟩x

= , (1)

B Worldline self-interaction potential

h2 V [x ] :=h2

8π2

∫ T

0dτ1dτ2

1|x1 − x2|2

Holger Gies Worldline Approach to the Casimir Effect

Self-interaction potential

Holger Gies Worldline Approach to the Casimir Effect

Self-interaction potential

Holger Gies Worldline Approach to the Casimir Effect

Quenched effective action

B soft-photon effective action, A ' const. ( . . . á la Heisenberg-Euler)

ΓQA[A] = − 12(4π)D/2

∞∫0

dTT 1+D/2 e−m2T eihAT

⟨e−h2 V [x ]

⟩x

=

B PDF analysis⟨e−h2 V [x ]

⟩x

=

∫dV Px(V ) e−h2V

Holger Gies Worldline Approach to the Casimir Effect

Renormalized effective action(HG,SANCHEZ-GUILLEN,VAZQUEZ’05)

ΓQA,R[A] = − 132π2

∫d4x

∞∫0

dTT 3 e−m2

RT(

eihAT − 1− ihAT +(hAT )2

2

)

×

β + h2

8π2 T

)1+α

, α ' 0.79, β ' 13.2

0.5 1 1.5 2A

-0.002

-0.0015

-0.001

-0.0005

Re G 8h=1<

0.5 1 1.5 2A

-0.8

-0.6

-0.4

-0.2

Re G 8h=5<

Holger Gies Worldline Approach to the Casimir Effect

Massless Limit?

B one-loop small-φ-mass limit: IR divergence

Γ1-loop[A]∣∣

hAm2

R�1 ' −

164π2

∫d4x (hA)2 ln

hAm2

R

B quenched small-φ-mass limit: finite

ΓQA,R[A]|mR=0 = −[−Γ(−2− α)] cos π

25−3απ2(1−α)βα

∫d4x (hA)2

(Ah

[1+O((A/h))]

=⇒ break-down of massless limit ∼ artifact of perturbation theory

. . . large log’s summable

Holger Gies Worldline Approach to the Casimir Effect

Conclusions.

Probing the quantum vacuum by strongfields, Casimir boundaries, etc . . .

. . . brings QFT to the desktop

“quantum fields meet micro mechanics”

Worldline numerics :

efficient tool

intuitive picture

Holger Gies Worldline Approach to the Casimir Effect

Conclusions.

Probing the quantum vacuum by strongfields, Casimir boundaries, etc . . .

. . . brings QFT to the desktop

“quantum fields meet micro mechanics”

Worldline numerics :

efficient tool

intuitive picture

Holger Gies Worldline Approach to the Casimir Effect

Conclusions.

Probing the quantum vacuum by strongfields, Casimir boundaries, etc . . .

. . . brings QFT to the desktop

“quantum fields meet micro mechanics”

Worldline numerics :

efficient tool

intuitive picture

Holger Gies Worldline Approach to the Casimir Effect

Holger Gies Worldline Approach to the Casimir Effect

Fermions on the worldline I.

B Grassmann loops

Γ1spin = ln det

[γµ∂µ + ieγµAµ + m

]= − 1

2(4π)D/2

∫ ∞

1/Λ2

dTT 1+D/2 e−m2T

∫PDx∫

ADψ e−

R T0 dτLspin

Lspin =14

x2 + iexµAµ+12ψµψ

µ − ieψµFµνψν

Holger Gies Worldline Approach to the Casimir Effect

Fermions on the worldline II.

B spinor QED (parity-even part):

Γ =− 1

2

(4π)D2

∫dDxCM

∞∫1/Λ2

dTT D

2 +1e−m2T

⟨Wspin[A]

⟩x

Wspin[A] = W [A] × PT exp

ie2

T∫0

dτ σµνFµν

Fσ Fσ

FσFσ

FσFσFσ

FσFσ

FσFσ

Holger Gies Worldline Approach to the Casimir Effect

Fermions on the worldline III.

B Spin factor (STROMINGER’80,POLYAKOV’88)

Γ[A] =12

1(4π)D/2

∫ ∞

0

dTT (1+D/2)

e−m2T⟨

e−ieH

dxA(x) Φ[x ]⟩

x

Φ[x ] := trγP : ei2

R T0 dτ σω(τ) :

ωµν(τ) =14

limε→0

∫ ε

−ε

dρρ xµ(τ +ρ

2)xν(τ − ρ

2)

(HG&HAMMERLING’05)

Holger Gies Worldline Approach to the Casimir Effect