what’s next in imrt? - optimizing the optimization - t. bortfeld 1, c. thieke 1,2, k.-h. küfer 3,...

26
What’s next in IMRT? What’s next in IMRT? - Optimizing the Optimization - - Optimizing the Optimization - T T . . Bortfeld Bortfeld 1 , C. Thieke , C. Thieke 1,2 1,2 , K.-H. Küfer , K.-H. Küfer 3 , , H. Trinkaus H. Trinkaus 3 1 Department of Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA Massachusetts General Hospital, Boston, USA 2 Department of Medical Physics, Department of Medical Physics, Deutsches Krebsforschungszentrum, Deutsches Krebsforschungszentrum, Heidelberg, Germany, Heidelberg, Germany, 3 Fraunhofer Institut für Techno- und Fraunhofer Institut für Techno- und Wirtschaftsmathematik, Wirtschaftsmathematik, Kaiserslautern, Germany Kaiserslautern, Germany

Post on 20-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

What’s next in IMRT?What’s next in IMRT?- Optimizing the Optimization - - Optimizing the Optimization -

TT.. Bortfeld Bortfeld11, C. Thieke, C. Thieke1,21,2, K.-H. Küfer, K.-H. Küfer33, H. Trinkaus, H. Trinkaus33

11Department of Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, USAMassachusetts General Hospital, Boston, USA

22Department of Medical Physics, Department of Medical Physics, Deutsches Krebsforschungszentrum, Heidelberg, Germany,Deutsches Krebsforschungszentrum, Heidelberg, Germany,

33Fraunhofer Institut für Techno- und Wirtschaftsmathematik, Fraunhofer Institut für Techno- und Wirtschaftsmathematik, Kaiserslautern, GermanyKaiserslautern, Germany

Page 2: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Current technical/physical developments in IMRTCurrent technical/physical developments in IMRT

• Make IMRT more efficientMake IMRT more efficient– Streamlined, integrated solutionsStreamlined, integrated solutions– Minimize MLC segmentsMinimize MLC segments– Optimized inverse planningOptimized inverse planning

• Make IMRT more accurateMake IMRT more accurate– Better dose calculation (superposition, MC)Better dose calculation (superposition, MC)– Image guidanceImage guidance– Online verification with portal imagingOnline verification with portal imaging– Gating/Tracking to reduce breathing artifactsGating/Tracking to reduce breathing artifacts– Proton and heavy ion IMRTProton and heavy ion IMRT

Page 3: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Current technical/physical developments in IMRTCurrent technical/physical developments in IMRT

• Make IMRT more efficientMake IMRT more efficient– Streamlined, integrated solutionsStreamlined, integrated solutions– Minimize MLC segmentsMinimize MLC segments– Optimized inverse planningOptimized inverse planning

• Make IMRT more accurateMake IMRT more accurate– Better dose calculation (superposition, MC)Better dose calculation (superposition, MC)– Image guidanceImage guidance– Online verification with portal imagingOnline verification with portal imaging– Gating/Tracking to reduce breathing artifactsGating/Tracking to reduce breathing artifacts– Proton and heavy ion IMRTProton and heavy ion IMRT

Page 4: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts
Page 5: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts
Page 6: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts
Page 7: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Change “penalties” or “weight factors”Change “penalties” or “weight factors”

Page 8: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Weight factor approachWeight factor approach

OptimizeOptimize

FF is a single number! is a single number!

Risk2Risk2Risk1Risk1TargetTarget FwFwFwF

Page 9: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Difficulty 1Difficulty 1

• By how much do you change the weight By how much do you change the weight factors, factors, w w ??– Trial and errorTrial and error

Page 10: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Example: Head&NeckExample: Head&Neck

Brainstem

Spinal Cord

Parotis

Page 11: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

0 25 50 75 1000

20

40

60

80

100 Plan 1

Target

Spinal Cord

Vo

lum

e (

%)

Dose (Gy)

Plan 2

w=10000

w=1

Page 12: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Difficulty 2Difficulty 2

• ““Sensitivity” of the solution?Sensitivity” of the solution?

