worked example of batch melting: rb and srasimonet/ce30540/sp2017/lecture_10_new...worked example of...

30
Worked Example of Batch Melting: Rb and Sr Basalt with the mode: 1. Convert to weight % minerals (W ol W cpx etc.) Table 9.2 . Conversion from mode to weight percent Mineral Mode Density Wt prop Wt% ol 15 3.6 54 0.18 cpx 33 3.4 112.2 0.37 plag 51 2.7 137.7 0.45 Sum 303.9 1.00

Upload: others

Post on 08-Jun-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

  • Worked Example of Batch Melting: Rb and SrBasalt with the mode:

    1. Convert to weight % minerals (Wol Wcpx etc.)

    Table 9.2. Conversion from mode toweight percent

    Mineral Mode Density Wt prop Wt%ol 15 3.6 54 0.18cpx 33 3.4 112.2 0.37plag 51 2.7 137.7 0.45

    Sum 303.9 1.00

  • Worked Example of Batch Melting: Rb and Sr

    Table 9.2. Conversion from mode toweight percent

    Mineral Mode Density Wt prop Wt%ol 15 3.6 54 0.18cpx 33 3.4 112.2 0.37plag 51 2.7 137.7 0.45

    Sum 303.9 1.00

    Basalt with the mode:

    1. Convert to weight % minerals (Wol Wcpx etc.)

    2. Use equation eq. 9.4: Di = Σ WA Diand the table of D values for Rb and Sr in each mineral to calculate the bulk distribution coefficients: DRb = 0.045 and DSr = 0.848

  • Table 9.3 . Batch Fractionation Model for Rb and Sr

    CL/CO = 1/(D(1-F)+F)DRb DSr

    F 0.045 0.848 Rb/Sr0.05 9.35 1.14 8.190.1 6.49 1.13 5.730.15 4.98 1.12 4.430.2 4.03 1.12 3.610.3 2.92 1.10 2.660.4 2.29 1.08 2.110.5 1.89 1.07 1.760.6 1.60 1.05 1.520.7 1.39 1.04 1.340.8 1.23 1.03 1.200.9 1.10 1.01 1.09

    3. Use the batch melting equation

    (9.5)

    to calculate CL/CO for various values of F

    From Winter (2010) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

    CC

    1Di(1 F) F

    L

    O=

    − +

  • 4. Plot CL/CO vs. F for each element

    Figure 9.3. Change in the concentration of Rb and Sr in the melt derived by progressive batch melting of a basaltic rock consisting of plagioclase, augite, and olivine. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

  • Incremental Batch Melting

    Calculate batch melting for successive batches (same equation)

    Must recalculate Di as solids change as minerals are selectively melted (computer)

  • Fractional Crystallization1. Crystals remain in equilibrium with each

    melt increment

    CC

    1Di(1 F) F

    L

    O=

    − +

  • Rayleigh fractionationThe other extreme: separation of each crystal as it formed = perfectly continuous fractional crystallization in a magma chamber

  • Rayleigh fractionationThe other extreme: separation of each crystal as it formed = perfectly continuous fractional crystallization in a magma chamber Concentration of some element in the residual

    liquid, CL is modeled by the Rayleigh equation:eq. 9.8 CL/CO = F (D -1) Rayleigh Fractionation

  • 4. Plot CL/CO vs. F for each element

    Figure 9.3. Change in the concentration of Rb and Sr in the melt derived by progressive batch melting of a basaltic rock consisting of plagioclase, augite, and olivine. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

  • Other models are used to analyze Mixing of magmas Wall-rock assimilation Zone refining Combinations of processes

  • The Rare Earth Elements (REE)

  • Contrasts and similarities in the D values:All are incompatible

    Also Note:

    HREE are less incompatible

    Especially in garnet

    Eu can → 2+ which conc. in plagioclase

    Table 9-1. Partition Coefficients (CS/CL) for Some Commonly Used Trace Elements in Basaltic and Andesitic Rocks

    Olivine Opx Cpx Garnet Plag Amph MagnetiteRb 0.01 0.022 0.031 0.042 0.071 0.29 Sr 0.014 0.04 0.06 0.012 1.83 0.46 Ba 0.01 0.013 0.026 0.023 0.23 0.42 Ni 14.0 5.0 7.0 0.955 0.01 6.8 29.Cr 0.7 10.0 34.0 1.345 0.01 2.0 7.4La 0.007 0.03 0.056 0.001 0.148 0.544 2.Ce 0.006 0.02 0.092 0.007 0.082 0.843 2.Nd 0.006 0.03 0.23 0.026 0.055 1.34 2.Sm 0.007 0.05 0.445 0.102 0.039 1.804 1.Eu 0.007 0.05 0.474 0.243 0.1/1.5* 1.557 1.Dy 0.013 0.15 0.582 3.17 0.023 2.024 1.Er 0.026 0.23 0.583 6.56 0.02 1.74 1.5Yb 0.049 0.34 0.542 11.5 0.023 1.642 1.4Lu 0.045 0.42 0.506 11.9 0.019 1.563Data from Rollinson (1993). * Eu3+/Eu2+ Italics are estimated

