wind turbine detailed design report

36
Chris Carreo, Carlye Lauff, Mike Scardina | Confidential 11/04/12 Wind Turbine Kit ME 340: Design Methodology Detailed Design Report Spring 2012 Team 10 Chris Carreo, Carlye Lauff, Mike Scardina 4/11/2012 Team 10

Upload: others

Post on 27-Feb-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

 

Chris  Carreo,  Carlye  Lauff,  Mike  Scardina  |  Confidential  

 

 

 

11/04/12  

  Wind  Turbine  Kit  ME  340:  Design  Methodology    Detailed  Design  Report  Spring  2012  

     

 

 

Team  10  Chris  Carreo,  Carlye  Lauff,  Mike  Scardina  

4/11/2012  

Team  10  

 

Team  10    

2   Wind  Turbine  Kit  

2  

Executive  Summary  

This  report  discusses  the  final  project  proposal  and  detailed  design  analysis  for  a  wind  turbine  generation  kit  aimed  at  educating  elementary  and  middle  school  children.  With  the  constant  increasing  demand  for  energy,  renewable  energy  sources  have  become  more  prominent  in  industry.  Additionally,  there  currently  exists  a  market  to  use  the  wind  turbine  kits  to  stimulate  the  minds  of  children  in  elementary  and  middle  school.  By  sparking  their  interest  in  renewable  energy  and  engineering  and  science,  it  could  change  the  course  of  their  academics  and  cause  them  to  be  on  the  forefront  of  renewable  energy.  The  members  of  Team  10  have  used  design  methodology  as  defined  in  ME  340  this  semester  to  systematically  develop  a  system  level  design  concept  that  has  been  adapted  for  mass  production  to  be  used  across  the  nation.  

After  researching,  external  searching,  and  benchmarking,  many  concepts  were  generated  by  the  team.  These  concepts  were  narrowed  down  to  three  main  concepts.  Through  further  evaluation  using  design  matrices,  the  main  ideas  from  several  concepts  were  selected  and  combined  to  create  a  final  design.  This  final  design  consists  of  several  key  features  such  as  varying  blade  designs,  a  gearbox  with  varying  gear  ratios,  a  LED  power  output,  and  interactional  materials  for  educational  value.  The  beta  prototype  has  been  adapted  for  mass  production  and  accurate  SolidWorks  renderings  have  been  created.    Preliminary  economic  analysis  predicts  that  the  wind  turbine  kit  can  be  mass-­‐produced  for  under  $56.09  per  kit  at  a  rate  of  25,000  kits  per  year.    This  cost  is  much  less  than  most  products  in  the  market  today  and  therefore  makes  Team  10’s  wind  turbine  kit  an  extremely  competitive  product.  The  Net  Present  Value  from  a  five-­‐year  NPV  analysis  is  $1,266,072.  Not  only  are  their  economic  benefits  to  furthering  development  on  the  wind  turbine  kit,  but  there  is  also  an  area  to  develop  educational  value  to  change  the  course  of  engineering  in  the  world  as  we  know  it.    

 

 

 

 

 

 

 

 

 

 

 

 

Team  10    

3   Wind  Turbine  Kit  

3  

Table  of  Contents  1.   Introduction  ...................................................................................................................................  5  

1.1.   Problem  Statement  .................................................................................................................  5  

1.2.   Background  Information  .........................................................................................................  5  

1.3.   Project  Planning  ......................................................................................................................  5  

2.   Customer  Needs  and  Specifications  ...............................................................................................  6  

2.1.   Identification  of  Customer  Needs  ...........................................................................................  6  

2.2.   Design  Specifications  ...............................................................................................................  7  

3.   Concept  Development  ....................................................................................................................  7  

3.1.   External  Search  ........................................................................................................................  7  

3.2.   Problem  Decomposition  ..........................................................................................................  8  

3.3.   Design  Concepts  ......................................................................................................................  9  

3.4.   Concept  Combination  ............................................................................................................  10  

3.5.   Concept  Selection  ..................................................................................................................  10  

4.   System  Level  Design  .....................................................................................................................  12  

4.1.   Overall  Description  ................................................................................................................  12  

5.   Detailed  Design  ............................................................................................................................  14  

5.1.   Modifications  to  Proposal  Sections  .......................................................................................  14  

5.2.   Theoretical  Analysis  ...............................................................................................................  14  

5.3.   Component  and  Materials  for  Mass  Production  ...................................................................  14  

5.4.   Fabrication  for  Mass  Production  ...........................................................................................  15  

5.5.   Industrial  Design  ....................................................................................................................  15  

5.6.   Detailed  Drawings  .................................................................................................................  16  

5.7.   Economic  Analysis  .................................................................................................................  17  

5.7.1   Unit  Production  Cost  .......................................................................................................  17  

5.7.2          Business  Case  Justification  ..............................................................................................  18  

5.8.   Safety  .....................................................................................................................................  18  

5.9.   Test  Procedure  ......................................................................................................................  18  

6.   Conclusions  ..................................................................................................................................  19  

7.          References  ...................................................................................................................................  20  

Appendix  A:  Project  Management  .......................................................................................................  21  

A.1   Team  10  Description  and  Roles  .............................................................................................  21  

A.2   Gantt  Chart  ...........................................................................................................................  22  

 

Team  10    

4   Wind  Turbine  Kit  

4  

Appendix  B:  Customer  Needs  ..............................................................................................................  23  

B.1   Customer  Survey  ....................................................................................................................  23  

B.2   Sample  Customer  Responses  .................................................................................................  24  

Appendix  C:  Concept  Development  .....................................................................................................  26  

C.1   Patent  Search  .........................................................................................................................  26  

C.2   Benchmarking:  KidWind  .........................................................................................................  27  

C.3   Benchmarking:  Horizon  ..........................................................................................................  29  

Appendix  D:  Design  Concepts  ..............................................................................................................  30  

D.1   Concept  A  ..............................................................................................................................  30  

D.2   Concept  B  ...............................................................................................................................  31  

D.3   Concept  C  ...............................................................................................................................  32  

Appendix  E:  Mass  Production  Final  Design  ..........................................................................................  33  

E.1   SolidWorks  Drawings  .............................................................................................................  33  

Appendix  F:  Material  Properties  ..........................................................................................................  35  

F.1   Rapid  Prototyping  Properties  .................................................................................................  35  

Appendix  G:  Business  Case  Justification  ..............................................................................................  36  

G.1   Five-­‐year  projected  NPV  economic  analysis  ..........................................................................  36  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Team  10    

5   Wind  Turbine  Kit  

5  

1. Introduction

1.1. Problem Statement    

In  the  world  today,  energy  is  a  valuable  resource.  The  harnessing  of  energy  to  produce  power  has  become  a  booming  and  expanding  industry.  Currently,  there  has  been  a  push  for  renewable  energy  since  the  world  is  quickly  depleting  the  coal  and  natural  gas  resources  [1].  This  leads  engineers  to  use  other  methods  to  generate  energy,  such  as  wind  power.  The  team  was  assigned  the  task  of  designing,  constructing,  and  testing  a  wind  power  generation  kit.  In  doing  so,  the  team  will  also  use  the  kit  to  educate  and  motivate  children  ages  8-­‐14  about  the  principles  of  wind  power  generation.  The  kit  will  allow  the  children  to  easily  assemble  and  disassemble  the  wind  turbine  on  their  own.  The  final  design  will  be  critiqued  in  areas  such  as  industrial  design,  performance,  educational  value,  safety,  and  compactness,  among  other  criteria.  There  will  also  be  certain  constraints  the  team  must  adhere  to  such  as  building  an  alpha  and  beta  prototype  using  a  Jameco  motor  and  fitting  the  unassembled  parts  into  a  provided  storage  container.  Once  the  wind  turbine  kit  has  been  assembled,  it  must  operate  in  varying  winds  speeds  and  directions.  Two  banana  plug  jacks  must  be  used  to  allow  instrument  testing  and  to  provide  a  signal  indicating  the  power  generated.  In  construction,  no  borrowing  of  parts  from  other  turbines  or  fans  will  be  accepted.  All  of  this  must  be  completed  by  the  team  under  a  budget  of  $100  and  with  the  task  of  educating  8-­‐14  year  olds  about  wind  power  generation.      

