events.illc.uva.nlevents.illc.uva.nl/tbilisi/tbilisi2013/uploaded_files/inlineitem/terui.pdf ·...

141

Upload: others

Post on 24-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

1 / 55

Herbrand's Theorem via Hyper anoni al Extensions

Kazushige Terui

RIMS, Kyoto University

24/09/13, Gudauri

Page 2: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Outline

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

2 / 55

1. Introdu tion to substru tural logi s

2. Algebrai proof theory for substru tural logi s

3. Herbrand's theorem via hyper anoni al extensions

Page 3: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Introdu tion to Substru tural Logi s

.

Introdu tion to

Substru tural

Logi s

What are SLs?

Full Lambek al ulus

Residuated Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

3 / 55

Page 4: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

What are substru tural logi s?

Introdu tion to

Substru tural Logi s

. What are SLs?

Full Lambek al ulus

Residuated Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

4 / 55

� Logi s that may la k some of stru tural rules

(ex hange/weakening/ ontra tion)

� Axiomati extensions of Full Lambek Cal ulus FL

(= non ommutative intuitionisti linear logi without !)

� Study of universe of logi s

Why is the subje t interesting?

� Common basis for various non lassi al logi s

linear, BI, relevant, fuzzy, superintuitionisti logi s

� Common basis for various ordered algebras

latti e-ordered groups, relation algebras, ideal latti es of

rings, MV algebras, Heyting algebras

� Abundan e of weird logi s/algebras

- allows us to speak of riteria for various properties

Page 5: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

What are substru tural logi s?

Introdu tion to

Substru tural Logi s

. What are SLs?

Full Lambek al ulus

Residuated Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

4 / 55

� Logi s that may la k some of stru tural rules

(ex hange/weakening/ ontra tion)

� Axiomati extensions of Full Lambek Cal ulus FL

(= non ommutative intuitionisti linear logi without !)

� Study of universe of logi s

Why is the subje t interesting?

� Common basis for various non lassi al logi s

linear, BI, relevant, fuzzy, superintuitionisti logi s

� Common basis for various ordered algebras

latti e-ordered groups, relation algebras, ideal latti es of

rings, MV algebras, Heyting algebras

� Abundan e of weird logi s/algebras

- allows us to speak of riteria for various properties

Page 6: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

What are substru tural logi s?

Introdu tion to

Substru tural Logi s

. What are SLs?

Full Lambek al ulus

Residuated Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

4 / 55

� Logi s that may la k some of stru tural rules

(ex hange/weakening/ ontra tion)

� Axiomati extensions of Full Lambek Cal ulus FL

(= non ommutative intuitionisti linear logi without !)

� Study of universe of logi s

Why is the subje t interesting?

� Common basis for various non lassi al logi s

linear, BI, relevant, fuzzy, superintuitionisti logi s

� Common basis for various ordered algebras

latti e-ordered groups, relation algebras, ideal latti es of

rings, MV algebras, Heyting algebras

� Abundan e of weird logi s/algebras

- allows us to speak of riteria for various properties

Page 7: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

What are substru tural logi s?

Introdu tion to

Substru tural Logi s

. What are SLs?

Full Lambek al ulus

Residuated Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

4 / 55

� Logi s that may la k some of stru tural rules

(ex hange/weakening/ ontra tion)

� Axiomati extensions of Full Lambek Cal ulus FL

(= non ommutative intuitionisti linear logi without !)

� Study of universe of logi s

Why is the subje t interesting?

� Common basis for various non lassi al logi s

linear, BI, relevant, fuzzy, superintuitionisti logi s

� Common basis for various ordered algebras

latti e-ordered groups, relation algebras, ideal latti es of

rings, MV algebras, Heyting algebras

� Abundan e of weird logi s/algebras

- allows us to speak of riteria for various properties

Page 8: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

What are substru tural logi s?

Introdu tion to

Substru tural Logi s

. What are SLs?

Full Lambek al ulus

Residuated Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

4 / 55

� Logi s that may la k some of stru tural rules

(ex hange/weakening/ ontra tion)

� Axiomati extensions of Full Lambek Cal ulus FL

(= non ommutative intuitionisti linear logi without !)

� Study of universe of logi s

Why is the subje t interesting?

� Common basis for various non lassi al logi s

linear, BI, relevant, fuzzy, superintuitionisti logi s

� Common basis for various ordered algebras

latti e-ordered groups, relation algebras, ideal latti es of

rings, MV algebras, Heyting algebras

� Abundan e of weird logi s/algebras

- allows us to speak of riteria for various properties

Page 9: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

What are substru tural logi s?

Introdu tion to

Substru tural Logi s

. What are SLs?

