wl373e-v0.3

Upload: hitokiri01

Post on 14-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 WL373e-V0.3

    1/26

    Experiment Instructions

    WL 373 Heat Conduction in Gases

    and Liquids

  • 7/29/2019 WL373e-V0.3

    2/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    i

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    Experiment Instructions

    This manual must be kept by the unit.

    Before operating the unit:

    - Read this manual.

    - All participants must be instructed on

    handling of the unit and, where appropriate,

    on the necessary safety precautions.

    Version 0.3 Subject to technical alterations

    Gases and Fluids

    Thermal Conductivity of

    und FlssigkeitenWrmeleitung von Gasen

    WL 373

    Leistung / PowerHeizer/ Heater

    Ein/ On

    Aus / Off

    Leistung / Power Watt

    Temperatur 2/ Temperature 2 CTemperatur 1/ Temperature 1 C

    123.4 C 123.4 C

    123

  • 7/29/2019 WL373e-V0.3

    3/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    ii

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    Table of Contents

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.1 Intended Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2 Safety. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    2.1 Structure of the Safety Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    2.2 Safety Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    3 Unit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    3.1 Unit Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    3.2 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    3.3 Operating the Measurement and Control Unit. . . . . . . . . . . . . . . . . . . 6

    3.4 Connecting the Heat Exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    4 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    5 Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    5.1 Calibrating the Heat Exchanger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    5.1.1 Preparing for the Experiment . . . . . . . . . . . . . . . . . . . . . . . . 10

    5.1.2 Performing the Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . 10

    5.1.3 Evaluating the Experiment: Calibration Curve . . . . . . . . . . . 11

    5.2 Determination of Coefficients of Thermal Conduction. . . . . . . . . . . . 14

    5.2.1 Preparing for the Experiment . . . . . . . . . . . . . . . . . . . . . . . . 14

    5.2.2 Performing the Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . 155.2.3 Evaluating the Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    6.1 Working Sheet: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    6.2 Symbols and Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    6.3 Table with Coefficients of Thermal Conduction. . . . . . . . . . . . . . . . . 20

  • 7/29/2019 WL373e-V0.3

    4/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    iii

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    6.4 Technical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216.5 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

  • 7/29/2019 WL373e-V0.3

    5/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    1 Introduction 1

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    1 Introduction

    Using the WL 373 Heat Conduction of Gases

    and Liquids unit, basic aspects of steady state

    thermal conduction in liquid and gaseous materi-

    als can be investigated.

    The unit is particularly suited to the determination

    of the coefficients of thermal conduction of liquid

    and gaseous materials.

    The unit comprises a double walled cylinder withan integrated heater acting as the heat source,

    and the surrounding cylinder acting as the heat

    sink. The medium to be investigated is placed in

    between in a measurement slot.

    The temperatures of the heat source and sink are

    measured using thermocouples and transmitted

    to a measurement and control unit where the elec-

    trical power consumption of the heater is also dis-

    played.

    The unit is very easy to set up and operate, it is

    thus also suitable for student use.

    Working sheets included in the appendix to these

    instructions ease the evaluation of experiments.

    The following topics are covered by the unit:

    Steady-state thermal conduction in gases and

    liquids

    Determination of coefficients of thermal con-

    duction

    1.1 Intended Use

    The unit is to be used only for teaching purposes.

  • 7/29/2019 WL373e-V0.3

    6/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    2 Safety 2

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    2 Safety

    2.1 Structure of the Safety Instructions

    The signal words DANGER, WARNING or CAU-

    TION indicate the probability and potential sever-

    ity of injury.

    An additional symbol indicates the nature of the

    hazard or a required action.

    Signal word Explanation

    Indicates a situation which, if not avoided, will result in deathor serious injury.

    Indicates a situation which, if not avoided, may result in deathor serious injury.

    Indicates a situation which, if not avoided, may result in minoror moderately serious injury.

    NOTICE Indicates a situation which may result in damage to equip-ment, or provides instructions on operation of the equipment.

