william long, maureen joseph, james d. martosella, and ... phenhex... · william long, maureen...

1
William Long, Maureen Joseph, James D. Martosella, and John W. Henderson Jr. Agilent Technologies, 2850 Centerville Rd., Wilmington DE 19808, USA Pittcon 2008 New Orleans Abstract Conclusion Efficiency in Hi Res, Hi Speed LC Phase Orthogonality Phenyl Selectivity Sub 2-micron particles deliver efficiency and productivity R s = N 4 k' k'+1 (-1) Plates Selectivity Retention Column Length = N Particle Size = N L N d p To Maintain Rs: e.g.: L/2 d p /2 To Maintain Rs: e.g.: L/2 d p /2 This is the basic premise from which we operate. Sub 2-Micron Columns Provide the Efficiency of Longer Columns for More Productivity 2,500 6,500 12,000 17,000 24,000 32,500 Resolving Power N(1.8 μm) N.A. N.A. 4,200 6000 8,500 12,500 Resolving Power N(5 μm) 55 2,100 15 126 4,200 30 210 7,000 50 320 10,500 75 420 14,000 100 550 21,000 150 Typical Pressure Bar (1.8 μm) Resolving Power N(3.5 μm) Column Length (mm) 2,500 6,500 12,000 17,000 24,000 32,500 Resolving Power N(1.8 μm) N.A. N.A. 4,200 6000 8,500 12,500 Resolving Power N(5 μm) 55 2,100 15 126 4,200 30 210 7,000 50 320 10,500 75 420 14,000 100 550 21,000 150 Typical Pressure Bar (1.8 μm) Resolving Power N(3.5 μm) Column Length (mm) Analysis Time Peak Volume Analysis Time Peak Volume -90% -80% -67% -50% -33% Analysis Time* -90% -80% -67% -50% -33% Analysis Time* Solvent Usage * Reduction in analysis time compared to 150 mm column pressure determined with 60:40 MeOH/water, 1ml/min, 4.6mm ID More RRHT Bonded Phase Choices Allow for Optimized Method Development Conditions: Columns: RRHT 4.6 x 50mm, 1.8um Mobile Phase: Acetonitrile (40%):Buffer 60% pH=2.4 25mM NaH 2 PO 4 Flow Rate: 1.85 mL/min Detection: DAD, 254 nm LC: Agilent 1200 RR LC Sample: As listed, 1 uL injection Change in Elution Order Peaks 3,4 & 5 Sample: 1. Tolmetin 2. Naproxen 3. Diflunisal 4. Ibuprofen 5. Diclofenac For SB-Phenyl SB-Phenyl 1.8um SB-C8 1.8um SB-C18 1.8um SB-CN 1.8um min 0 1 2 3 4 5 mAU 0 50 100 150 200 250 300 350 400 450 Change in Elution Order Peaks 3,4 & 5 Sample: 1. Tolmetin 2. Naproxen 3. Diflunisal 4. Ibuprofen 5. Diclofenac For SB-Phenyl SB-Phenyl 1.8um SB-C8 1.8um SB-C18 1.8um SB-CN 1.8um min 0 1 2 3 4 5 mAU 0 50 100 150 200 250 300 350 400 450 5 Choices in SB family can be used for method optimization RRHT SB-Phenyl best choice - more resolution in half the time! Best Choice! 2X the needed time Not the best choice! Selectivity Impacts Resolution Most Different Selectivity of ZORBAX Phenyl Columns Amines from Azo Dyes 1. Analine 2. o-toluidine 3. Anisidine 4. Chloroaniline 5. Benzidine 6. Naphthylamine 7. o-tolidine 8. Dimethoxybenzidine 9. Dichlorobenzidine 90 9 25 0 %B time 90 9 25 0 %B time Gradient: A: 10 mM NH4Acetate, pH 4.7, B: MeOH min 2 3 4 5 6 7 8 9 mAU 0 50 100 SB- Phenyl 1 23 4 5 6 7 8 9 min 2 3 4 mAU 0 50 100 XDB-Phenyl 8 1 2,3 4 5 6,7 9 min 2 3 4 5 6 7 9 mAU 0 50 100 Eclipse Plus Phenhex 4.6 x 100 mm, 5 um 1 2 3 4 5 6 8 7 9 min 2 3 4 5 6 7 8 9 mAU 0 50 100 SB- Phenyl 1 23 4 5 6 7 8 9 min 2 3 4 mAU 0 50 100 XDB-Phenyl 8 1 2,3 4 5 6,7 9 min 2 3 4 5 6 7 9 mAU 0 50 100 Eclipse Plus Phenhex 4.6 x 100 mm, 5 um 1 2 3 4 5 6 8 7 9 min 2 3 4 5 6 7 8 9 mAU 0 50 100 SB- Phenyl 1 23 4 5 6 7 8 9 min 2 3 4 mAU 0 50 100 XDB-Phenyl 8 1 2,3 4 5 6,7 9 min 2 3 4 mAU 0 50 100 XDB-Phenyl 8 1 2,3 4 5 6,7 9 min 2 3 4 5 6 7 9 mAU 0 50 100 Eclipse Plus Phenhex 4.6 x 100 mm, 5 um 1 2 3 4 5 6 8 7 9 min 2 3 4 5 6 7 9 mAU 0 50 100 Eclipse Plus Phenhex 4.6 x 100 mm, 5 um 1 2 3 4 5 6 8 7 9 Different Selectivity of ZORBAX Phenyl Columns Nucleobases and their nucleosides 1 2 3 4 5 6 7 8 mAU 0 50 100 1 2 3 4 5 6 7 mAU 0 50 100 min 1 2 3 4 5 6 7 8 mAU 0 50 100 Eclipse Plus Phenhex 4.6 x 100 mm, 5 um XDB-Phenyl