1.2. Background Information    

Constructing  the  wind  power  generation  kit  will  require  the  team  to  use  both  past  and  present  knowledge  and  resources.  The  team’s  education  thus  far  will  have  a  large  effect  on  the  completion  of  tasks.  Core  engineering  classes  such  as  Statics  and  Dynamics  will  be  utilized  in  building  the  prototypes.  Electrical  engineering,  manufacturing  processes,  machine  design,  and  physics  are  other  areas  of  study  that  will  be  used  to  complete  the  project.  In  the  construction  of  components  like  the  hub,  blades,  and  nacelle,  the  team  will  use  both  Statics  and  Dynamics.  Statics  will  be  used  to  determine  the  forces  on  the  shaft,  and  Dynamics  will  be  used  in  the  motion  of  the  blades.  Electrical  engineering  concepts  will  be  used  in  wiring  LEDs  to  the  generator  to  indicate  the  power  output.  Manufacturing  process  and  machine  design  will  be  implemented  when  fabricating  parts  of  the  turbine  that  must  fit  together  as  well  as  in  the  overall  manufacturing  of  the  kit.  Most  of  the  technology  and  resources  necessary  will  be  available  in  the  Learning  Factory  and  the  Reber  Building.      To  better  understand  how  wind  power  generation  works,  the  team  has  researched  vertical  and  horizontal  axis  wind  turbines.  This  has  helped  in  the  design  of  the  wind  turbine  and  understanding  the  similarities  and  differences  between  the  two  types.  Also,  the  team  has  acquired  electrical  parts  and  LEDs  to  display  the  output  power.  To  construct  the  light  sequence,  the  team  will  need  to  research  electrical  circuits  in  order  to  construct  the  lights.  Whenever  an  unfamiliar  topic  presents  itself,  the  team  is  ready  to  take  on  the  challenges  head  on.    There  is  a  growing  market  for  the  wind  power  generation  kits.  As  mentioned  in  the  problem  statement,  the  need  for  renewable  energy  is  constantly  increasing  [2].  This  means  that  there  is  a  market  for  educating  the  next  generation  of  scientists  and  engineers.  Through  the  wind  turbine  kit,  students  can  become  excited  about  wind  energy  and  consider  the  topic  in  their  future  studies.  

1.3. Project Planning    

During  the  spring  2012  semester,  the  team  will  follow  the  design  methodology  as  presented  in  ME  

 

Team  10    

6   Wind  Turbine  Kit  

6  

340,  adapted  from  Ulrich  and  Eppinger’s  Product  Design  and  Development,  4th  edition  [3].    The  team  developed  a  Gantt  chart  within  the  first  week  to  ensure  that  all  tasks  could  be  completed  in  a  timely  manner.  This  Gantt  chart  can  be  viewed  in  Appendix  A.    

The  three  members  of  Team  10  used  their  strengths  to  focus  on  certain  tasks  throughout  the  design  process.  The  breakdown  of  the  project  titles  and  roles  for  the  group  members  are  found  in  Appendix  A.  Each  group  member  used  their  strengths  in  completing  milestones  in  the  design  project  per  the  Gantt  chart  schedule.  The  team  has  open  communication  and  always  uses  democracy  in  making  decisions,  such  as  choosing  the  top  three  concepts.  This  mindset  has  allowed  the  team  to  excel  thus  far  in  the  design  process  and  makes  the  team  strongly  believe  that  there  will  not  be  any  setbacks  in  the  final  milestones  of  the  project.  

2. Customer Needs and Specifications

2.1. Identification of Customer Needs    

A  clear  and  concise  customer  survey  was  developed  to  gain  insight  into  what  the  team  should  focus  on  when  developing  the  wind  turbine  kits.  The  questionnaire  the  team  developed  can  be  viewed  in  Appendix  B.  This  questionnaire  begins  with  an  overview  of  the  project  followed  by  a  series  of  questions  that  teachers  from  pre-­‐school  to  eighth  grade  answered.  The  team  sent  this  survey  via  email  to  over  30  teachers  and  received  feedback  from  10.  From  the  feedback,  the  team  developed  several  criteria  to  consider  in  the  design.  This  feedback  can  be  seen  in  Table  1  below.  

Another  way  the  team  identified  customer  needs  was  through  personal  interviews  with  middle  school  students.  The  team  talked  to  five  students  between  the  ages  of  11-­‐13.  The  main  feedback  the  students  gave  was  to  make  the  wind  turbine  kits  as  interactive  as  possible.  One  important  statement  that  was  repeated  multiple  times  was  that  the  students  wanted  to  know  why  the  wind  turbines  existed  and  how  it  would  benefit  them.  From  this,  the  team  decided  to  include  additional  materials  in  the  kit  such  as  a  PowerPoint  presentation  that  can  be  altered  slightly  for  each  class,  a  short  video  showing  the  purpose  of  wind  turbines  and  the  team  actually  building  the  model,  and  a  handout  that  can  be  copied  and  dispersed  to  the  students  in  the  class.  

Table  1.  Customer  responses  from  the  surveys.  

Option   #  Mentions   Percentage  Build  out  of  easily  replaceable  material  or  

recyclables  (i.e.  PVC,  Balsa  wood)   8   80%  

Incorporate  learning  about  different  energy  forms  (i.e.  KE,  PE)   5   50%  

Allow  simple  prototyping  for  students   9   90%  Have  students  compete  against  one  

another   6   60%  

 

 

 

Team  10    

7   Wind  Turbine  Kit  

7  

2.2. Design Specifications    

From  the  wind  generator  problem  description  and  the  customer  needs  seen  in  Table  1  above,  a  Quality  Function  Deployment  matrix  was  created  in  Table  2  below.  These  nine  metrics  were  used  in  creating  the  design  specifications.  

Table  2.  Product  Specification  based  off  customer  needs  in  QFD.  

Metric  No.   Metric   Importance   Units  

1   Prototype  for  under  $50   4   US  $  

2   Industrial  Design  for  under  $15   4   US  $  

3   Efficiency  of  15%   5   kW  4   Durable  for  3  years   2   yr.  

5   Adaptable  for  many  grades   1   -­‐  

6   Built  under  5  minutes   3   s  

7   No  sharp  edges  or  dangerous  parts   2   -­‐  

8   Fits  in  a  tuber  wear  container   1   In.  

9   Simple  yet  complete  design   3   -­‐      

From  the  customer  needs  and  translated  metrics,  the  team  decided  on  ten  criteria  to  be  used  in  the  concept  selection  phase.  These  criteria  can  be  seen  in  Table  4  and  Table  5  in  Section  3.5  further  below.  The  criteria  chosen  to  analyze  the  design  concepts  came  from  the  needs  and  customer  responses.  These  criteria  are  cost,  industrial  design,  performance,  durability,  educational  value,  ease  of  assembly,  safety,  aesthetics,  compactness,  and  simplicity.  These  criteria  were  then  weighted  based  off  of  the  importance  to  the  team.  Criteria  like  educational  value  (25%)  and  performance  (15%)  were  the  most  important  and  therefore  held  more  weight  in  the  decision  process.  On  the  other  hand,  criteria  such  as  durability  (5%),  simplicity  (5%),  and  cost  (5%)  were  not  the  main  factors  in  the  decision  making  and  received  much  lower  weighted  values.  These  values  are  outlined  in  Table  6  and  described  more  in  detail  in  that  section.  