    DANGER

    WARNING

    CAUTION

    Symbol Explanation

    Electrical Voltage

    Hot Surfaces

    Notice

  • 7/29/2019 WL373e-V0.3

    7/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    2 Safety 3

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    2.2 Safety Instructions

    WARNING

    Reaching into the open measurement andcontrol unit can result in electric shocks.

    Disconnect from the mains supply before open-ing.

    Work should only be performed by qualifiedelectricians.

    Protect the measurement and control unitagainst moisture.

    WARNING

    Risk of burns.

    The knurled bolt and the heat exchanger are veryhot.

    Leave the unit cool down.

  • 7/29/2019 WL373e-V0.3

    8/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    3 Unit Description 4

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    3 Unit Description

    3.1 Unit Construction

    Fig. 3.1 Unit Construction

    Gases and Fluids

    Thermal Conductivity of

    und FlssigkeitenWrmeleitung von Gasen

    WL 373

    Leistung / PowerHeizer / Heater

    Ein / On

    Aus / Off

    Leistung / Power Watt

    Temperatur 2/ Temperature 2 CTemperatur 1/ Temperature 1 C

    123.4 C 123.4 C

    123

    1 Heat exchanger (1) with internal heater and cooling facility

    2 Base

    3 Shut-off valves for the cooling flow and the medium to beinvestigated

    4 Measurement and control unit with temperature and heaterpower displays

    Mains cable (not shown)

    1 2 3 4

  • 7/29/2019 WL373e-V0.3

    9/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    3 Unit Description 5

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    3.2 Function

    The heat exchanger contains an electrical heater

    that acts as the heat source (1), and an annular

    cooling slot through which cooling water flows,

    this acts as the heat sink (2). This construction

    results in the flow of heat from the inside to the

    outside.

    Between the heat source and the heat sink is an

    annular measurement slot (3) of constant width,

    the medium to be investigated is contained here.

    The medium is inserted in the slot via a connector(see arrow).

    The temperature of the heat source is measured

    using a thermocouple (4), the temperature of the

    cooling water is measured (viewed in the direction

    of the flow of heat) immediately behind the mea-

    surement slot, also using a thermocouple, and fed

    to the measurement and control unit.

    Fig. 3.2 Section through the heat exchanger

    Cooling water

    connection

    Cooling waterconnection

    2 4 1 3

  • 7/29/2019 WL373e-V0.3

    10/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    3 Unit Description 6

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    To make it easier to clean the slot, the inner cylin-

    der can be removed together with the heater. To

    do this undo the knurled bolt (5), remove the lid

    (6) and the sealing ring, and take out the cylinder

    (7). Refit in the reverse order of removal.

    NOTICE

    Ensure that the sealing ring is correctly seated!

    3.3 Operating the Measurement and Control Unit

    The displays for the temperature of the heat

    source (1) and the heat sink (2), and the heater

    power (power consumption) display (3) are fitted

    to the front of the measurement and control unit.

    The heater power can be regulated up to

    max. 140...150W using the potentiator (4).

    The heater can be switched on and off using the

    power switch (5).

    NOTICE

    In order to avoid the heater burning out, itswitches off automatically above a temperature of

    95C.

    The two thermocouples fitted to the heat

    exchanger and the cable for the heater are con-

    nected to the rear of the measurement and control

    unit. The main switch is also to be found here.

    Fig. 3.3 Dismantling theHeat exchanger

    77 6 5

    Fig. 3.4 Front of the measurement and

    control unit

    Gases and Fluids

    Thermal Conductivity of

    und FlssigkeitenWrmeleitung von GasenWL 373

    Leistung / PowerHeizer / Heater

    Ein / On

    Aus / Off

    Leistung / Power Watt

    Temperatur 2/ Temperature 2 CTemperatur 1/ Temperature 1 C

    123.4 C 123.4 C

    123

    1 2

    5 4 3

  • 7/29/2019 WL373e-V0.3

    11/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    3 Unit Description 7

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    3.4 Connecting the Heat Exchanger

    Connect the heat exchanger to the shut off

    valves in accordance with Fig. 3.5

    The hoses are fitted with rapid action hose cou-

    plings, to release simply pull back the sleeve.