SB- Phenyl 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 10 10 10 9 1 1 2 3 4 5 6 7 8 mAU 0 50 100 1 2 3 4 5 6 7 1 2 3 4 5 6 7 mAU 0 50 100 min 1 2 3 4 5 6 7 8 mAU 0 50 100 Eclipse Plus Phenhex 4.6 x 100 mm, 5 um XDB-Phenyl SB- Phenyl 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 10 10 10 9 1 50 6 1 4 1 0 %B time 50 6 1 4 1 0 %B time 1. Cytosine 2. Uracil 3. Cytodine 4. Guanine 5. Uridine 6. Adenine 7. Thymine 8. Guanosine 9. Thymidine 10. adenosine A: 20 mM Ammonium Acetate pH 4.5, B: MeOH, F=1, λ=254 nm Different Selectivity of ZORBAX Phenyl Columns Estrogens 1. Estriol 2. estradiol 3. ethynylestradiol 4. Diethylstilbestrol (DES) 5. dienestrol min 2 4 6 8 10 12 mAU 0 100 min 2 4 6 8 10 12 mAU 0 100 XDB-Phenyl SB- Phenyl 1 2,3 4 5 min 2 4 6 8 10 12 mAU 0 100 Eclipse Plus Phenhex 4.6 x 100 mm, 5 um 1 2 3 4 5 1 3 2 4,5 1. Estriol 2. estradiol 3. ethynylestradiol 4. Diethylstilbestrol (DES) 5. dienestrol min 2 4 6 8 10 12 mAU 0 100 min 2 4 6 8 10 12 mAU 0 100 XDB-Phenyl SB- Phenyl 1 2,3 4 5 min 2 4 6 8 10 12 mAU 0 100 Eclipse Plus Phenhex 4.6 x 100 mm, 5 um 1 2 3 4 5 1 3 2 4,5 min 2 4 6 8 10 12 mAU 0 100 min 2 4 6 8 10 12 mAU 0 100 min 2 4 6 8 10 12 mAU 0 100 min 2 4 6 8 10 12 mAU 0 100 XDB-Phenyl SB- Phenyl 1 2,3 4 5 min 2 4 6 8 10 12 mAU 0 100 Eclipse Plus Phenhex 4.6 x 100 mm, 5 um 1 2 3 4 5 min 2 4 6 8 10 12 mAU 0 100 Eclipse Plus Phenhex 4.6 x 100 mm, 5 um 1 2 3 4 5 1 3 2 4,5 Mobile phase: 60 % MeOH, F=1mL/min., λ= 220nm Results of C18 vs. Phenyl with ACN and Methanol R 2 Slope Solvent Column B Column A 0.9860 1.125 Acetonitrile Phenyl Hexyl Phenyl Ethyl 0.9837 1.248 Methanol Phenyl Hexyl Phenyl Ethyl 0.9912 0.9565 Acetonitrile Phenyl Propyl Phenyl Ethyl 0.9782 0.9062 Methanol Phenyl Propyl Phenyl Ethyl 0.9705 0.6768 Acetonitrile Phenyl Propyl C18 0.9176 0.5750 Methanol Phenyl Propyl C18 0.9422 0.7712 Acetonitrile Phenyl Hexyl C18 0.9236 0.7718 Methanol Phenyl Hexyl C18 0.9695 0.7011 Acetonitrile Phenyl Ethyl C18 0.8908 0.6168 Methanol Phenyl Ethyl C18 Phenyl Ethyl = Eclipse Phenyl; Phenyl Propyl= StableBond Phenyl Phenyl Hexyl = Eclipse Plus Phenyl Hexyl Comparison of Eclipse Plus Family – C18, C8 Phenyl-Hexyl NSAIDS Eclipse Plus Phenyl Hexyl Eclipse Plus C8 Eclipse Plus C18 min 0 2 4 6 8 mAU 0 100 200 300 400 min 0 2 4 6 8 10 mAU 0 100 200 300 400 min 0 2 4 6 8 10 mAU 0 100 200 300 400 1 2 3 4 5 6 7 1,2 3 4 5 6 7 1,2 3 4 5 6 7 Eclipse Plus Phenyl Hexyl Eclipse Plus C8 Eclipse Plus C18 min 0 2 4 6 8 mAU 0 100 200 300 400 min 0 2 4 6 8 10 mAU 0 100 200 300 400 min 0 2 4 6 8 10 mAU 0 100 200 300 400 1 2 3 4 5 6 7 1,2 3 4 5 6 7 1,2 3 4 5 6 7 Mobile Phase: 40 % ACN 60 % 25 mM Sodium Phosphate Buffer pH= 2.4 Flow Rate= 1.5 ml/min UV 210 nm 2μl Elution order for Eclipse Plus Phenyl Hexyl: (1) Piroxicam, (2) Sulindac,(3) Tolmetin, (4) Naproxen, (5) Ibuprofen, (6) Diclofenac, (7) Celebrex (equal portions of approximately 1 mg/ml solutions Each ZORBAX RRHT C18 Bonded Phases Provides Different Selectivity to Optimize a Separation Eclipse Plus C18 Eclipse XDB-C18 Extend-C18 StableBond SB-C18 Mobile phase: (69:31) ACN: water Flow 1.5 mL/min. Temp: 30 °C Detector: Single Quad ESI positive mode scan Columns: RRHT 4.6 x 50 mm 1.8 um Sample: 1. anandamide (AEA) 2. Palmitoylethanolamide (PEA) 3. 