3. Concept Development

3.1. External Search    

In  order  to  develop  a  competitive  wind  turbine  kit,  the  team  completed  a  patent  search.  There  was  one  patent  found  that  incorporate  several  of  the  team’s  ideas  for  the  kit,  such  as  an  adjustable  hub  for  variable  blade  design  [4].  The  patent  publication  number  is  US  2011/0116932  A1.  It  was  published  on  May  19,  2011  and  is  entitled  “Miniature  Wind  Turbine  Having  Variable  Blade  Pitch.”  This  patent,  which  can  be  viewed  in  Appendix  C,  allowed  the  team  to  see  a  way  to  develop  the  hub  to  incorporate  varying  blade  designs.  No  patent  infringements  are  anticipated  because  the  design  the  team  will  be  using  varies  the  length  and  diameter  as  well  as  pitch  of  the  blades.  

The  team  also  benchmarked  competitive  products  in  the  market  to  ensure  a  complete  understanding  of  wind  turbine  kits.  The  two  products  the  team  looked  at  were  the  KidWind’s  Wind  

 

Team  10    

8   Wind  Turbine  Kit  

8  

Energy  Kit  and  Horizon’s  WindPitch  Educational  Kit.  Both  of  these  products  are  currently  being  used  in  many  educational  institutions  and  have  developed  credentials  in  academia.  Both  of  these  designs  can  be  viewed  in  Appendix  C.  In  Table  3  below,  KidWind  and  Horizon  have  been  analyzed  by  the  biggest  pros  and  cons  from  each  design.  

Table  3.  Pros  and  Cons  for  two  benchmarked  products.  

Design   Pros   Cons  

KidWind  

Pre-­‐assembled  gearbox   Expensive  Blade  variation   Set  gear  ratio  

Cheap  blade  materials  -­‐  easy  to  replace   Limited  students/model  

Interactive  videos  and  handouts      

   

Horizon  

Hardware,  software,  and  curriculum  material   Very  Expensive  

Learn  about  more  than  one  renewable  energy  

Not  much  variation  for  interaction  

Creative  energy  output   Materials  hard  to  replace      

KidWind  is  an  excellent  wind  turbine  kit  that  has  received  excellent  reviews.  Two  of  the  middle  school  science  teachers  the  team  spoke  with  have  actually  used  science  grant  money  to  purchase  kits  from  KidWind  to  implement  into  their  curriculum.  There  are  four  levels  of  comprehensive  kits  all  ranging  in  the  amount  of  materials  included.  The  price  range  is  from  $36  for  a  KidWind  Mini  to  $149  for  a  Geared  Turbine.  The  level  of  complexity  would  determine  which  kit  the  teachers  would  need  to  purchase.  The  Geared  Turbine  is  developed  to  run  blade  design  experiments  using  a  multi-­‐meter  to  record  power  output  as  well  as  testing  amount  of  LED  bulbs  they  light  up  or  water  they  pump.  The  gearbox  is  fixed  at  6:1  and  comes  preassembled  for  ease  to  use.  The  drawback  is  that  this  kit  can  only  be  used  for  a  small  group  of  students.  If  a  teacher  needed  to  teacher  a  class  of  50  or  more,  then  they  would  have  to  purchase  Classroom  Pack  for  $384.  These  kits  are  rather  expensive  for  containing  such  basic  materials  and  the  team  believes  a  less-­‐expensive  equivalent  can  be  created.  Some  images  of  KidWind  designs  can  be  viewed  in  Appendix  C.  [5]  

Horizon  has  developed  two  kits  for  wind  energy  production.  The  one  is  a  WindPitch  Energy  Kit  that  is  sold  for  $120  and  allows  students  to  reconstruct  the  number  of  blades  between  one  and  twelve.  The  rest  of  this  kit  cannot  be  altered,  however.  The  other  kit  sold  is  a  Hydro-­‐wind  Educational  Kit.  This  kit  is  $190  and  comes  with  optimal  educational  materials  including  software  programs  as  well  as  many  power  outage  tools  like  an  LED  voltmeter,  music  maker  module,  and  the  ability  to  store  the  wind  energy  in  fuel  cells.  These  materials  are  rather  hard  to  replace,  but  the  concept  of  the  power  outage  is  quite  unique  to  other  kits.  Some  images  of  Horizon  designs  can  be  viewed  in  Appendix  C.  [6]  

3.2. Problem Decomposition    

In  designing  the  wind  turbine  kit,  this  complex  problem  was  decomposed  in  order  to  gain  a  greater  understanding  of  the  several  different  subproblems  and  probable  solutions  to  them.  In  completing  this  problem  decomposition,  a  functional  model  was  used  incorporating  ideas  from  the  “black  box”  

 

Team  10    

9   Wind  Turbine  Kit  

9  

model.  The  overlaying  problem  for  this  class  is  to  create  a  wind  turbine  kit.  However,  this  problem  can  be  broken  down  into  three  subproblems:  energy  production  from  the  wind  turbine,  limited  space  for  building  the  model,  and  the  overall  educational  value  of  the  kit.  Each  of  these  subproblems  can  be  seen  in  Figure  1  below.  All  of  these  problems  can  be  answered  by  choosing  the  best  materials  for  the  design  in  order  to  create  a  full  functioning  wind  turbine  kit.  

 

Figure  1.  Functional  diagram  of  the  problem  decomposition.  

3.3. Design Concepts    

From  the  background  needs,  customer  specifications,  and  benchmarking,  the  team  developed  many  concepts.  In  the  first  round  of  generated  concepts,  the  team  employed  the  3-­‐3-­‐7  method.  This  is  where  the  three  team  members  produced  three  concepts  every  seven  minutes  for  three  rounds.  The  entire  process  took  21  minutes  and  produced  28  concepts.  Then,  the  team  voted  on  the  best  qualities  found  in  those  28  models.  Next,  brainstorming  was  implemented  to  combine  all  of  the  best  ideas  into  more  refined  concepts.  Each  team  member  came  up  with  three  well-­‐defined  concepts.  At  a  team  meeting,  the  members  voted  democratically  for  the  three  concepts  to  move  forward.  They  can  be  viewed  in  Appendix  D.  Those  three  concepts  were  then  critiqued  against  one  another  to  further  develop  the  best  final  design.    

Concept  A  was  a  very  educational  based  design  that  was  built  with  the  intention  of  teaching  students  about  wind  energy  and  topography.  There  would  be  a  fold  out  board  of  land  where  the  students  could  place  the  miniature  HAWT,  VAXT,  or  Wind  Ribbon  designs.  This  would  allow  the  students  to  visually  see  where  wind  turbines  might  be  located  on  the  various  terrains.  It  would  be  reusable  and  be  connected  to  a  built  in  voltmeter  to  see  out  the  power  production.  This  concept  was  very  bulky  and  did  not  allow  students  to  learn  more  about  the  wind  turbines  in  general.  Instead,  it  gave  an  overview  of  wind  turbines  across  the  land.  Concept  A  can  be  viewed  in  Appendix  D.  

Concept  B  was  a  rather  unique  design  in  that  it  was  the  only  vertical  axis  wind  turbine.  The  team  wanted  to  keep  a  VAWT  design  until  the  last  three  concepts  because  it  was  unique  to  the  other  

Energy  Producmon    

Store  or  produce  power  output    

Convert  mechanical  to  electrical  energy    

Limited  Space    

Store  all  components  of  

turbine    Easy  to  construct  

turbine    Choose  the  best  

materials  Create  full  

funcmoning  wind  turbine  kit  

Educamonal  Value    

Teach  students  principles  of  wind  energy    

Simple  design  for  students  to  test    

 

Team  10    

10   Wind  Turbine  Kit  

10  

groups.  However,  a  vertical  design  requires  intense  calculations  and  is  something  the  team  would  spend  tedious  hours  understanding  instead  of  refining  a  concept.  Concept  B  would  be  able  to  be  constructed  out  of  majority  recyclable  material,  and  the  students  could  enjoy  using  objects  like  small  Dixie-­‐cups  as  the  blade  design.  Concept  B  can  be  viewed  in  Appendix  D.  