    Rar

    e Ea

    rth E

    lem

    ents

  • REE DiagramsPlots of concentration as the ordinate (y-axis)

    against increasing atomic number Degree of compatibility increases from left to right

    across the diagram (“lanthanide contraction”)

    Con

    cent

    ratio

    n

    La Ce Nd Sm Eu Tb Er Dy Yb Lu

  • -3

    -2

    -10

    1

    2

    34

    5

    6

    7

    89

    10

    11

    0 10 20 30 40 50 60 70 80 90 100

    Atomic Number (Z)

    Log

    (Abu

    ndan

    ce in

    CI C

    hond

    ritic

    Met

    eorit

    e) HHe

    Li

    Be

    B

    C

    N

    O

    FSc

    FeNi

    Ne MgSiS

    CaAr

    Ti

    PbPtSn BaV

    K

    NaAlP

    Cl

    ThU

    Eliminate Oddo-Harkins effect and make y-scale more functional by normalizing to a standard estimates of primordial mantle REE chondrite meteorite concentrations

    Chart2

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    62

    63

    64

    65

    66

    67

    68

    69

    70

    71

    72

    73

    74

    75

    76

    77

    78

    79

    80

    81

    82

    83

    90

    92

    H

    He

    Li

    Be

    B

    C

    N

    O

    F

    Sc

    Fe

    Ni

    Ne

    Mg

    Si

    S

    Ca

    Ar

    Ti

    Pb

    Pt

    Sn

    Ba

    V

    K

    Na

    Al

    P

    Cl

    Th

    U

    Atomic Number (Z)

    Log (Abundance in CI Chondritic Meteorite)