2-arachinoylglycerol (2-AG) 4. Oleoylethanolamide (OEA) 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2,3 4 1 2 3 4 5 1 2,3 4 1 2 3 4 5 1 2 3 4 min 1 2 3 4 5 1 2 3 4 min 1 2 3 4 5 1 st choice Best Resolution & Peak Shape 2 nd choice Good alternate selectivity due to non-endcapped 3 rd choice Good efficiency & peak shape Resolution could be achieved 4 th choice Resolution not likely, Other choices better, for this separation. Multiple bonded phases for most effective results. Separate More Peaks with 1.8 μm Complex Natural Product Extract from Ginseng min 13 14 15 16 17 18 mAU 50 100 150 200 250 300 350 min 13 14 15 16 17 18 mAU 50 100 150 200 250 300 350 Agilent 1100 Series 400 bar pump Agilent 1200 Series 600 bar pump min 13 14 15 16 17 18 50 100 150 200 250 mAU min 13 14 15 16 17 18 50 100 150 200 250 mAU ZORBAX SB-C18, 2.1x150 mm 1.8 μm ZORBAX SB-C18, 2.1 x 150mm, 5 μm 1.8 μm 5 μm Improved Resolution Agilent Application Note: Analysis of a complex natural product extract from ginseng – Part I Publication Number 5989-4506EN Mobile phase: A = H2O + 0.1% TFA B = ACN + 0.1% TFA Gradient: 10% to 95% ACN in 40min, hold for 1min Flow: 0.4 mL/min Inj. volume: 3 μ L, partial loop filling DAD: 220 nm (20 Hz) 2μl flowcell C18 Options for Orthogonality and Selectivity CH CH CH O Si O OH O O Si Si CH CH CH CH CH CH Si 3 3 3 3 3 3 3 3 3 CH CH CH O Si O OH O O Si Si CH CH CH CH CH CH Si 3 3 3 3 3 3 3 3 3 O R R Si OH Si O Si R R R O OH R O R R Si OH Si O Si R R R O OH R CH CH CH CH CH CH O Si O O O O Si Si Si CH CH CH CH CH CH Si 3 3 3 3 3 3 3 3 3 3 3 3 Base silica improved Improved double endcapping Eclipse Plus C18 Eclipse XDB-C18 StableBond-C18 Recommended for high temperatures at low pH R: diisobutyl Extend C18 Designed for mid pH up to pH 11.5 O O Si Si Extend C18 Designed for mid pH up to pH 11.5 O O Si Si Scatter Plot Explanation Hydrophobic interactions generally dominate reverse phase HPLC; deviations from linearity can be attributed to other solute interactions: π-π, dipole-dipole etc. The scatter plot data shows Phenyl columns can take advantage of π-π interactions when using Methanol rather than Acetonitrile. The compounds used consist of nitrogen substituted aromatics and polyaromatic hydrocarbons to clarify this point. Other compound groups were also examined. The suppressed retention of some aromatic compounds with Acetonitrile can be attributed to competitive π-π interactions. Selectivity Differences used in Scatter Plots Nitro Substituted Aromatics min 0 1 2 3 4 5 6 7 8 9 mAU 0 20 40 min 0 1 2 3 4 5 6 7 8 9 mAU 0 50 100 min 0 1 2 3 4 5 6 7 8 9 mAU 0 20 40 min 0 1 2 3 4 5 6 7 8 9 mAU 0 50 100 min 0 1 2 3 4 5 6 7 8 9 mAU 0 10 20 30 min 0 1 2 3 4 5 6 7 8 9 mAU 0 20 40 60 min 0 1 2 3 4 5 6 7 8 9 mAU 0 10 20 30 min 0 1 2 3 4 5 6 7 8 9 mAU 0 20 40 60 Eclipse Plus Phenyl Hexyl Eclipse Plus Phenyl Hexyl XDB-C18 XDB-C18 1. Nitrobenzene 2. Dinitrobenzene 3. Trinitrobenzene 60 % Methanol 40 % Acetonitrile 1 2 3 1 2 3 1 2 3 Phenyl Phases can take advantage of π-π interactions and thus show different selectivity than C18s, which primarily utilize hydrophobic interactions y = 0.6803x + 0.0891 R 2 = 0.9686 R 2 = 0.9686 40 % Acetonitrile 60 % Water Nitroaromatics and PAHs Subset -0.5 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 log k' Eclipse XDB-C18 log k' Eclipse Plus Phenyl Hexyl y = 0.5839x + 0.1604 R 2 = 0.8857 60 % Methanol 40 % Water Nitroaromatics and PAHs Subset -0.5 0 0.5 1 1.5 2 -1 -0.5 0 0.5 1 1.5 2 2.5 3 log k' Eclipse XDB-C18 log k' Eclipse Plus Phenyl Hexyl The new focus in LC columns is columns with sub 2-micron particles. These small particles provide very high resolution in short and traditional column lengths. But efficiency, N, is just one parameter in overall resolution in a separation. Selectivity has always been viewed as the most important parameter in a separation. Different bonded phases and different mobile phases provide changes in selectivity in a separation to optimize resolution. Most chromatographers like to have the option of at least 3 bonded phase choices available to obtain the needed resolution for their sample. These typically include C18, Phenyl and an alternate phase with a different polarity. We can look at the need for these different selectivity