Concept  C  was  deemed  the  swift  energy  design  based  on  a  company  that  developed  a  similar  product.  This  design  was  extremely  safe  and  efficient  as  seen  with  the  circular  ring  encompassing  the  blades  as  well  as  the  two  tailfins  used  to  direct  the  wind  turbine  into  the  wind.  This  design  would  not  allow  students  to  change  the  blades  or  alter  the  design  in  any  way  possible  due  to  the  constraints.  Another  unique  feature  on  this  design  would  be  that  students  could  be  exposed  to  a  common  wind  turbine  that  can  be  located  on  the  tops  of  houses  or  businesses.  This  could  let  the  students  take  the  design  and  bring  it  outside  and  put  it  on  their  playhouses  and  actually  observe  what  that  wind  turbine  would  look  like  in  real  life  to  scale.  Ultimately,  this  model  did  not  give  enough  flexibility  that  the  team  desired  for  the  final  design.  Concept  C  can  be  viewed  in  Appendix  D.  

3.4. Concept Combination    

The  team  developed  three  unique  concepts  that  were  all  compared  to  one  another.  The  screening  and  scoring  matrices  found  in  Tables  4  and  5  below  under  Section  3.5  show  the  criteria  that  ultimately  allowed  the  team  to  move  forward  with  ideas  from  Concept  A  and  Concept  B.  Using  ideas  from  Concept  A  and  Concept  B,  the  team  used  a  concept  classification  tree  to  see  which  parts  of  each  design  were  the  most  promising.  The  team  took  the  best  subsystems  from  those  two  concepts  along  with  a  few  new  innovative  ideas  to  develop  the  final  design.  The  best  ideas  from  Concept  A  included  the  basis  of  an  educational  valued  model  and  the  fully  functioning  build  in  voltmeter.  The  best  ideas  from  Concept  C  included  the  tailfin,  the  gearbox,  and  the  cheap  yet  sturdy  materials.  When  combining  these  features,  the  team  felt  as  if  there  was  something  missing  to  set  the  team  apart.  After  brainstorming  again,  the  team  decided  to  implement  varying  gears  within  the  gearbox.  This  would  allow  students  flexibility  in  both  blade  and  gear  design,  making  their  experience  the  most  rewarding.  

3.5. Concept Selection    

In  deciding  upon  the  best  possible  design  for  the  wind  turbine,  the  team  constructed  decision  matrices  to  determine  which  concepts  to  pursue.  Since  each  concept  had  unique  characteristics,  the  team  made  a  screening  matrix  to  find  which  concepts  to  continue  developing.  This  screening  matrix  can  be  seen  below  in  Table  4.  The  matrix  consists  of  criteria  that  each  concept  was  judged  on.  These  concepts  were  then  decided  to  be  better  or  worse  than  the  chosen  reference.  Based  upon  the  net  score  of  the  concepts  the  team  decided  what  parts  of  each  concept  to  include  in  the  final  design.  Concept  C  had  the  highest  net  score  of  2  based  upon  its  performance,  design,  educational  value,  and  aesthetics.  Concept  B  was  the  least  desired  with  an  overall  net  score  of  -­‐2.  Concept  A  also  had  some  positives  that  were  incorporated  into  the  design  selected.      Another  helpful  tool  the  team  used  was  making  a  concept  scoring  matrix  to  aid  in  the  design.  This  matrix  can  be  viewed  below  in  Table  5.  The  same  criteria  were  used  as  the  screening  matrix  but  each  was  weighted  a  certain  percentage.  Based  upon  this  percentage,  each  concept  was  giving  a  rating  and  ranked  according  to  the  total  weighted  score.  In  determining  the  weight  for  each  criterion  the  team  thought  about  which  areas  of  the  project  to  focus.  For  the  team,  educational  value  was  most  

 

Team  10    

11   Wind  Turbine  Kit  

11  

important  and  was  weighted  the  highest.  Performance  was  also  deemed  important  and  given  an  appropriate  weighting.  Less  relevant  criterion  such  as  cost  and  durability  were  given  lower  weight  values.  Using  these  weights,  each  concept  was  rated  between  1-­‐5  with  1  being  the  least  desired  rating  and  5  being  the  most.  For  example,  Concept  A  had  a  low  cost  and  was  given  a  5/5  for  the  rating  but  was  determined  to  be  somewhat  aesthetically  displeasing  and  was  therefore  given  a  2/5  rating.  

 Selection  Criteria   Concept  A   Concept  B   Concept  C   Class  Reference  

Cost   +   0   -­‐   0  Industrial  design   -­‐   0   +   0  

Performance  (efficiency)   -­‐   0   +   0  Durability,  low  maintenance   0   -­‐   0   0  

Educational  value   0   0   +   0  Ease  of  assembly   +   -­‐   0   0  

Safety   0   0   0   0  Aesthetics   -­‐   0   +   0  

Compactness   0   0   -­‐   0  Simplicity   +   0   0   0  

   Sum  +'s   3   0   4   0  Sum  0's   4   8   4   10  Sum  -­‐'s   3   2   2   0  

   Net  score   0   -­‐2   2   0  Rank   2   4   1   2  

Continue?   Combine   No   Combine   n/a      

Selection  Criteria  

Weight  (%)  

Concept  A   Concept  B   Concept  C  

Rating  Weighted  score   Rating  

Weighted  score   Rating  

Weighted  score  

Cost   5   5   0.25   3   0.15   2   0.1  Industrial  design   8   2   0.16   4   0.32   5   0.4  

Performance  (efficiency)   15   2   0.3   3   0.45   4   0.6  

Durability,  low  maintenance   5   4   0.2   3   0.15   3   0.15  Educational  

value   25   2   0.5   3   0.75   4   1  Ease  of  assembly   10   5   0.5   3   0.3   3   0.3  Safety   10   4   0.4   2   0.2   3   0.3  

Aesthetics   7   2   0.14   3   0.21   4   0.28  Compactness   10   4   0.4   2   0.2   2   0.2  Simplicity   5   5   0.25   3   0.15   3   0.15  

 Total  score   3.1   2.88   3.48  

  Rank   2   3   1  

Table  4.  Concept  Screening  Matrix.    

Table  5.  Concept  Scoring  Matrix.    

 

Team  10    

12   Wind  Turbine  Kit  

12  

 By  using  decision  matrices,  the  team  saved  time  with  testing  and  decision-­‐making.  Completing  the  matrices  allowed  the  team  to  quickly  view  the  most  important  aspects  of  each  concept  and  eventually  decide  which  concept  was  best  and  should  be  pursued  further.  This  permitted  further  development  of  a  more  detailed  design  that  can  more  actively  engage  children  in  wind  power  generation.  

4. System Level Design

4.1. Overall Description    

The  final  concept  for  the  wind  turbine  incorporates  every  aspect  the  team  sought  out  to  achieve.  Keeping  in  mind  the  goal  of  designing  for  educational  value  the  design  has  various  parts  that  teach  students  the  fundamentals  about  wind  turbines.  A  main  theme  behind  the  design  is  self-­‐experimenting  through  changing  different  parts  of  the  turbine  on  a  mission  to  find  the  best  design.  With  a  little  guidance  of  the  included  CD  we  hope  to  show  the  students  why  a  change  does  or  does  not  increase  performance  or  efficiency.  For  part  specifications  and  exploded  drawings  please  see  Appendix  E.  

 

The  first  distinct  aspect  of  the  design  is  the  students  will  be  able  to  change  the  blades  on  the  turbine.  The  blade  hub  is  easily  dis-­‐assembled  from  the  turbine  and  separated  to  remove  the  blades.  The  hub  is  composed  into  two  sections  made  of  ABS  Plus  plastic  manufactured  from  a  rapid  prototyping  machine  (for  material  properties  see  Appendix  F).  The  hub  is  set  up  in  a  way  that  students  can  experiment  with  one,  two,  three,  and  six  blade  configurations.  Using  ¼  inch  wooden  dowel  rods  the  students  can  change  the  design,  number  and  pitch  of  the  blades  in  a  simple  design.  Installation  of  blades  is  easily  done  by  a  clamping  mechanism  that  tightens  on  the  wooden  dowels  and  prevents  them  from  becoming  a  safety  hazard.    