    Make the electrical connections in accordance

    with Fig. 3.5

    NOTICE

    Do not reverse the cables for the thermocouples!

    Fig. 3.5 Connection of the heat

    exchanger on the base andmeasurement and control unit

    A/B Unions for the medium to be investi-

    gated

    Hose size: 6mm

    C Cooling water inlet union

    Hose size: 13mm

    D Cooling water outlet union

    Hose size: 6mm

    E To the thermocouple/ heater

    connector

    F To the test unit input

    G To the thermocouple/ cooler

    connector

    A B C D G

    F

    E

  • 7/29/2019 WL373e-V0.3

    12/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    4 Principles 8

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    4 Principles

    The medium to be investigated fills the cylindrical

    slot completely. The slot is narrow enough to per-

    vent the occurrence of convection, the transfer of

    heat in the slot is therefore more or less com-

    pletely due to thermal conduction.

    Due to the constant width of the slot, thermal con-

    duction occurs as in a plane wall. Here the

    Fourier law is applicable for the amount of heattransferred Q:

    (4.1)

    This yields the relationship for the heat flow :

    (4.2)

    with

    Head flow through the wall under

    investigation

    A Wall surface area

    T Temperature gradient in the wall

    Wall thickness

    Coefficient of the thermal conduction

    is temperature dependant; in general the meantemperature in the wall is used.

    (in W/Km) can be thought of as the energy that

    is conducted every second through a 1m thick

    wall over an area of 1m2when there is a temper-

    ature difference of 1K between the opposite sides

    of the wall.

    Fig. 4.1 Thermal conduction in a plane

    wall

    T T1 T2=

    Q

    Q

    T2

    T1 Q A

    -----------=

    Q

    Q A T

    ------------------------=

    Q

  • 7/29/2019 WL373e-V0.3

    13/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    5 Experiments 9

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    5 Experiments

    The selection of experiments makes no claims of

    completeness but is intended to be used as a

    stimulus for your own experiments.

    The results shown are intended as a guide only.

    Depending on the construction of the individual

    components, experimental skills and environmen-

    tal conditions, deviations may occur in the experi-

    ments. Nevertheless, the laws can be clearly

    demonstrated.

    5.1 Calibrating the Heat Exchanger

    In order to determine the heat losses in the unit,

    calibration is necessary.

    Air is used as the medium to be investigated

    during the calibration process; air is used

    because its coefficients of thermal conduction are

    well documented (values are given in the Appen-

    dix).

  • 7/29/2019 WL373e-V0.3

    14/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    5 Experiments 10

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    5.1.1 Preparing for the Experiment

    Clean the measurement slot to remove any

    water or remnants of other media from the slot

    (refer to Fig. 3.3, Page 6).

    Connect the heat exchanger to the measure-

    ment and control unit in accordance with

    Fig. 3.1, Page 4 and Fig. 3.5, Page 7 and

    switch on the unit.

    Open the shut off valves (1) and (2) for themeasurement slot

    Make the cooling water connections and set

    the flow rate for example to 1ltr/min at shut off

    valve (3)

    The flow rate for cooling water to be deter-

    mined by the help of a stop watch and a meas-

    uring tank in accordance to the following

    equation (5.1)

    (5.1)

    V Capacity water [ltr]

    t Time [s]

    5.1.2 Performing the Experiment

    Set the heat power P= 100W

    Wait until the temperature values are constant Read and record the temperatures for heater

    T1und cooling water T2, as well as the actual

    heater power P

    Repeat the experiment with heater powers of

    P= 80W, 60W, 40W, 20W, 10W

    Fig. 5.1 Shut off valves

    V

    1

    2

    3

    V

    V V

    t----=

  • 7/29/2019 WL373e-V0.3

    15/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    5 Experiments 11

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    5.1.3 Evaluating the Experiment: Calibration Curve

    If the slot is viewed as a wall, then the Fourier for-

    mula can be applied.

    With an average slot diameter of dm= 39,6mm

    and an effective slot length of l= 126mm, the

    heat exchanger surface area A is

    (5.2)

    The slot width is = 0,4mm.