choices to manipulate resolution when columns with d ifferent particle sizes are used by comparing results with different samples with different polarities and with varying numbers of analytes and calculating potential resolution. RRHT columns make separations fast and provide superior efficiency Selectivity choices are critical for best results and is independent of particle size. Phenyl vs. other C18 phases in terms of orthogonality – Yes, it is different and worth trying for method development. Phenyls vs. each other – range of choices means there is always one to optimize your separation Non endcapped phases such as StableBond C18 or Phenyl are good alternate third phases for selectivity differences Retention Comparison of Aliphatic and Aromatic Compounds – C18 vs. Phenyl Phases Experimental Process •A series of over 40 aliphatic, nitro substituted benzenes and substituted benzenes were injected onto 4.6 x100 mm 5 micron columns using an Agilent 1200 system. The solvent consisted of either 40 % Acetonitrile 60 % Water or 60 % Methanol 40 % Water, at 1 ml/min, 205 nm. log k’ of each compound was determined and plotted. •The scatter plot indicates that nitro substituted aromatics had the greatest difference in retention on the C18 vs. Phenyl, but the aliphatics and substituted benzenes also varied. This is shown by the correlation coefficient of the plot. •Therefore Phenyl columns are a good alternate selectivity to choose during method development. •A variety of phenyl columns were also compared and differences i n all the columns are there, but the C18 vs. Phenyl shows the most difference. A methanol organic modifier changes selectivity more than acetonitrile and can be used to also change selectivity. Typical Method Development Parameters: Effects of Selectivity, Efficiency and Retention 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Resolution Increase N Increase Alpha Increase k' Selectivity Impacts Resolution Most Change bonded phase Change mobile phase Plates are easiest to increase R s =N ½ /4 (-1)/ k’/(k’+1) Plates: 5000 10000 15000 20000 25000 Alpha: 1.10 1.35 1.60 1.85 2.1 k’: 2.0 4.5 7.0 9.5 12.0 Plates: 5000 10000 15000 20000 25000 Alpha: 1.10 1.35 1.60 1.85 2.1 k’: 2.0 4.5 7.0 9.5 12.0 Typical method development parameters Phenyl Options for Orthogonality and Selectivity CH CH CH O Si O OH O O Si Si CH CH CH CH CH CH Si 3 3 3 3 3 3 3 3 3 O R R Si OH Si O Si R R R O OH R CH CH CH CH CH CH O Si O O O O Si Si Si CH CH CH CH CH CH Si 3 3 3 3 3 3 3 3 3 3 3 3 Improved Type B silica Improved double endcapping Eclipse Plus Phenylhexyl Eclipse XDB-Phenyl StableBond-Phenyl Recommended for higher temperatures and low pH R: diisobutyl ZORBAX Phenyl CH CH CH O Si O OH O O Si Si CH CH CH CH CH CH Si 3 3 3 3 3 3 3 3 3 Type A silica Type B silica Type B silica Multiple Types of Phenyl Columns Provide Selectivity Differences A B B B Silica Type ZORBAX Phenyl SB-Phenyl Eclipse XDB-Phenyl Eclipse Plus Phenyl Agilent Column Non-endcapped increases hydrophilic and silanol interactions No Phenylpropyl Original phenyl offering Type A silica has different selectivity. Yes Phenylethyl Original Type B Silica Phenyl Offering Yes Phenylethyl Longer hexyl spacer adds hydrophobicity to the bonded phase. Yes Phenylhexyl What distinguishes it? Endcap Phenyl Bonded Phase Type A B B B Silica Type ZORBAX Phenyl SB-Phenyl Eclipse XDB-Phenyl Eclipse Plus Phenyl Agilent Column Non-endcapped increases hydrophilic and silanol interactions No Phenylpropyl Original phenyl offering Type A silica has different selectivity. Yes Phenylethyl Original Type B Silica Phenyl Offering Yes Phenylethyl Longer hexyl spacer adds hydrophobicity to the bonded phase. Yes Phenylhexyl What distinguishes it? Endcap Phenyl Bonded Phase Type