With  all  types  of  teaching  schedules  in  mind,  the  team  chose  to  incorporate  three  standard  blades  made  of  ABS  Plus  plastic.  In  the  event  a  teacher  does  not  have  time  to  have  students  conduct  experiments  they  can  still  use  the  product  to  teach  the  fundamentals  of  wind  turbines.    

Connecting  the  blade  hub  to  all  of  the  other  moving  parts  of  the  turbine  is  a  hardened  tool  steel  rod.  

Figure  2.  Full  view  of  the  wind  turbine.  

Figure  3.  HUB  extended  view  

 

Team  10    

13   Wind  Turbine  Kit  

13  

This  rod  runs  the  length  of  the  nacelle  and  is  connected  to  the  different  gears  and  the  lifting  attachment.  The  shaft  is  supported  by  two  ball  bearings  mounted  in  the  clear  acrylic  sides.  A  great  feature  of  the  wind  turbine  is  students  will  be  able  to  see  the  insides  of  the  nacelle.  While  the  teacher  explains  the  operation  of  the  turbine  to  the  students  for  the  audio  learners,  the  visual  learners  will  also  benefit  from  watch  the  turbine  operate.  The  top,  sides,  front,  and  back  of  the  nacelle  are  made  out  of  a  strong  impact-­‐resistant  clear  acrylic.  This  ensures  that  no  student  has  a  bad  point  of  view  during  any  lesson  involving  the  turbine.  

Inside  of  the  nacelle  lies  the  gearbox  and  generator  of  the  wind  turbine.  During  ideation  methods  the  team  felt  the  turbine  would  not  succeed  unless  a  gearbox  was  incorporated.  The  gearbox  design  utilizes  a  movable  motor  along  tracks  machined  in  the  acrylic.  Students  can  change  the  gear  ratios  of  the  turbine  by  moving  the  motor,  almost  like  a  transmission,  teaching  about  the  importance  of  gear  ratios  in  generator  designs.  Each  gear  is  press  fit  onto  the  turbine  shaft  to  ensure  a  correct  coupling  with  the  pinion  gear  and  motor.    

The  motor  is  mounted  in  a  holder  that  will  guide  it  to  the  correct  location.  The  holder  is  bent  out  of  steel  sheet  with  handles  made  out  of  tool  steel.  The  motor  mount  will  have  stops  located  on  the  inner  walls  of  the  nacelle  to  ensure  the  motor  does  not  slide  off  of  the  gears  one  way  or  the  other.  The  wires  soldered  to  the  motor  will  be  mounted  out  of  the  way  of  any  moving  parts  so  they  do  not  become  damaged  or  destroyed.  

At  the  back  of  the  nacelle  is  the  directional  fin  and  weight  lifting  attachment.  The  weight  lifting  attachment  gives  the  students  and  the  teacher  more  resources  to  experiment.  Instead  of  generating  power  the  students  can  have  competitions  to  see  whose  design  will  lift  the  most  weight.  To  set  up  the  turbine  for  this  type  of  experiment  the  gearbox  can  be  put  into  “neutral”  by  moving  the  motor  to  the  neutral  slot  located  at  the  front  of  the  turbine  minimizing  power  loss.    

The  directional  fin  attached  to  the  nacelle  replicates  the  automated  turning  mechanisms  in  modern  day  wind  turbines.  This  is  intended  to  teach  the  students  about  nacelle  orientation  relative  to  the  wind  and  show  why  it  is  important.  The  whole  turbine  up  till  now  sits  on  a  flange  bearing  attached  to  the  tower.  The  acrylic  sides  and  ends  of  the  nacelle  are  attached  to  a  sectioned  piece  of  PVC  with  a  shaft  connected  to  the  inner  race  of  the  flange  bearing.  In  order  to  increase  friction  on  the  flange  bearing  and  stop  unnecessary  rotations  the  flange  bearing  will  be  packed  with  grease.  The  outer  race  of  the  flange  bearing  will  be  supported  by  the  tower  but  not  rigidly  connected  so  that  the  nacelle  and  tower  can  be  separated  for  storage.    

The  tower  of  the  turbine  is  a  piece  of  PVC  pipe  that  houses  the  wires  coming  from  the  motor.  They  are  spliced  at  the  banana  jacks  for  easy  digital  multi  meter  readings.  The  wires  continue  down  into  

Figure  4.  Gears  and  motor  in  the  gearbox.  

 

Team  10    

14   Wind  Turbine  Kit  

14  

the  hollow  base  which  house  the  electronics.  The  electronics  inside  the  base  will  be  created  to  take  the  voltage  from  the  motor  and  convert  it  to  light  up  an  LED  bar  on  a  10  segment  LED  bar  graph.  This  indicator  will  show  the  students  how  much  power  their  configuration  of  blades,  pitches,  and  gear  ratio  will  produce.  

5. Detailed Design

5.1. Modifications to Proposal Sections    

Due  to  revelations  for  prototyping  and  design  constraints,  changes  have  been  made  in  the  design,  process,  and  schedule.  In  design,  the  team  has  moved  forward  with  a  gearbox  design.  This  gearbox  has  five  gears  that  allow  the  students  to  easily  move  the  motor  to  test  how  gear  ratios  affect  the  overall  efficiency  of  the  wind  turbine.  Also,  a  tailfin  blade  was  added  to  the  rear  of  the  turbine  so  that  it  could  always  move  

towards  the  wind.  These  changes  can  be  seen  in  Figure  5  to  the  right.    In  changes  in  the  process  of  the  project,  the  team  has  decided  to  break  up  tasks  based  on  certain  strengths.  Since  the  team  has  many  aspirations  in  completed  the  beta  prototype,  this  break  up  of  tasks  is  necessary.  Lastly,  the  team  has  made  alterations  in  the  schedule.  The  building  of  the  beta  prototype  has  been  pushed  back  ten  days  due  to  a  wait  for  new  parts.  Additionally,  the  team  had  to  move  certain  deliverables  up  in  date  a  week  such  as  the  PowerPoint  and  video  so  that  these  tasks  can  be  completed  in  a  timely  manner.  

5.2. Theoretical Analysis    

With  the  ability  to  design  infinite  configurations  of  blades  and  gear  ratios  analyzing  each  would  be  impossible.  This  section  will  focus  on  the  included  blade  length  of  7.5  inches  and  varying  gearing  ratios.    

The  equation  ! = !!!"!!  will  estimate  the  maximum  power  available  in  the  wind  where  A  is  the  

sweep  area  of  the  turbine,  v  is  the  velocity  of  the  wind,  and  ρ  is  the  air  density.  The  sweep  area  of  the  turbine  is  simple  a  circle,  therefore  area  ! = !!!.  With  a  radius  of  7.5  inches,  a  wind  velocity  of  3  m/s,  and  an  air  density  of  1.204  kg/m3  at  20°  C  the  available  power  for  the  turbine  is  .205  Watts.    

The  Betz  Law  states  that  the  maximum  efficiency  of  any  turbine  is  59.3  percent.  This  would  mean  that  the  maximum  power  generation  for  the  design  is  .122  Watts.  With  the  added  rotational  inertia  of  the  gears,  bearings,  and  lifting  attachment  the  estimated  efficiency  of  the  turbine  is  around  12  percent,  making  the  estimated  power  output  .0246  Watts.  [7]  

5.3. Component and Materials for Mass Production    

The  final  design  for  the  wind  turbine  kit  can  be  broken  down  into  a  three  main  components:  the  

Figure  5.  Alterations  to  the  design  of  the  wind  turbine.  