    10.4456042033

    9.434568904

    1.7566361082

    -0.1366771399

    1.3263358609

    7.0043213738

    6.4955443375

    7.3765769571

    2.9258275746

    6.5365584426

    4.7589118924

    6.0310042814

    4.9289076902

    6

    4.0170333393

    5.711807229

    3.719331287

    5.0043213738

    3.5763413502

    4.7860412102

    1.5340261061

    3.3802112417

    2.4668676204

    4.1303337685

    3.9800033716

    5.9542425094

    3.3521825181

    4.6928469193

    2.717670503

    3.1003705451

    1.5774917998

    2.0755469614

    0.8169038394

    1.7930916002

    1.0718820073

    1.6532125138

    0.8506462352

    1.3710678623

    0.6665179806

    1.0569048513

    -0.1561445774

    0.4065401804

    0.2695129442

    -0.4634415574

    0.1430148003

    -0.3133637307

    0.206825876

    -0.735182177

    0.5820633629

    -0.5100415206

    0.6821450764

    -0.0457574906

    0.6720978579

    -0.4294570601

    0.652246341

    -0.3506651413

    0.0553783314

    -0.7775436633

    -0.0820221174

    -0.5880437621

    -1.0118871597

    -0.4814860601

    -1.2196826879

    -0.4042833801

    -1.051098239

    -0.6006724678

    -1.4225082002

    -0.6057234732

    -1.4353339357

    -0.8124792792

    -1.6840296545

    -0.876148359

    -1.2865094569

    -0.1706962272

    -0.1797985405

    0.1271047984

    -0.7281583935

    -0.468521083

    -0.735182177

    0.4983105538

    -0.8416375079

    -1.474955193

    -2.0457574906

    Sheet1

    at nosymbolmeteors/msolar

    1H10.44560420332.79E+101.0027900000000

    2He9.4345689042.72E+091.002720000000

    3Li1.756636108257.10.3520.0108761329

    4Be-0.13667713990.730.810.5911971831

    5B1.326335860921.20.9019.1388888889

    6C7.00432137381.01E+071.0010100000

    7N6.49554433753.13E+061.003130000

    8O7.37657695712.38E+071.0023800000

    9F2.92582757468431.02858.0535714286

    10Ne6.53655844263.44E+061.003440000

    11Na4.75891189245.74E+041.0057581.9334389857

    12Mg6.03100428141.07E+061.001074000

    13Al4.92890769028.49E+041.0084768.9814814815

    14Si61.00E+061.001000000

    15P4.01703333931.04E+040.9810175.9425493716

    16S5.7118072295.15E+050.99510749.656121045

    17Cl3.71933128752401.045468.6907020873

    18Ar5.00432137381.01E+051.00101000

    19K3.576341350237701.003762.6510721248

    20Ca4.78604121026.11E+041.0061292.7444794953

    21Sc1.534026106134.21.0034.3106796117

    22Ti3.380211241724001.012429.2089249493

    23V2.46686762042931.00291.5422885572

    24Cr4.13033376851.35E+041.0013476.2323943662

    25Mn3.980003371695500.979308.2278481013

    26Fe5.95424250949.00E+051.02919174.434087883

    27Co3.352182518122501.002254.5824847251

    28Ni4.69284691934.93E+041.0049300

    29Cu2.7176705035220.99514.6651053864

    30Mn3.100370545112600.991246.4516129032

    31Ga1.577491799837.80.9234.7808306709

    32Ge2.07554696141190.94111.7878787879

    33As0.81690383946.56

    34Se1.793091600262.1

    35Br1.071882007311.8

    36Kr1.653212513845

    37Rb0.85064623527.091.087.6808333333

    38Sr1.371067862323.50.9923.2593856655

    39Y0.66651798064.641.014.6818018018

    40Zr1.056904851311.41.0011.3563218391

    41Nb-0.15614457740.6981.010.7079714286

    42Mo0.40654018042.550.982.4979591837

    44Ru0.26951294421.861.011.8804395604

    45Rh-0.46344155740.3441.030.3534678899

    46Pd0.14301480031.390.991.3818235294

    47Ag-0.31336373070.4860.760.3684193548

    48Cd0.2068258761.611.061.7014772727

    49In-0.7351821770.1842.020.3724878049

    50Sn0.58206336293.820.933.5700934579

    51Sb-0.51004152060.3090.960.2971153846

    52Te0.68214507644.81

    53I-0.04575749060.9

    54Xe0.67209785794.7

    55Cs-0.42945706010.372

    56Ba0.6522463414.490.964.3274660633

    57La-0.35066514130.4461.020.4534333333

    58Ce0.05537833141.1360.961.0936645963

    59Pr-0.77754366330.16690.910.1519217949

    60Nd-0.08202211740.82791.020.8447959184

    62Sm-0.58804376210.25821.030.266185567

    63Eu-1.01188715970.09730.940.0918944444

    64Gd-0.48148606010.331.050.3454205607

    65Tb-1.21968268790.06030.300.0182727273

    66Dy-0.40428338010.39420.960.3770608696

    67Ho-1.0510982390.08890.520.046228

    68Er-0.60067246780.25080.980.24552

    69Tm-1.42250820020.03780.040.0014538462

    70Yb-0.60572347320.24791.140.2818231579

    71Lu-1.43533393570.03676.330.2324333333

    72Hf-0.81247927920.1541.210.1856438356

    73Ta-1.68402965450.0207

    74W-0.8761483590.1331.630.2171029412

    75Re-1.28650945690.0517

    76Os-0.17069622720.6751.050.7092391304

    77Ir-0.17979854050.6610.990.651350365

    78Pt0.12710479841.341.071.4357142857

    79Au-0.72815839350.1871.220.2275542169

    80Hg-0.4685210830.34

    81Tl-0.7351821770.1841.100.2019512195

    82Pb0.49831055383.150.902.8426829268

    83Bi-0.84163750790.144

    90Th-1.4749551930.03351.500.05025

    92U-2.04575749060.009

    CI chondrite from Anders and Grevesse

    &A

    Page &P

    Sheet1

    &A

    Page &P

    Atomic Number

    Ratio solar/chondrite

    &A

    Page &P

    CI Chondrite

    solar system

    &A

    Page &P

    H

    He

    Li

    Be

    B

    C

    N

    O

    F

    Sc

    Fe

    Ni

    Ne

    Mg

    Si

    S

    Ca

    Ar

    Ti

    Pb

    Pt

    Sn

    Ba

    V

    K

    Na

    Al

    P

    Cl

    Th

    U

    Atomic Number (Z)

    Log (Abundance in CI Chondritic Meteorite)

  • What would an REE diagram look like for an analysis of a chondrite

    meteorite?