Upload: others

Post on 26-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: William Long, Maureen Joseph, James D. Martosella, and ... Phenhex... · William Long, Maureen Joseph, James D. Martosella, and John W. Henderson Jr. Agilent Technologies, 2850 Centerville

William Long, Maureen Joseph, James D. Martosella, and John W. Henderson Jr.Agilent Technologies, 2850 Centerville Rd., Wilmington DE 19808, USA

Pittcon 2008New Orleans

Abstract

Conclusion

Efficiency in Hi Res, Hi Speed LC

Phase OrthogonalityPhenyl Selectivity

Sub 2-micron particles deliver efficiency andproductivity

Rs = N

4

k'

k'+1(-1)

Plates Selectivity Retention

Column Length = N

Particle Size = N

LN

dp

To Maintain Rs:

e.g.: L/2 dp/2

To Maintain Rs:

e.g.: L/2 dp/2

This is the basic premise from which we operate.

Sub 2-Micron Columns Provide the Efficiency ofLonger Columns for More Productivity

2,500

6,500

12,000

17,000

24,000

32,500

ResolvingPower

N(1.8 µm)

N.A.

N.A.

4,200

6000

8,500

12,500

ResolvingPower

N(5 µm)

552,10015

1264,20030

2107,00050

32010,50075

42014,000100

55021,000150

TypicalPressure

Bar (1.8 µm)

ResolvingPower

N(3.5 µm)

ColumnLength(mm)

2,500

6,500

12,000

17,000

24,000

32,500

ResolvingPower

N(1.8 µm)

N.A.

N.A.

4,200

6000

8,500

12,500

ResolvingPower

N(5 µm)

552,10015

1264,20030

2107,00050

32010,50075

42014,000100

55021,000150

TypicalPressure

Bar (1.8 µm)

ResolvingPower

N(3.5 µm)

ColumnLength(mm)

AnalysisTime

PeakVolume

AnalysisTime

PeakVolume

-90%

-80%

-67%

-50%

-33%

AnalysisTime*

-90%

-80%

-67%

-50%

-33%

AnalysisTime*

SolventUsage

* Reduction in analysis time compared to 150 mm column• pressure determined with 60:40 MeOH/water, 1ml/min, 4.6mm ID

More RRHT Bonded Phase Choices Allow for OptimizedMethod Development

Conditions: Columns: RRHT 4.6 x 50mm, 1.8um Mobile Phase: Acetonitrile (40%):Buffer 60% pH=2.4 25mM NaH2PO4

Flow Rate: 1.85 mL/min Detection: DAD, 254 nm LC: Agilent 1200 RR LC Sample: As listed, 1 uL injection

Change in Elution Order Peaks 3,4 & 5

Sample:1. Tolmetin2. Naproxen3. Diflunisal4. Ibuprofen5. DiclofenacFor SB-Phenyl

SB-Phenyl 1.8um

SB-C8 1.8um

SB-C18 1.8um

SB-CN 1.8um

min0 1 2 3 4 5

mAU

0

50

100

150

200

250

300

350

400

450

Change in Elution Order Peaks 3,4 & 5

Sample:1. Tolmetin2. Naproxen3. Diflunisal4. Ibuprofen5. DiclofenacFor SB-Phenyl

SB-Phenyl 1.8um

SB-C8 1.8um

SB-C18 1.8um

SB-CN 1.8um

min0 1 2 3 4 5

mAU

0

50

100

150

200

250

300

350

400

450

5 Choices in SB family can be used for method optimizationRRHT SB-Phenyl best choice - more resolution in half the time!

Best Choice!

2X the needed timeNot the best choice!

Selectivity Impacts Resolution Most

Different Selectivity of ZORBAX Phenyl ColumnsAmines from Azo Dyes

1. Analine2. o-toluidine3. Anisidine4. Chloroaniline5. Benzidine6. Naphthylamine7. o-tolidine8. Dimethoxybenzidine9. Dichlorobenzidine