 

 

Team  10    

15   Wind  Turbine  Kit  

15  

base,  the  hub,  and  the  nacelle.  Each  of  these  components  will  have  several  subparts  that  need  to  be  manufactured  as  well.  The  three  components  and  the  several  subparts  along  with  the  materials  selected  for  manufacturing  can  be  seen  in  Table  6  below.  

Table  6.  Components  and  Materials  for  Mass  Production  

Component   Quantity   Material  Selection  

Base  

Tower   1   Metal  Tower  Base   1   Metal  

LED   1   Epoxy  

Alligator  Clips   2   Metal  plastic  coated  

Hub  

Blades   15   Corrugated  Plastic  Weights   2   Plastic  Gears   5   Plastic  Rod  Hub  

6  in  1  

Plastic  Injection  Molded  Plastic  

Nacelle  

Motor   1   Metal  DC  Motor  

Gearbox   1   Polycarbonate  Sheet  

Wires   1  ft   Copper  plastic  coated      

5.4. Fabrication for Mass Production      

The  alpha  and  beta  prototypes  differ  from  the  mass  production  of  the  wind  turbine  kits.  The  SolidWorks  rendering  of  the  different  components  can  be  seen  in  Appendix  E.  In  the  fabrication  of  the  wind  turbine  kits,  techniques  such  as  injection  molding  must  be  used  for  consistency.  In  order  to  produce  a  larger  quantity  of  wind  turbine  kits,  large-­‐scale  manufacturing  techniques  must  be  incorporated.  The  plastics  and  metals  used  in  the  design  would  be  cut,  shaped,  and  refined  using  large  manufacturing  machines.  In  mass  production,  certain  subparts  of  the  overall  design  such  as  the  motor,  LED  light,  and  alligator  clips  could  be  purchased  from  a  vendor  in  mass  quantity.  This  would  enable  the  production  of  the  rest  of  the  materials  to  be  as  quick  and  efficient  as  possible,  allowing  the  kits  to  be  shipped  out  in  larger  quantities.  

5.5. Industrial Design    

When  designing  the  wind  turbine,  the  team  wanted  to  create  a  safe  and  easy  to  use  product  that  also  demonstrated  educational  value  to  children.  The  product  also  needed  to  be  aesthetically  pleasing  while  maintaining  a  low  cost.  All  the  features  were  implemented  in  the  design  of  the  wind  turbine.    

To  allow  easy  assembly  and  disassembly  of  the  turbine,  it  will  be  made  it  multiple  smaller  parts  in  order  to  fit  the  size  constraint.  Also,  by  having  the  children  change  the  gear  ratio  allows  them  to  

 

Team  10    

16   Wind  Turbine  Kit  

16  

interact  with  the  product  and  understand  the  importance  of  gear  ratios.  In  order  to  see  the  gears  inside  the  nacelle,  it  will  be  constructed  of  1/4”  clear  polycarbonate  sheet.  When  changing  gears,  a  ladder  system  attached  will  be  used  to  move  up  and  down  gear  sizes.  This  is  to  allow  a  smooth  change  between  gears  while  still  keeping  it  in  place  and  safely  housed  in  the  nacelle.  

In  designing  the  hub,  the  team  needed  to  find  a  way  to  allow  interchangeable  blades  to  be  put  in  the  hub  while  still  be  easy  to  use  and  safe.  To  achieve  this,  the  blades  each  have  an  insert  that  goes  into  the  hub  and  the  hub  can  be  tightened  to  fit  around  each  blade.  With  this  design,  the  children  can  make  their  own  blades  and  decide  how  many  to  use.  It  also  ensures  the  blades  are  secure  to  account  for  safety  while  also  remaining  easy  to  operate.  The  blades  provided  will  not  have  any  sharp  edges  to  keep  the  product  safe.  

The  base  needs  to  be  sturdy  enough  to  not  topple  over  in  the  roughly  20  mph  winds  they  are  to  be  designed  to  withstand.  It  will  be  made  of  metal  but  with  no  sharp  edges  to  account  for  safety.  As  for  the  tower,  it  will  be  made  of  PVC  pipe,  along  with  part  of  the  nacelle.  The  hub  and  directional  fin  will  be  made  by  rapid  prototyping.  Provided  in  the  kit  will  be  a  template  for  the  children  to  make  their  own  blades  out  of  their  desired  material.  The  design  calls  for  similarly  colored  materials  to  add  to  the  clean,  aesthetic  appeal  of  the  wind  turbine.  

Upon  first  inspection  of  the  kit,  most  parts  should  be  readily  recognizable,  even  to  an  8-­‐14  year  old.  This  familiarizes  them  with  the  product  and  can  help  to  get  them  interested.  And  since  it’s  designed  to  be  easily  assembled  and  disassembled,  it  is  also  easy  to  repair  should  a  problem  arise.  With  a  transparent  nacelle  any  gear  problems  will  be  easily  spotted  and  able  to  be  repaired.  This  will  help  to  cut  down  on  the  cost  associated  with  the  product  since  repairs  can  be  made  to  enable  the  turbine  to  last  longer.  The  low  cost  of  the  materials  needed  for  construction  will  also  keep  the  price  kits  down  to  hopefully  facilitate  schools  using  the  project.  In  turn,  this  would  educate  children  nationwide  about  wind  power  generation.  

5.6. Detailed Drawings    

Here  are  several  drawings  of  the  final  design  that  will  be  used  for  mass  production  in  Figures  6-­‐7  below.  The  rest  of  the  images  can  be  seen  in  Appendix  E.  

                 Figures  6-­‐7.  Detailed  Drawings  of  the  Final  Design.  

 

 

Team  10    

17   Wind  Turbine  Kit  

17  

5.7. Economic Analysis

5.7.1 Unit Production Cost    

The  cost  of  a  product  can  greatly  influence  how  well  it  will  do  in  the  market.  To  ensure  a  successful  product,  the  cost  should  be  kept  relatively  low  to  allow  the  consumer  to  choose  the  product  while  still  making  a  profit.  In  determining  the  cost  to  develop  the  product,  several  factors  were  considered.  The  evaluated  fields  include  parts,  materials,  tooling,  labor  and  overhead.    

Overhead  accounts  for  marketing,  development,  labor,  tooling,  and  distribution  of  the  product.  Marketing  will  be  done  to  schools  in  order  to  show  the  product  offered  in  addition  to  demonstrating  its  use  and  educational  value.  A  website  can  be  made  and  brochures  as  well  to  give  to  prospective  customers  and  gain  their  business.  Development  costs  include  the  gathering  of  materials  and  developing  the  design  for  sale  as  a  viable  product.  This  will  take  place  in  the  first  year  of  production  in  anticipation  for  sales  after  starting  the  company.  Labor  rates  and  tooling  rates  were  estimated  by  determining  what  individual  work  will  be  completed  and  needed  to  construct  each  part.  Distribution  was  also  considered  since  the  plan  would  be  to  sell  nationwide.  This  would  mean  hiring  laborers  to  deliver  the  product  after  fabrication.  A  complete  bill  of  materials  needed  for  the  wind  turbine  can  be  found  as  Table  7  below.  The  overhead  charges  are  also  presented  in  Table  8  below.  

Table  7.  Bill  of  Materials  for  wind  turbine  kit.  

Component   Amount  Purchase  Cost  ($)   Assembly   Tooling  

Total  Unit  Variable  Cost  ($)  

5/32"  bearing   2   9.96   0.2   0   10.16  .157"  steel  rod   1   2.41   0.15   0.05   2.61  

Clear  polycarbonate  sheet   1   14.01   1.5   0.4   15.91  

Threaded  knob   1   0.82   0.2   0   1.02  Jameco  chip   1   2.75   0.5   0   3.25  LED  bar  graph   1   1.09   0.5   0   1.59  Breadboard   1   5.95   0.5   0   6.45  

Motor   1   15   0.1   0   15.1  PVC  pipe   1   0   0.1   0.2   0.3  

           Total  Cost                   $56.09  

 

 

 

 

 

 

Overhead   Cost  Marketing   $40,000  Development   $40,000  Labor   $5,000  Assembly   $5,000  Distribution   $25,000      

Total  Cost   $115,000  

Table  8.  Overhead  Cost  for  Unit  Production.  