Full Lambek al ulus

Residuated Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

4 / 55

� Logi s that may la k some of stru tural rules

(ex hange/weakening/ ontra tion)

� Axiomati extensions of Full Lambek Cal ulus FL

(= non ommutative intuitionisti linear logi without !)

� Study of universe of logi s

Why is the subje t interesting?

� Common basis for various non lassi al logi s

linear, BI, relevant, fuzzy, superintuitionisti logi s

� Common basis for various ordered algebras

latti e-ordered groups, relation algebras, ideal latti es of

rings, MV algebras, Heyting algebras

� Abundan e of weird logi s/algebras

- allows us to speak of riteria for various properties

Page 10: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Full Lambek al ulus FL

Introdu tion to

Substru tural Logi s

What are SLs?

.

Full Lambek

al ulus

Residuated Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

5 / 55

� The base system for substru tural logi s (Ono 90)

� Intuitionisti logi without stru tural rules.

� Formulas:

'; ::= p j ' ^ j ' _ j ' � j 'n j '= j 1 j 0

� 0 is used to de�ne negations:

�a = an0; � a = 0=a:

� Sequents: �) �

(�: sequen e of formulas, �: at most one formula)

Page 11: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Inferen e Rules of FL

Introdu tion to

Substru tural Logi s

What are SLs?

.

Full Lambek

al ulus

Residuated Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

6 / 55

�) A �

1

; A;�

2

) �

1

;�;�

2

) �

(Cut)

A) A

(Id)

1

; A;�

2

) � �

1

; B;�

2

) �

1

; A _B;�

2

) �

(_l)

�) A

i

�) A

1

_ A

2

(_r)

1

; A

i

;�

2

) �

1

; A

1

^ A

2

;�

2

) �

(^l)

�) A �) B

�) A ^B

(^r)

1

; A;B;�

2

) �

1

; A � B;�

2

) �

(�l)

�) A �) B

�;�) A �B

(�r)

�) A �

1

; B;�

2

) �

1

;�; AnB;�

2

) �

(nl)

A;�) B

�) AnB

(nr)

�) A �

1

; B;�

2

) �

1

; B=A;�;�

2

) �

(=l)

�; A) B

�) B=A

(=r)

�) �

1

; 1;�

2

) �

(1l)

) 1

(1r)

0)

(0l)

�)

�) 0

(0r)

Page 12: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Substru tural Logi s

Introdu tion to

Substru tural Logi s

What are SLs?

.

Full Lambek

al ulus

Residuated Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

7 / 55

� Given a set � [ fsg of sequents, � `

FL

s if s is derivable

from �.

� We often identify formula ' with sequent ) '.

� We often write '! for 'n and ='.

� A substru tural logi is an axiomati extension of FL.

Some axioms:

(e) ' � ! � ' (ex hange)

(w) '! 1; 0! ' (weakening)

( ) '! ' � ' ( ontra tion)

(in) ::'! ' (involutivity)

(dist) ' ^ (

1

_

2

)! (' ^

1

) _ (' _

2

) (distributivity)

(pl) ('! ) _ ( ! ') (prelinearity)

(div) ' ^ ! ' � ('! ) (divisibility)

Page 13: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Substru tural Logi s

Introdu tion to

Substru tural Logi s

What are SLs?

.

Full Lambek

al ulus

Residuated Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

7 / 55

� Given a set � [ fsg of sequents, � `

FL

s if s is derivable

from �.

� We often identify formula ' with sequent ) '.

� We often write '! for 'n and ='.

� A substru tural logi is an axiomati extension of FL.

Some axioms:

(e) ' � ! � ' (ex hange)

(w) '! 1; 0! ' (weakening)

( ) '! ' � ' ( ontra tion)

(in) ::'! ' (involutivity)

(dist) ' ^ (

1

_

2

)! (' ^

1

) _ (' _

2

) (distributivity)

(pl) ('! ) _ ( ! ') (prelinearity)

(div) ' ^ ! ' � ('! ) (divisibility)

Page 14: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Substru tural Logi s

Introdu tion to

Substru tural Logi s

What are SLs?

.

Full Lambek

al ulus

Residuated Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

7 / 55

� Given a set � [ fsg of sequents, � `

FL

s if s is derivable

from �.

� We often identify formula ' with sequent ) '.

� We often write '! for 'n and ='.

� A substru tural logi is an axiomati extension of FL.

Some axioms:

(e) ' � ! � ' (ex hange)

(w) '! 1; 0! ' (weakening)

( ) '! ' � ' ( ontra tion)

(in) ::'! ' (involutivity)

(dist) ' ^ (

1

_

2

)! (' ^

1

) _ (' _

2

) (distributivity)

(pl) ('! ) _ ( ! ') (prelinearity)

(div) ' ^ ! ' � ('! ) (divisibility)

Page 15: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Substru tural Logi s

Introdu tion to

Substru tural Logi s

What are SLs?