    With the aid of equation Formula (4.1), Page 8 the

    heat loss can be determined and the calibration

    curve drawn (refer to Fig. 5.2, Page 13):

    The coefficient of thermal conduction of air is tem-

    perature dependant and is found to be

    Calibration values are marked with .

    (5.3)

    where

    T- Mean air temperature in C

    (5.4)

    T1 Temperature heater

    T2 Temperature cooling water

    A 0,0396m 0,126m 0,0157m2

    = =

    0,0242 1 0,003 T+=

    TT1 T2+

    2

    -------------------=

  • 7/29/2019 WL373e-V0.3

    16/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    5 Experiments 12

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    For the actual heat flow transferred the equationis:

    (5.5)

    where

    Temperature difference

    (5.6)

    The heat flow loss can be calculated:

    (5.7)

    Q

    A

    A T

    -------------------------=

    T T1 T2=

    Q

    B P Q

    A=

    P

    in W

    T1in C

    T2in C

    T

    inCAir

    in W/Km

    B

    in W

    100 90,9 24,4 66,5 0,0284 74,09

    90 84,4 23,9 60,5 0,0281 66,8

    80 76,1 23,2 52,9 0,0278 57,73

    70 69,7 22,8 46,9 0,0276 50,73

    60 55,7 21,8 33,9 0,0270 35,94

    50 47,5 21,1 26,4 0,0267 27,66

    40 40,4 20,4 20,0 0,0264 20,73

    30 33,8 19,8 14,0 0,0261 14,37

    20 28,2 19,7 8,5 0,0259 8,65

    10 22,6 19,3 3,3 0,0257 3,33

    0 19,5 19,1 0,4 0,0256 0,40

    Tab. 5.1 Calibrating the heat exchanger

    Q

  • 7/29/2019 WL373e-V0.3

    17/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    5 Experiments 13

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    The values measured in this experiment are to be

    used only for this special unit.

    Every unit has its own calibration values.

    Fig. 5.2 Calibration curve

    0

    10

    20

    30

    40

    50

    60

    70

    0 10 20 30 40 50 60 70

    Tin C

    Bin WQ

  • 7/29/2019 WL373e-V0.3

    18/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    5 Experiments 14

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    5.2 Determination of Coefficients of Thermal Conduction

    The experimental sequence is the same as for the

    experiment to record the calibration curve, how-

    ever water or oil is now used as the medium to be

    investigated.

    5.2.1 Preparing for the Experiment

    It is very important that the measurement slot is

    perfectly clean since even small quantities ofimpurities can seriously affect the results. The

    measurement slot must therefore be well

    cleansed (refer to Fig. 3.3, Page 6)

    Connect the heat exchanger to the measure-

    ment and control unit in accordance with

    Fig. 3.1, Page 4 and Fig. 3.5, Page 7 and

    switch on the unit

    Make the cooling water connections and set

    the flow rate for example to 1ltr/min at shut offvalve (3) (refer to Formula (5.1), Page 10)

    Open the shut off valves (1) and (2) for the

    measurement slot

    Inject the medium to be investigated for exam-

    ple with a syringe into socket A until the

    medium runs out of socket B and until no air

    bubbles to be seen inside transparent connec-

    tion hoses

    Close the shut off valves (1) and (2)

    Lift up the heat exchanger and rotate it to

    remove possible air bubbles out of heat

    exchanger into transparent connection hoses,

    if necessary bleed the system again by open-

    ing the shut off valves (1, 2) and refill the sys-

    tem with the medium to be investigated

    Fig. 5.3 Shut off valves und sockets

    V

    1

    2

    3

    A B

  • 7/29/2019 WL373e-V0.3

    19/26

  • 7/29/2019 WL373e-V0.3

    20/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    5 Experiments 16

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    The cause of the variations is predominantly small

    remnants of air and other measured media in themeasurement slot.