    0.00

    2.00

    4.00

    6.00

    8.00

    10.00

    56 58 60 62 64 66 68 70 72

    sam

    ple/

    chon

    drite

    LLa Ce Nd Sm Eu Tb Er Yb Lu

    ?

  • Divide each element in analysis by the concentration in a chondrite standard

    0.00

    2.00

    4.00

    6.00

    8.00

    10.00

    56 58 60 62 64 66 68 70 72

    sam

    ple/

    chon

    drite

    LLa Ce Nd Sm Eu Tb Er Yb Lu

  • REE diagrams using batch melting model of a garnet lherzolite for various values of F:

    Figure 9.4. Rare Earth concentrations (normalized to chondrite) for melts produced at various values of F via melting of a hypothetical garnet lherzolite using the batch melting model (equation 9.5). From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

  • Europium anomaly when plagioclase is a fractionating phenocryst

    or a residual solid in source

    Figure 9.5. REE diagram for 10% batch melting of a hypothetical lherzolite with 20% plagioclase, resulting in a pronounced negative Europium anomaly. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

  • Normalized Multielement (Spider) DiagramsAn extension of the normalized REE technique to a broader spectrum of elements

    Fig. 9.6. Spider diagram for an alkaline basalt from Gough Island, southern Atlantic. After Sun and MacDonough (1989). In A. D. Saunders and M. J. Norry (eds.), Magmatism in the Ocean Basins. Geol. Soc. London Spec. Publ., 42. pp. 313-345.

    Chondrite-normalized spider diagrams are commonly organized by (the author’s estimate) of increasing incompatibility L ← R

    Different estimates →different ordering (poor standardization)

  • MORB-normalized Spider Separates LIL and HFS

    Figure 9.7. Ocean island basalt plotted on a mid-ocean ridge basalt (MORB) normalized spider diagram of the type used by Pearce (1983). Data from Sun and McDonough (1989). From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

  • Application of Trace Elements to Igneous Systems

    1. Use like major elements on variation diagrams to document FX, assimilation, etc. in a suite of rocks More sensitive → larger variations as process

    continues

    Figure 9.1a. Ni Harker Diagram for Crater Lake. From data compiled by Rick Conrey. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

  • Contrasts and similarities in the D values:All are incompatible

    Also Note:

    HREE are less incompatible

    Especially in garnet

    Eu can → 2+ which conc. in plagioclase

    Table 9-1. Partition Coefficients (CS/CL) for Some Commonly Used Trace Elements in Basaltic and Andesitic Rocks

    Olivine Opx Cpx Garnet Plag Amph MagnetiteRb 0.01 0.022 0.031 0.042 0.071 0.29 Sr 0.014 0.04 0.06 0.012 1.83 0.46 Ba 0.01 0.013 0.026 0.023 0.23 0.42 Ni 14.0 5.0 7.0 0.955 0.01 6.8 29.Cr 0.7 10.0 34.0 1.345 0.01 2.0 7.4La 0.007 0.03 0.056 0.001 0.148 0.544 2.Ce 0.006 0.02 0.092 0.007 0.082 0.843 2.Nd 0.006 0.03 0.23 0.026 0.055 1.34 2.Sm 0.007 0.05 0.445 0.102 0.039 1.804 1.Eu 0.007 0.05 0.474 0.243 0.1/1.5* 1.557 1.Dy 0.013 0.15 0.582 3.17 0.023 2.024 1.Er 0.026 0.23 0.583 6.56 0.02 1.74 1.5Yb 0.049 0.34 0.542 11.5 0.023 1.642 1.4Lu 0.045 0.42 0.506 11.9 0.019 1.563Data from Rollinson (1993). * Eu3+/Eu2+ Italics are estimated

    Rar

    e Ea

    rth E

    lem

    ents

  • 2. Identification of the source rock or a particular mineral involved in either partial melting or fractional crystallization processes

  • Table 9-1. Partition Coefficients (CS/CL) for Some Commonly Used Trace Elements in Basaltic and Andesitic Rocks

    Olivine Opx Cpx Garnet Plag Amph MagnetiteRb 0.01 0.022 0.031 0.042 0.071 0.29 Sr 0.014 0.04 0.06 0.012 1.83 0.46 Ba 0.01 0.013 0.026 0.023 0.23 0.42 Ni 14.0 5.0 7.0 0.955 0.01 6.8 29.Cr 0.7 10.0 34.0 1.345 0.01 2.0 7.4La 0.007 0.03 0.056 0.001 0.148 0.544 2.Ce 0.006 0.02 0.092 0.007 0.082 0.843 2.Nd 0.006 0.03 0.23 0.026 0.055 1.34 2.Sm 0.007 0.05 0.445 0.102 0.039 1.804 1.Eu 0.007 0.05 0.474 0.243 0.1/1.5* 1.557 1.Dy 0.013 0.15 0.582 3.17 0.023 2.024 1.Er 0.026 0.23 0.583 6.56 0.02 1.74 1.5Yb 0.049 0.34 0.542 11.5 0.023 1.642 1.4Lu 0.045 0.42 0.506 11.9 0.019 1.563Data from Rollinson (1993). * Eu3+/Eu2+ Italics are estimated