.

Full Lambek

al ulus

Residuated Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

7 / 55

� Given a set � [ fsg of sequents, � `

FL

s if s is derivable

from �.

� We often identify formula ' with sequent ) '.

� We often write '! for 'n and ='.

� A substru tural logi is an axiomati extension of FL.

Some axioms:

(e) ' � ! � ' (ex hange)

(w) '! 1; 0! ' (weakening)

( ) '! ' � ' ( ontra tion)

(in) ::'! ' (involutivity)

(dist) ' ^ (

1

_

2

)! (' ^

1

) _ (' _

2

) (distributivity)

(pl) ('! ) _ ( ! ') (prelinearity)

(div) ' ^ ! ' � ('! ) (divisibility)

Page 16: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?
Page 17: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Residuated Latti es

Introdu tion to

Substru tural Logi s

What are SLs?

Full Lambek al ulus

.

Residuated

Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

9 / 55

Residuated latti e: A = hA;^;_; �; n; =; 1i su h that

� hA;^;_i is a latti e;

� hA; �; 1i is a monoid;

� a � b � , b � an , a � =b.

An FL algebra is a residuated latti e with onstant 0 2 A.

Some identities:

� a � (anb) � b

� (a _ b) � = (a � ) _ (b � )

� a! (b ^ ) = (a! b) ^ (a! )

� (a _ b)! = (a! ) ^ (b! )

� anb = b=a (with (e))

� a � b � a ^ b (with (w))

� a � b � a ^ b (with ( ))

Page 18: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Residuated Latti es

Introdu tion to

Substru tural Logi s

What are SLs?

Full Lambek al ulus

.

Residuated

Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

9 / 55

Residuated latti e: A = hA;^;_; �; n; =; 1i su h that

� hA;^;_i is a latti e;

� hA; �; 1i is a monoid;

� a � b � , b � an , a � =b.

An FL algebra is a residuated latti e with onstant 0 2 A.

Some identities:

� a � (anb) � b

� (a _ b) � = (a � ) _ (b � )

� a! (b ^ ) = (a! b) ^ (a! )

� (a _ b)! = (a! ) ^ (b! )

� anb = b=a (with (e))

� a � b � a ^ b (with (w))

� a � b � a ^ b (with ( ))

Page 19: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Residuated Latti es

Introdu tion to

Substru tural Logi s

What are SLs?

Full Lambek al ulus

.

Residuated

Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

9 / 55

Residuated latti e: A = hA;^;_; �; n; =; 1i su h that

� hA;^;_i is a latti e;

� hA; �; 1i is a monoid;

� a � b � , b � an , a � =b.

An FL algebra is a residuated latti e with onstant 0 2 A.

Some identities:

� a � (anb) � b

� (a _ b) � = (a � ) _ (b � )

� a! (b ^ ) = (a! b) ^ (a! )

� (a _ b)! = (a! ) ^ (b! )

� anb = b=a (with (e))

� a � b � a ^ b (with (w))

� a � b � a ^ b (with ( ))

Page 20: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Algebraization

Introdu tion to

Substru tural Logi s

What are SLs?

Full Lambek al ulus

.

Residuated

Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

10 / 55

A lass V of algebras (of the same type) is a variety if

V = HSP (V):

� H: homomorphi images

� S: subalgebras

� P : dire t produ ts

Birkho�'s Theorem

V is a variety i� V is equationally de�nable.

FL := the variety of FL algebras.

Algebraization Theorem

The substru tural logi s are in 1-1 orresponden e with the sub-

varieties of FL. If L orresponds to V,

� `

L

i� 1 � � j=

V

1 � :

Page 21: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Algebraization

Introdu tion to

Substru tural Logi s

What are SLs?

Full Lambek al ulus

.

Residuated

Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

10 / 55

A lass V of algebras (of the same type) is a variety if

V = HSP (V):

� H: homomorphi images

� S: subalgebras

� P : dire t produ ts

Birkho�'s Theorem

V is a variety i� V is equationally de�nable.

FL := the variety of FL algebras.

Algebraization Theorem

The substru tural logi s are in 1-1 orresponden e with the sub-

varieties of FL. If L orresponds to V,

� `

L

i� 1 � � j=

V

1 � :

Page 22: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Algebraization

Introdu tion to

Substru tural Logi s

What are SLs?

Full Lambek al ulus

.

Residuated

Latti es

Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

10 / 55

A lass V of algebras (of the same type) is a variety if

V = HSP (V):

� H: homomorphi images

� S: subalgebras

� P : dire t produ ts

Birkho�'s Theorem

V is a variety i� V is equationally de�nable.

FL := the variety of FL algebras.