909

250%Btime

909

250%Btime

Gradient: A: 10 mM NH4Acetate, pH 4.7, B: MeOH

min2 3 4 5 6 7 8 9

mAU

0

50

100 SB- Phenyl

1 2 3 45

6

7 8 9

min2 3 4

mAU

0

50

100XDB-Phenyl

8

12,3

45

6,7

9

min2 3 4 5 6 7 9

mAU

0

50

100

Eclipse Plus Phenhex 4.6 x 100 mm, 5 um

1 2 3 45

687 9

min2 3 4 5 6 7 8 9

mAU

0

50

100 SB- Phenyl

1 2 3 45

6

7 8 9

min2 3 4

mAU

0

50

100XDB-Phenyl

8

12,3

45

6,7

9

min2 3 4 5 6 7 9

mAU

0

50

100

Eclipse Plus Phenhex 4.6 x 100 mm, 5 um

1 2 3 45

687 9

min2 3 4 5 6 7 8 9

mAU

0

50

100 SB- Phenyl

1 2 3 45

6

7 8 9

min2 3 4

mAU

0

50

100XDB-Phenyl

8

12,3

45

6,7

9

min2 3 4

mAU

0

50

100XDB-Phenyl

8

12,3

45

6,7

9

min2 3 4 5 6 7 9

mAU

0

50

100

Eclipse Plus Phenhex 4.6 x 100 mm, 5 um

1 2 3 45

687 9

min2 3 4 5 6 7 9

mAU

0

50

100

Eclipse Plus Phenhex 4.6 x 100 mm, 5 um

1 2 3 45

687 9

Different Selectivity of ZORBAX Phenyl ColumnsNucleobases and their nucleosides

1 2 3 4 5 6 7 8

mAU

0

50

100

1 2 3 4 5 6 7

mAU

0

50

100

min1 2 3 4 5 6 7 8

mAU

0

50

100

Eclipse Plus Phenhex 4.6 x 100 mm, 5 um

XDB-Phenyl

SB- Phenyl

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

10

10

10

9

1

1 2 3 4 5 6 7 8

mAU

0

50

100

1 2 3 4 5 6 71 2 3 4 5 6 7

mAU

0

50

100

min1 2 3 4 5 6 7 8

mAU

0

50

100

Eclipse Plus Phenhex 4.6 x 100 mm, 5 um

XDB-Phenyl

SB- Phenyl

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

10

10

10

9

1

5061410

%Btime

5061410

%Btime

1. Cytosine2. Uracil3. Cytodine4. Guanine5. Uridine6. Adenine7. Thymine8. Guanosine9. Thymidine10. adenosine

A: 20 mM Ammonium Acetate pH 4.5, B: MeOH, F=1, λ=254 nm

Different Selectivity of ZORBAX Phenyl ColumnsEstrogens

1. Estriol2. estradiol3. ethynylestradiol4. Diethylstilbestrol (DES)5. dienestrol

min2 4 6 8 10 12

mAU

0

100

min2 4 6 8 10 12

mAU

0

100

XDB-Phenyl

SB- Phenyl1 2,3 4 5

min2 4 6 8 10 12

mAU

0

100

Eclipse Plus Phenhex 4.6 x 100 mm, 5 um

1 2 34 5

1 32

4,51. Estriol2. estradiol3. ethynylestradiol4. Diethylstilbestrol (DES)5. dienestrol

min2 4 6 8 10 12

mAU

0

100

min2 4 6 8 10 12

mAU

0

100

XDB-Phenyl

SB- Phenyl1 2,3 4 5

min2 4 6 8 10 12

mAU

0

100

Eclipse Plus Phenhex 4.6 x 100 mm, 5 um

1 2 34 5

1 32

4,5

min2 4 6 8 10 12

mAU

0

100

min2 4 6 8 10 12

mAU

0

100

min2 4 6 8 10 12

mAU

0

100

min2 4 6 8 10 12

mAU

0

100

XDB-Phenyl

SB- Phenyl1 2,3 4 5

min2 4 6 8 10 12

mAU

0

100

Eclipse Plus Phenhex 4.6 x 100 mm, 5 um

1 2 34 5

min2 4 6 8 10 12

mAU

0

100

Eclipse Plus Phenhex 4.6 x 100 mm, 5 um

1 2 34 5

1 32

4,5

Mobile phase: 60 % MeOH, F=1mL/min., λ= 220nm

Results of C18 vs. Phenyl with ACN and Methanol

R2SlopeSolventColumn BColumn A

0.98601.125AcetonitrilePhenyl HexylPhenyl Ethyl

0.98371.248MethanolPhenyl HexylPhenyl Ethyl

0.99120.9565AcetonitrilePhenyl PropylPhenyl Ethyl

0.97820.9062MethanolPhenyl PropylPhenyl Ethyl

0.97050.6768AcetonitrilePhenyl PropylC18

0.91760.5750MethanolPhenyl PropylC18

0.94220.7712AcetonitrilePhenyl HexylC18

0.92360.7718MethanolPhenyl HexylC18

0.96950.7011AcetonitrilePhenyl EthylC18

0.89080.6168MethanolPhenyl EthylC18

R2SlopeSolventColumn BColumn A

0.98601.125AcetonitrilePhenyl HexylPhenyl Ethyl

0.98371.248MethanolPhenyl HexylPhenyl Ethyl

0.99120.9565AcetonitrilePhenyl PropylPhenyl Ethyl

0.97820.9062MethanolPhenyl PropylPhenyl Ethyl

0.97050.6768AcetonitrilePhenyl PropylC18

0.91760.5750MethanolPhenyl PropylC18

0.94220.7712AcetonitrilePhenyl HexylC18

0.92360.7718MethanolPhenyl HexylC18

0.96950.7011AcetonitrilePhenyl EthylC18

0.89080.6168MethanolPhenyl EthylC18

Phenyl Ethyl = Eclipse Phenyl; Phenyl Propyl= StableBond PhenylPhenyl Hexyl = Eclipse Plus Phenyl Hexyl

Comparison of Eclipse Plus Family – C18, C8 Phenyl-HexylNSAIDS

Eclipse Plus Phenyl Hexyl

Eclipse Plus C8

Eclipse Plus C18

min0 2 4 6 8

mAU

0

100

200

300

400

min0 2 4 6 8 10

mAU

0

100

200

300

400

min0 2 4 6 8 10

mAU

0

100

200

300

400

1 2

3

4

5 6 7

1,2

3

4

5 6 7

1,2

3

4

5 6 7

Eclipse Plus Phenyl Hexyl

Eclipse Plus C8

Eclipse Plus C18

min0 2 4 6 8

mAU

0

100

200

300

400

min0 2 4 6 8 10

mAU

0

100

200

300

400

min0 2 4 6 8 10

mAU

0

100

200

300

400

1 2

3

4

5 6 7

1,2

3

4

5 6 7

1,2

3

4

5 6 7

Mobile Phase: 40 % ACN 60 % 25 mM Sodium Phosphate Buffer pH= 2.4 Flow Rate= 1.5 ml/min UV 210 nm 2µlElution order for Eclipse Plus Phenyl Hexyl: (1) Piroxicam, (2) Sulindac,(3) Tolmetin, (4) Naproxen, (5)Ibuprofen, (6) Diclofenac, (7) Celebrex (equal portions of approximately 1 mg/ml solutions

Each ZORBAX RRHT C18 Bonded Phases ProvidesDifferent Selectivity to Optimize a Separation