    Rar

    e Ea

    rth E

    lem

    ents

    Garnet concentrates the HREE and fractionates among them

    Thus if garnet is in equilibrium with the partial melt (a residual phase in the source left behind) expect a steep (-) slope in REE and HREE

    Shallow (< 40 km) partial melting of the mantle will have plagioclase in the resuduum and a Eu anomaly will result

  • 0.00

    2.00

    4.00

    6.00

    8.00

    10.00

    56 58 60 62 64 66 68 70 72

    sam

    ple/

    chon

    drite

    La Ce Nd Sm Eu Tb Er Yb Lu

    67% Ol 17% Opx 17% Cpx

    0.00

    2.00

    4.00

    6.00

    8.00

    10.00

    56 58 60 62 64 66 68 70 72

    sam

    ple/

    chon

    drite

    La Ce Nd Sm Eu Tb Er Yb Lu

    57% Ol 14% Opx 14% Cpx 14% Grt

    Garnet and Plagioclase effect on HREE

    0.00

    2.00

    4.00

    6.00

    8.00

    10.00

    sam

    ple/

    chon

    drite

    60% Ol 15% Opx 15% Cpx 10%Plag

    La Ce Nd Sm Eu Tb Er Yb Lu

  • Figure 9.3. Change in the concentration of Rb and Sr in the melt derived by progressive batch melting of a basaltic rock consisting of plagioclase, augite, and olivine. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

  • Element Use as a Petrogenetic Indicator

    Ni, Co, Cr Highly compatible elements. Ni and Co are concentrated in olivine, and Cr in spinel and clinopyroxene. High concentrations

    indicate a mantle source, limited fractionation, or crystal accumulation.

    Zr, Hf Very incompatible elements that do not substitute into major silicate phases (although they may replace Ti in titanite or

    rutile). High concentrations imply an enriched source or extensive liquid evolution.

    Nb, Ta High field-strength elements that partition into Ti-rich phases (titanite, Ti-amphibole, Fe-Ti oxides. Typically low

    concentrations in subduction-related melts.

    Ru, Rh, Pd,

    Re, Os, Ir,

    Pd

    Platinum group elements (PGEs) are siderophile and used mostly to study melting and crystallization in mafic-ultramafic

    systems in which PGEs are typically hosted by sulfides. The Re/Os isotopic system is controlled by initial PGE

    differentiation and is applied to mantle evolution and mafic melt processes.

    Sc Concentrates in pyroxenes and may be used as an indicator of pyroxene fractionation.

    Sr Substitutes for Ca in plagioclase (but not in pyroxene), and, to a lesser extent, for K in K-feldspar. Behaves as a compatible

    element at low pressure where plagioclase forms early, but as an incompatible element at higher pressure where

    plagioclase is no longer stable.

    REE Myriad uses in modeling source characteristics and liquid evolution. Garnet accommodates the HREE more than the LREE,

    and orthopyroxene and hornblende do so to a lesser degree. Titanite and plagioclase accommodates more LREE. Eu2+ is

    strongly partitioned into plagioclase.

    Y Commonly incompatible. Strongly partitioned into garnet and amphibole. Titanite and apatite also concentrate Y, so the

    presence of these as accessories could have a significant effect.

    Table 9.6 A Brief Summary of Some Particularly Useful Trace Elements in Igneous Petrology

  • Trace elements as a tool to determine paleotectonic environment

    Useful for rocks in mobile belts that are no longer recognizably in their original setting

    Can trace elements be discriminators of igneous environment?

    Approach is empirical on modern occurrences Concentrate on elements that are immobile

    during low/medium grade metamorphism

  • Figure 9.8 Examples of discrimination diagrams used to infer tectonic setting of ancient (meta)volcanics. (a) after Pearce and Cann (1973), (b) after Pearce (1982), Coish et al. (1986). Reprinted by permission of the American Journal of Science, (c) after Mullen (1983) Copyright © with permission from Elsevier Science, (d) and (e) after Vermeesch (2005) © AGU with permission.

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30