Page 13: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Difficulty 3Difficulty 3

Constraint optimization:Constraint optimization:

Solutions may not be “efficient”!Solutions may not be “efficient”!

Page 14: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Example: Head&NeckExample: Head&Neck

Brainstem

Spinal Cord

Parotis

Page 15: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

0 25 50 75 1000

20

40

60

80

100 Plan 1 Plan 2

Target

Brainstem

Spinal Cord

Vo

lum

e (

%)

Dose (Gy)

Page 16: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Optimization of the Optimization: SolutionsOptimization of the Optimization: Solutions

1.1. Use Equivalent Uniform Dose (EUD) to Use Equivalent Uniform Dose (EUD) to characterize the dose in every relevant characterize the dose in every relevant structurestructure

2.2. Find efficient (“Pareto optimal”) solutionsFind efficient (“Pareto optimal”) solutions

3.3. Calculate database with representative Calculate database with representative solutions, use interpolationsolutions, use interpolation

Page 17: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Solutions, part 1Solutions, part 1

• Use Equivalent Uniform Dose (EUD)Use Equivalent Uniform Dose (EUD)– A. Niemierko “A generalized concept of A. Niemierko “A generalized concept of

equivalent uniform dose (EUD)” equivalent uniform dose (EUD)” Med. Phys. 26:1100, 1999Med. Phys. 26:1100, 1999

EUD = uniform dose to the organ that leads EUD = uniform dose to the organ that leads to the same effectto the same effect

Page 18: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

EUD exampleEUD example

0

25

50

75

100

0 20 40 60

Vo

lum

e [%

]

Dose [Gy]80 100

Question: What is the homogeneous dose that would give the same effect?

Lung:EUD = 25 Gy

Spinal Cord:EUD = 52 Gy

Page 19: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Power-Law (p-Norm) ModelPower-Law (p-Norm) Model

p

i

pii Dv

/1

EUD

“p-norm”

Mohan et al., Med. Phys. 19(4), 933-944, 1992Kwa et al., Radiother. Oncol. 48(1), 61-69, 1998Niemierko, Med. Phys. 26(6), 1100, 1999

Examples:

:

:1

p

p

maxEUD

EUD

D

D

Page 20: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Solutions, part 2Solutions, part 2

• Find efficient (Pareto optimal) solutionsFind efficient (Pareto optimal) solutions

Page 21: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

0 25 50 75 1000

20

40

60

80

100

TargetEUD = 70 Gy

Brainstem

Spinal CordEUD = 34 Gy

Vo

lum

e (

%)

Dose (Gy)

EUD=25 Gy

Efficient (Pareto optimal) Plan

EUD=10 Gy

Page 22: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Solutions, part 3Solutions, part 3

• Fill database with solutions for different Fill database with solutions for different combinations of EUD valuescombinations of EUD values(over night)(over night)

Page 23: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

SummarySummary

• New concept in IMRT optimizationNew concept in IMRT optimization

• Multi-criteria EUD optimizationMulti-criteria EUD optimization

• Find better solution fasterFind better solution faster

Page 24: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts
Page 25: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

Power-Law (p-Norm) ModelPower-Law (p-Norm) Model

nvv

)1(TD)(TD

Power-law relationship for tolerance dose (TD):

Page 26: What’s next in IMRT? - Optimizing the Optimization - T. Bortfeld 1, C. Thieke 1,2, K.-H. Küfer 3, H. Trinkaus 3 1 Department of Radiation Oncology, Massachusetts

0 25 50 75 1000

20

40

60

80

100 Plan 1

Target

Spinal Cord

Vo

lum

e (

%)

Dose (Gy)

Plan 2EUD=50.2 Gy

EUD=72.4(a=-8)

EUD=4.0(a=-8)

EUD=18.7 Gy