Eclipse Plus C18

EclipseXDB-C18

Extend-C18

StableBondSB-C18

Mobile phase: (69:31) ACN: waterFlow 1.5 mL/min.Temp: 30 °CDetector: Single Quad ESIpositive mode scanColumns: RRHT4.6 x 50 mm 1.8 um

Sample:1. anandamide (AEA)2. Palmitoylethanolamide (PEA)3. 2-arachinoylglycerol (2-AG)4. Oleoylethanolamide (OEA)

1 2

3

4

1 2 3 4 5

1 2

3

4

1 2 3 4 5

1 2

3

4

1 2 3 4 5

1 2

3

4

1 2 3 4 5

1 2,3 4

1 2 3 4 5

1 2,3 4

1 2 3 4 5

1 234

min1 2 3 4 5

1 234

min1 2 3 4 5

1st choiceBest Resolution& Peak Shape

2nd choiceGood alternate selectivitydue to non-endcapped

3rd choiceGood efficiency & peak shapeResolution could be achieved

4th choiceResolution not likely,Other choices better, forthis separation.

Multiple bondedphases for mosteffective results.

Separate More Peaks with 1.8 µmComplex Natural Product Extract from Ginseng

min13 14 15 16 17 18

mAU

50

100

150

200

250

300

350

min13 14 15 16 17 18

mAU

50

100

150

200

250

300

350 Agilent 1100 Series

400 bar pump

Agilent 1200 Series

600 bar pump

min13 14 15 16 17 18

50

100

150

200

250

mAU

min13 14 15 16 17 18

50

100

150

200

250

mAU

ZORBAX SB-C18, 2.1x150 mm 1.8 µm

ZORBAX SB-C18, 2.1 x 150mm, 5 µm

1.8 µm

5 µm

Improved Resolution

Agilent Application Note:Analysis of a complex natural productextract from ginseng – Part IPublication Number 5989-4506EN

Mobile phase: A = H2O + 0.1% TFA

B = ACN + 0.1% TFA

Gradient: 10% to 95% ACN in 40min,

hold for 1min

Flow: 0.4 mL/min

Inj. volume: 3 μ L, partial loop filling

DAD: 220 nm (20 Hz)

2µl flowcell

C18 Options for Orthogonality and Selectivity

CH

CH

CH

O

SiO

OH

O

O

Si

Si

CHCH

CH

CHCH

CH

Si

3

3

3

3

3

3

3

3

3

CH

CH

CH

O

SiO

OH

O

O

Si

Si

CHCH

CH

CHCH

CH

Si

3

3

3

3

3

3

3

3

3

O

R

R

Si

OH

Si

O

Si

R

R

R

O

OH

R

O

R

R

Si

OH

Si

O

Si

R

R

R

O

OH

R

CHCH

CH

CH

CHCH

O

SiO

O

O

O

Si

Si

Si

CHCH

CH

CHCH

CH

Si

3

3

3

3

3

3

3

3

3

3

3

3

Base silicaimproved Improved double endcapping

Eclipse Plus C18Eclipse XDB-C18

StableBond-C18

Recommended forhigh temperatures at low pH

R: diisobutyl

Extend C18

Designed for mid pHup to pH 11.5

OO

Si

Si

Extend C18

Designed for mid pHup to pH 11.5

OO

Si

Si

Scatter Plot Explanation

Hydrophobic interactions generally dominate reverse phaseHPLC; deviations from linearity can be attributed to othersolute interactions: π-π, dipole-dipole etc.

The scatter plot data shows Phenyl columns can takeadvantage of π-π interactions when using Methanol ratherthan Acetonitrile. The compounds used consist of nitrogensubstituted aromatics and polyaromatic hydrocarbons toclarify this point. Other compound groups were alsoexamined.

The suppressed retention of some aromatic compounds withAcetonitrile can be attributed to competitive π-π interactions.

Selectivity Differences used in Scatter PlotsNitro Substituted Aromatics

min0 1 2 3 4 5 6 7 8 9

mAU

0

20

40

min0 1 2 3 4 5 6 7 8 9

mAU

0

50

100

min0 1 2 3 4 5 6 7 8 9

mAU

0

20

40

min0 1 2 3 4 5 6 7 8 9

mAU

0

50

100

min0 1 2 3 4 5 6 7 8 9

mAU

0

10

20

30

min0 1 2 3 4 5 6 7 8 9

mAU

0

20

40

60

min0 1 2 3 4 5 6 7 8 9

mAU

0

10

20

30

min0 1 2 3 4 5 6 7 8 9

mAU

0

20

40

60

Eclipse Plus Phenyl Hexyl

Eclipse Plus Phenyl Hexyl

XDB-C18

XDB-C18

1. Nitrobenzene2. Dinitrobenzene3. Trinitrobenzene

60

%M

eth

an

ol

40

%A

ce

ton

itrile

12 3

123

1

2

3

Phenyl Phases can take advantage of π-π interactions andthus show different selectivity than C18s, which primarilyutilize hydrophobic interactions