 

 

Team  10    

18   Wind  Turbine  Kit  

18  

 

5.7.2 Business Case Justification    

While  1.5  million  dollars  seems  like  a  large  sum  to  spend  on  an  investment,  the  returns  can  be  even  greater.  In  addition  to  providing  education  to  children  across  the  nation,  there  is  also  money  to  be  made  in  the  product.  The  total  cost  to  produce  one  unit  is  roughly  $50.  At  a  production  of  100,000  units  over  four  years,  this  translates  to  an  NPV  of  $1,566,072.  This  estimate  is  conservative,  but  still  leaves  plenty  of  room  for  profit.  This  NPV  was  estimating  as  shown  in  Table  9  below.  The  equation  used  for  the  present  value  was  the  period  cash  flow  divided  by  (1+.1)^x  with  x  being  the  number  of  quarters  since  the  first.  This  value  demonstrates  the  opportunity  available  in  the  selling  the  product  to  schools.  The  five-­‐year  projected  NPV  economic  analysis  can  be  viewed  in  Appendix  G.  

5.8. Safety    

When  designing  the  wind  turbine,  the  team  had  safety  as  a  priority  due  it  being  used  for  children’s  education.  Keeping  this  in  mind,  the  team  made  sure  to  adhere  to  safety  standards  set  forth  by  the  governments  where  the  turbine  may  be  sold.  The  team  also  made  sure  to  design  the  turbine  in  such  a  way  that  there  are  now  sharp  edges  or  parts  that  could  possibly  injure  any  children  during  its  assembly  and  use.  Being  marketed  towards  children,  the  team  used  several  safety  standards.  The  American  Society  for  Testing  and  Materials  (ASTM)  is  a  worldwide  leader  in  the  development  and  delivery  of  standards.  To  be  available  to  children,  the  team  followed  standards  set  forth  in  ASTM  F963-­‐11.  This  standard  lists  important  terminology  and  requirements  for  toys  being  marketed  towards  children.  For  sale  in  international  countries  the  product  must  meet  safety  standards  by  the  International  Electrotechnical  Commission  (IEC).  The  team’s  wind  turbine  satisfactorily  complies  with  the  safety  set  forth  in  the  IEC  61400-­‐1  standard  for  wind  turbines.  This  includes  the  structural  design  of  the  turbine  in  addition  to  the  mechanical  and  electrical  systems  of  which  the  product  comprises.  For  sale  in  the  United  States  and  also  other  nations  Underwriters  Laboratories  uses  safety  standards  to  govern  the  products  available.  The  team’s  turbine  adheres  to  the  UL  3200,  UL  6140,  and  UL  6141  safety  regulations.  These  regulations  ensure  the  satisfactory  performance  of  wind  power  generating  systems.  By  following  the  safety  guidelines  in  the  standards,  the  team  can  guarantee  the  safe  operation  of  the  turbine.  

5.9. Test Procedure    

When  gathering  data  about  the  prototype  the  team  will  want  to  know  what  works  about  it  and  what  does  not.  Once  this  is  determined,  the  team  can  analyze  what  the  data  is  telling  them  to  make  any  necessary  improvements.  Also,  a  visual  inspection  of  a  test  in  progress  will  help  show  any  defects  in  the  prototype.  To  test  the  prototype,  the  team  will  use  a  box  fan  set  up  three  feet  away  to  try  to  spin  the  blades  and  generate  some  power.  While  testing,  the  team  will  use  the  prototype,  the  fan,  and  measuring  tape.  

On  March  28th  the  alpha  prototype  was  completed  and  tested  at  the  Learning  Factory.  The  team  used  the  large  fan  at  the  factory,  not  a  box  fan.  The  prototype  was  placed  three  feet  in  front  of  the  fan.  Upon  testing  the  prototype,  it  was  a  success  with  the  blades  spinning  so  fast  they  flew  out  of  the  hub  at  a  certain  point.  This  immediately  raised  a  safety  concern,  especially  for  use  around  children.  

 

Team  10    

19   Wind  Turbine  Kit  

19  

The  blades  were  fixed  and  the  testing  was  completed.  

The  next  day  on  March  29th  the  team  brought  the  alpha  prototype  in  for  more  testing.  This  test  used  the  standard  box  fan  with  prototype  three  feet  in  front.  With  the  box  fan  the  blades  did  not  spin  at  three  feet.  The  blades  spun  at  roughly  one  foot  away,  but  only  if  they  were  nudged  to  start  off.  Once  given  the  needed  help,  the  blades  made  several  full  rotations  before  coming  to  a  stop.  Several  factors  could  have  contributed  to  these  results.  The  blades  and  hub  were  quite  large  and  heavy  which  made  rotation  harder.  Also,  the  hub  was  not  completely  balanced  and  it  caused  the  blades  to  rotate  irregularly  and  eventually  cease.  Lastly,  friction  between  the  shaft  and  the  caps  the  team  used  may  have  reduced  the  rotational  speed  slightly.  Some  improvement  the  team  need  include  making  a  smaller  hub  and  blades  while  also  balancing  them  to  ensure  even  rotation.  Bearings  can  also  be  used  to  reduce  friction  and  allow  free  rotation  and  therefore  more  power.  

6. Conclusions

The  wind  turbine  kit  that  has  been  developed  by  Team  10  serves  as  an  excellent  educational  model  for  all  students  ages  8-­‐14.  The  wind  turbine  kit  has  taken  into  considerations  the  feedback  from  customers  and  lead  users,  competitive  products,  and  the  restricting  factors  in  this  design  course.  The  team  effectively  learned  how  to  implement  the  design  process  and  used  knowledge  from  other  engineering  classes  to  aid  in  the  analysis  and  manufacturing.  Overall,  the  team  believes  that  all  the  nine  criteria  for  this  project  were  met  and  that  the  innovative  design  of  the  model  can  be  competitive  against  the  other  students  in  this  class  and  in  the  market  as  a  whole.  The  economic  analysis  proved  that  one  kit  could  sell  for  $56.09,  which  is  incredibly  competitive  against  the  much  more  expensive  models  that  are  equally  as  capable.  Although  the  team  believes  that  the  Beta  prototype  and  mass-­‐production  design  is  excellent,  there  are  always  more  improvements  that  can  be  made.  The  world  is  constantly  changing  and  the  minds  of  the  team  are  constantly  opening  up  to  bigger  and  brighter  ideas.  If  this  project  was  to  continue  for  another  year,  the  team  is  confident  that  the  cost  could  decrease,  the  efficiency  increase,  and  the  capabilities  be  even  more  astounding.  

 

 

 

 

 

 

 

 

 

 

Team  10    

20   Wind  Turbine  Kit  

20  

7. References

 

[1]   "Packing  Some  Power."  The  Economist.  The  Economist  Newspaper,  03  Mar.  2012.  Web.  6  Apr.  2012.  <http://www.economist.com/node/21548495>.  

[2]   "Wind  Power."  Energy  &  Environment.  The  New  York  Times  Newspaper,  27  Jan.  2012.  Web.  4  Apr.  2012.  <http://topics.nytimes.com/top/news/business/energy-­‐environment/wind-­‐power/index.html>.  

[3]   Ulrich,  Karl  T.,  and  Steven  D.  Eppinger.  Product  Design  and  Development.  4th  ed.  New  York:  McGraw-­‐Hill  Higher  Education,  2008.  Print.  

[4]   "Miniature  Wind  Turbine  Having  Variable  Blade  Pitch."  Google  Patents.  United  States  Patent  Application  Publication,  19  May  2011.  Web.  11  Apr.  2012.  <http://www.google.com/patents?id=go_hAQAAEBAJ>.  