    P

    in WT1

    in CT2

    in CT

    in CB

    in WA

    in WAir

    in W/KmLiterature

    in W/KmVar.in %

    100 45,8 24,5 21,3 22,78 77,22 0,092 0,13 29

    70 38,4 24,0 14,4 15,04 54,96 0,097 0,13 25

    Tab. 5.3 Example measurement results when using oil as the measured medium

    Q

    Q

  • 7/29/2019 WL373e-V0.3

    21/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    6 Appendix 17

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    6 Appendix

    6.1 Working Sheet:

    Calibration Curve/ Coefficient of Thermal Conduction

    ExperimentNo.:

    Date:

    Medium: Flow rate cooling water in ltr/min:

    Remarks:

    P

    in WT1

    in CT2

    in CT

    in CB

    in WA

    in WMedium

    in W/KmLiterature

    in W/Km

    Experiment

    No.:

    Date:

    Medium: Flow rate cooling water in ltr/min:

    Remarks:

    P

    in WT1

    in CT2

    in CT

    in CB

    in WA

    in WMedium

    in W/KmLiterature

    in W/Km

    Q

    Q

    Q

    Q

  • 7/29/2019 WL373e-V0.3

    22/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    6 Appendix 18

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    Fig. 6.1 Calibration curve

    0

    10

    20

    30

    40

    50

    60

    70

    0 10 20 30 40 50 60 70

    Bin WQ

    T in C

  • 7/29/2019 WL373e-V0.3

    23/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    6 Appendix 19

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    6.2 Symbols and Units

    A Heat transfer surface area m2

    dm Mean effective diameterof the heat exchanger mm

    P Heater power consumption W

    Q Heat transferred W

    Heat transfer flow rate W/s

    B

    Heat flow loss W/s

    A Actual heat flow transferred W/s

    T Mean air temperature C

    T2 Temperature cooling water C

    T1 Temperature Heater C

    T Temperature difference betweenheat source and heat sink C

    Flow rate ltr/min

    Slot width mm

    Coefficient of thermal

    conduction W/Km

    Q

    Q

    Q

    V

  • 7/29/2019 WL373e-V0.3

    24/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    6 Appendix 20

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    6.3 Table with Coefficients of Thermal Conduction

    Substance Temperature in C in

    Water 0 0,555

    Water 20 0,598

    Water 60 0,651

    Water 100 0,681

    Oil 40 0,123

    Oil 80 0,120

    Tab. 6.1 Coefficients of Thermal Conduction for Some Liquids

    W

    Km----------

    Substance Temperature in C in

    Air T 0,0242(1+0,003T)

    Carbon dioxide CO2 0 0,0178

    Oxygen O2 20 0,026

    Steam 100 0,0242

    Steam 200 0,0328

    Steam 400 0,0551

    Tab. 6.2 Coefficients of Thermal Conduction for Some Gases

    W

    Km----------

  • 7/29/2019 WL373e-V0.3

    25/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    6 Appendix 21

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    6.4 Technical Data

    Dimensions:

    Base plate:

    (L x W x H) 250 x 400 x 150 mm

    Measurement amplifier:

    (W x H x D) 350 x 130 x 250 mm

    Power Supply: 230VAC 50 Hz

    Alternatives optional, see type plate

    Weight: approx. 8 kg

    Heat exchanger:

    Effec. transfer area 0,0157 m2

    Mean Effec. Diameter 39,6 mm

    Slot width 0,4 mm

    Heater

    Max. Power Consumption 160 W

    Thermocouples 2 x Type K

    Measurement and control unit

    Shut down of the heater supply T=95 C

  • 7/29/2019 WL373e-V0.3

    26/26

    02/2012

    WL 373 HEAT CONDUCTION IN GASES AND LIQUIDS

    22

    Allrig

    htsreserve

    d,

    G.U.N.T.

    Ger

    tebau,

    Bars

    btte

    l,Germany

    02/2012

    6.5 Index

    C

    Calibration curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Coefficient of thermal conduction . . . . . . . . . . . . . . . . . . . . . . . 1, 8, 9, 20Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Cooling water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    F

    Fourier law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    H

    Heat sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Heat source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Heater power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    I

    Impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    M

    Measurement and control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    P

    Plane wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Power consumption, heater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    R

    Rapid action hose coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    SSymbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    T

    Technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Thermal conduction in a plane wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Thermocouple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1