y = 0.6803x + 0.0891

R2= 0.9686R2= 0.9686

40 % Acetonitrile 60 % Water

Nitroaromatics and PAHs Subset

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1 1.5 2 2.5 3

log k' Eclipse XDB-C18

log

k'Ec

lipse

Plu

sP

hen

ylH

exyl

y = 0.5839x + 0.1604

R2= 0.8857

60 % Methanol 40 % Water

Nitroaromatics and PAHs Subset

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2 2.5 3

log k' Eclipse XDB-C18

log

k'Ec

lipse

Plu

sP

hen

ylH

exyl

The new focus in LC columns is columns with sub 2-micron particles.These small particles provide very high resolution in short and traditionalcolumn lengths. But efficiency, N, is just one parameter in overallresolution in a separation. Selectivity has always been viewed as the mostimportant parameter in a separation. Different bonded phases anddifferent mobile phases provide changes in selectivity in a separation tooptimize resolution. Most chromatographers like to have the option of atleast 3 bonded phase choices available to obtain the needed resolution fortheir sample. These typically include C18, Phenyl and an alternate phasewith a different polarity. We can look at the need for these differentselectivity choices to manipulate resolution when columns with differentparticle sizes are used by comparing results with different samples withdifferent polarities and with varying numbers of analytes and calculatingpotential resolution.

RRHT columns make separations fast and provide superiorefficiency

Selectivity choices are critical for best results and isindependent of particle size.

Phenyl vs. other C18 phases in terms of orthogonality – Yes,it is different and worth trying for method development.

Phenyls vs. each other – range of choices means there isalways one to optimize your separation

Non endcapped phases such as StableBond C18 or Phenylare good alternate third phases for selectivity differences

Retention Comparison of Aliphatic and AromaticCompounds – C18 vs. Phenyl Phases

Experimental Process

•A series of over 40 aliphatic, nitro substituted benzenes and substitutedbenzenes were injected onto 4.6 x100 mm 5 micron columns using anAgilent 1200 system. The solvent consisted of either 40 % Acetonitrile 60 %Water or 60 % Methanol 40 % Water, at 1 ml/min, 205 nm. log k’ of eachcompound was determined and plotted.

•The scatter plot indicates that nitro substituted aromatics had thegreatest difference in retention on the C18 vs. Phenyl, but the aliphaticsand substituted benzenes also varied. This is shown by the correlationcoefficient of the plot.

•Therefore Phenyl columns are a good alternate selectivity to chooseduring method development.

•A variety of phenyl columns were also compared and differences in all thecolumns are there, but the C18 vs. Phenyl shows the most difference. Amethanol organic modifier changes selectivity more than acetonitrile andcan be used to also change selectivity.

Typical Method Development Parameters:Effects of Selectivity, Efficiency and Retention

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Re

so

luti

on

Increase N

Increase Alpha

Increase k'

Selectivity Impacts Resolution Most

• Change bonded phase

• Change mobile phase

• Plates are easiest to increase

Rs = N½/4 (-1)/ k’/(k’+1)

Plates: 5000 10000 15000 20000 25000

Alpha: 1.10 1.35 1.60 1.85 2.1

k’: 2.0 4.5 7.0 9.5 12.0

Plates: 5000 10000 15000 20000 25000

Alpha: 1.10 1.35 1.60 1.85 2.1

k’: 2.0 4.5 7.0 9.5 12.0

Typical methoddevelopmentparameters

Phenyl Options for Orthogonality and Selectivity

CH

CH

CH

O

SiO

OH

O

O

Si

Si

CHCH

CH

CHCH

CH

Si

3

3

3

3

3

3

3

3

3

O

R

R

Si

OH

Si

O

Si

R

R

R

O

OH

R

CHCH

CH

CH

CHCH

O

SiO

O

O

O

Si

Si

Si

CHCH

CH

CHCH

CH

Si

3

3

3

3

3

3

3

3

3

3

3

3

ImprovedType Bsilica

Improveddouble endcapping

Eclipse Plus PhenylhexylEclipse XDB-Phenyl

StableBond-Phenyl

Recommended forhigher temperaturesand low pH

R: diisobutyl

ZORBAX Phenyl

CH

CH

CH

O

SiO

OH

O

O

Si

Si

CHCH

CH

CHCH

CH

Si

3

3

3

3

3

3

3

3

3

Type Asilica

Type Bsilica

Type Bsilica

Multiple Types of Phenyl Columns ProvideSelectivity Differences

A

B

B

B

SilicaType

ZORBAX Phenyl

SB-Phenyl

Eclipse XDB-Phenyl

Eclipse Plus Phenyl

Agilent Column

Non-endcapped increaseshydrophilic and silanolinteractions

NoPhenylpropyl

Original phenyl offering

Type A silica has differentselectivity.

YesPhenylethyl

Original Type B SilicaPhenyl Offering

YesPhenylethyl

Longer hexyl spacer addshydrophobicity to thebonded phase.

YesPhenylhexyl

What distinguishes it?EndcapPhenyl BondedPhase Type

A

B

B

B

SilicaType

ZORBAX Phenyl

SB-Phenyl

Eclipse XDB-Phenyl

Eclipse Plus Phenyl

Agilent Column

Non-endcapped increaseshydrophilic and silanolinteractions

NoPhenylpropyl

Original phenyl offering

Type A silica has differentselectivity.

YesPhenylethyl

Original Type B SilicaPhenyl Offering

YesPhenylethyl

Longer hexyl spacer addshydrophobicity to thebonded phase.

YesPhenylhexyl

What distinguishes it?EndcapPhenyl BondedPhase Type