[5]   "Science  Kits."  KidWind.  KidWind  Prokect  Inc.,  2012.  Web.  2  Apr.  2012.  <http://learn.kidwind.org/>.  

[6]   "Education  -­‐  Horizon  Fuel  Cell  Technologies."  Educational  Kits  &  Resources.  Horizon  Fuel  Cell  Technologies,  2010.  Web.  2  Apr.  2012.  <http://www.horizonfuelcell.com/education_kits.htm>.  

[7]   Johnson,  Gary.  Wind  Energy  Systems.  2004.  PDF.  

 

 

 

 

 

 

 

Team  10    

21   Wind  Turbine  Kit  

21  

Appendix A: Project Management

A.1 Team 10 Description and Roles    

Team  10  consists  of  three  mechanical  engineering  students  currently  completing  their  undergraduate  degree  at  The  Penn  State  University.  The  three  students  are  currently  enrolled  in  the  ME  340  course  entitled  Design  Methodology.    Each  team  member  brings  their  own  unique  skill  set  to  the  project,  which  has  allowed  the  team  to  multitask  efficiently.  All  members  have  worked  hard  during  the  semester  to  follow  the  design  process  methodology.    The  following  will  outline  the  roles  and  responsibilities  that  have  been  assumed  and  agreed  upon  by  the  team.  

Chris  Carrero  is  a  junior  mechanical  engineering  student  with  an  interest  in  mechanical  design.  He  is  serving  as  the  lead  design  engineer  on  this  project.    He  will  lead  the  SolidWorks  drawing  and  manufacturing.  Chris  has  a  creative  flare  to  his  design  work  and  is  very  detailed  oriented,  making  him  an  excellent  leader  in  his  role  as  lead  design  engineer.  Some  of  Chris’s  tasks  include:  

• Creating  and  finalizing  all  SolidWorks  renderings  of  design  • Running  the  concept  development  section  • Selecting  and  obtaining  final  materials  • Ordering  the  parts  for  the  prototypes  • Leading  manufacturing  processes  in  the  Learning  Factory  

Carlye  Lauff  is  a  junior  mechanical  engineering  student  minoring  in  engineering  leadership.  This  specialty  in  engineering  leadership  allows  her  to  be  an  effective  leader  in  her  role  as  the  general  project  manager.    Carlye’s  strengths  in  communication  and  organization  make  her  the  ideal  liaison  between  the  design  engineers,  customers  and  course  instructors.    Some  of  Carlye’s  tasks  include:    

• Creating  and  analyzing  customer  survey  and  external  research  • Being  the  main  contact  for  the  course  instructors  and  other  via  • Send  weekly  updates  and  maintain  the  status  of  the  Gantt  chart  • Compiling  and  formatting  the  reporting  documents  • Developing  presentations  and  communicating  the  team’s  ideas  to  others  

     Mike  Scardina  is  a  senior  mechanical  engineering  student  who  will  serve  as  the  lead  analysis  engineer.    Mike  will  use  his  strengths  in  understanding  the  root  cause  of  problems  to  analyze  both  the  concepts  and  the  economic  value  of  the  kit.  He  has  also  played  a  large  role  in  concept  selection  and  system  level  design.    Some  of  Mike’s  tasks  include:  

• Generating  the  economic  analysis  • Designing  and  constructing  the  final  prototype  • Compiling  the  research  and  offering  lead  advice  to  discuss  • Creating  the  screening  and  scoring  matrices  for  concept  analysis  • Aided  in  completing  the  SolidWorks  renderings  

 

Team  10    

22   Wind  Turbine  Kit  

22  

A.2 Gantt Chart    

Figure  A.1.  Team  10  Gantt  chart  

 

 

 

 

 

 

 

 

 

Team  10    

23   Wind  Turbine  Kit  

23  

Appendix B: Customer Needs

B.1 Customer Survey  

GE  Energy  Wind  Power  Generator  Design  Project  

Project  Statement:  

Wind  is  attracting  considerable  attention  as  a  source  of  renewable  energy.  Our  team  is  asked  to  design,  construct  and  test  a  tabletop  windmill  kit  to  educate  and  excite  elementary  school  children  in  the  basics  of  wind  power  generation.    Our  kit  must  be  easily  assembled  and  disassembled  repeatedly  by  children  8-­‐14  years  of  age.    

 

Expert/Customer  Questions:  

1.  What  is  the  best  way  that  your  students  learn?  

2.  What  excites  your  students  in  a  classroom  environment?  

3.  What  are  a  few  different  learning  methods  and  the  positive/negative  aspects  of  them?  

4.  What  do  students  age  8-­‐14  know  about  wind  power  or  renewable  energy?  

5.  What  is  currently  covered  in  the  sciences  courses  related  to  wind  power  or  renewable  energy?  

6.  How  would  you  incorporate  this  project  into  your  current  curriculum?  

7.  If  you  were  given  this  project,  how  would  you  go  about  completing  it  (in  very  general  terms)?  

8.  Do  you  have  any  teacher-­‐related  resources  or  advice  for  our  further  research  and  investigation?  

9.  If  you  have  any  comments  on  this  project  that  might  help  us  at  all,  please  feel  free  to  leave  them  below.  

Figure  B.1.  Customer  Survey  

 

Team  10    

24   Wind  Turbine  Kit  

24  

 

B.2 Sample Customer Responses  

 

Figure  B.2.  Example  Customer  Survey  Response  from  an  Art  Teacher  

 

 

Team  10    

25   Wind  Turbine  Kit  

25  

 

Figure  B.3.  Example  Customer  Survey  Response  from  a  Science  Teacher  

 

 

 

 

 

 

Team  10    

26   Wind  Turbine  Kit  

26  

Appendix C: Concept Development

C.1 Patent Search  

 Figure  C.1.  Wind  Turbine  Patent  

 

 

Team  10    

27   Wind  Turbine  Kit  

27  

C.2 Benchmarking: KidWind  

 

Figure  C.2.  KidWind  Mini  

 

Team  10    

28   Wind  Turbine  Kit  

28  

 

 

Figure  C.3.  KidWind  Geared  Turbine  

 

 

 

 

 

 

 

 

Team  10    

29   Wind  Turbine  Kit  

29  

C.3 Benchmarking: Horizon  

 Figure  C.3.  WindPitch  miniature  Educational  Kit  

 

Figure  C.4.  WindPitch  Hydro-­‐wind  Educational  Kit  

 

 

Team  10    

30   Wind  Turbine  Kit  

30  

Appendix D: Design Concepts

D.1 Concept A  

 

Figure  D.1.  Concept  A  

 

 

 

Team  10    

31   Wind  Turbine  Kit  

31  

D.2 Concept B  

 

Figure  D.2.  Concept  B  

 

 

 

 

 

 

Team  10    

32   Wind  Turbine  Kit  

32  

D.3 Concept C  

 

Figure  D.3.  Concept  C  

 

 

Team  10    

33   Wind  Turbine  Kit  

33  

Appendix E: Mass Production Final Design  

E.1 SolidWorks Drawings  

 

Figure  E.1-­‐2.  Front  and  Side  Wind  Turbine  Renderings  

 

 

Team  10    

34   Wind  Turbine  Kit  

34  

 

Figure  E.3.  Top  Wind  Turbine  Renderings  

 

Figure  E.4.  Gear  Renderings  

 

Figure  E.5.  Nacelle  Gearbox  Renderings  

 

Team  10    

35   Wind  Turbine  Kit  

35  

Appendix F: Material Properties

F.1 Rapid Prototyping Properties

 Figure  F.1.  Rapid  Prototyping  Material  Properties  

 

 

 

 

 

 

 

Team  10    

36   Wind  Turbine  Kit  

36  

Appendix G: Business Case Justification

G.1 Five-year projected NPV economic analysis  

 

 

Figure  G.1.  Five-­‐year  NPV  economic  analysis