Algebraization Theorem

The substru tural logi s are in 1-1 orresponden e with the sub-

varieties of FL. If L orresponds to V,

� `

L

i� 1 � � j=

V

1 � :

Page 23: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?
Page 24: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Example of resear h topi s: omputational omplexity

Introdu tion to

Substru tural Logi s

What are SLs?

Full Lambek al ulus

Residuated Latti es

. Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

12 / 55

Let L be a onsistent substru tural logi and onsider the

de ision problem:

Given '; `

L

'?

Theorem (Hor ik-T. 11)

1. Any L is oNP-hard.

2. If L is �nite-valued, then L is oNP- omplete.

3. If L enjoys the disjun tion property, then L is PSPACE-hard.

(Neither 2. nor 3. is a ne essary ondition.)

oNP and PSPACE seem a natural way to lassify logi s into

\semanti ally easy" and \ omputationally expressive" ones.

Di hotomy Problem

Is there a substru tural logi whi h is neither oNP- omplete nor

PSPACE-hard?

Page 25: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Example of resear h topi s: omputational omplexity

Introdu tion to

Substru tural Logi s

What are SLs?

Full Lambek al ulus

Residuated Latti es

. Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

12 / 55

Let L be a onsistent substru tural logi and onsider the

de ision problem:

Given '; `

L

'?

Theorem (Hor ik-T. 11)

1. Any L is oNP-hard.

2. If L is �nite-valued, then L is oNP- omplete.

3. If L enjoys the disjun tion property, then L is PSPACE-hard.

(Neither 2. nor 3. is a ne essary ondition.)

oNP and PSPACE seem a natural way to lassify logi s into

\semanti ally easy" and \ omputationally expressive" ones.

Di hotomy Problem

Is there a substru tural logi whi h is neither oNP- omplete nor

PSPACE-hard?

Page 26: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Example of resear h topi s: omputational omplexity

Introdu tion to

Substru tural Logi s

What are SLs?

Full Lambek al ulus

Residuated Latti es

. Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

12 / 55

Let L be a onsistent substru tural logi and onsider the

de ision problem:

Given '; `

L

'?

Theorem (Hor ik-T. 11)

1. Any L is oNP-hard.

2. If L is �nite-valued, then L is oNP- omplete.

3. If L enjoys the disjun tion property, then L is PSPACE-hard.

(Neither 2. nor 3. is a ne essary ondition.)

oNP and PSPACE seem a natural way to lassify logi s into

\semanti ally easy" and \ omputationally expressive" ones.

Di hotomy Problem

Is there a substru tural logi whi h is neither oNP- omplete nor

PSPACE-hard?

Page 27: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Example of resear h topi s: omputational omplexity

Introdu tion to

Substru tural Logi s

What are SLs?

Full Lambek al ulus

Residuated Latti es

. Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

12 / 55

Let L be a onsistent substru tural logi and onsider the

de ision problem:

Given '; `

L

'?

Theorem (Hor ik-T. 11)

1. Any L is oNP-hard.

2. If L is �nite-valued, then L is oNP- omplete.

3. If L enjoys the disjun tion property, then L is PSPACE-hard.

(Neither 2. nor 3. is a ne essary ondition.)

oNP and PSPACE seem a natural way to lassify logi s into

\semanti ally easy" and \ omputationally expressive" ones.

Di hotomy Problem

Is there a substru tural logi whi h is neither oNP- omplete nor

PSPACE-hard?

Page 28: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Example of resear h topi s: omputational omplexity

Introdu tion to

Substru tural Logi s

What are SLs?

Full Lambek al ulus

Residuated Latti es

. Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

12 / 55

Let L be a onsistent substru tural logi and onsider the

de ision problem:

Given '; `

L

'?

Theorem (Hor ik-T. 11)

1. Any L is oNP-hard.

2. If L is �nite-valued, then L is oNP- omplete.

3. If L enjoys the disjun tion property, then L is PSPACE-hard.

(Neither 2. nor 3. is a ne essary ondition.)

oNP and PSPACE seem a natural way to lassify logi s into

\semanti ally easy" and \ omputationally expressive" ones.

Di hotomy Problem

Is there a substru tural logi whi h is neither oNP- omplete nor

PSPACE-hard?

Page 29: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Example of resear h topi s: omputational omplexity

Introdu tion to

Substru tural Logi s

What are SLs?

Full Lambek al ulus

Residuated Latti es

. Complexity

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

12 / 55

Let L be a onsistent substru tural logi and onsider the

de ision problem:

Given '; `

L

'?

Theorem (Hor ik-T. 11)

1. Any L is oNP-hard.

2. If L is �nite-valued, then L is oNP- omplete.

3. If L enjoys the disjun tion property, then L is PSPACE-hard.

(Neither 2. nor 3. is a ne essary ondition.)

oNP and PSPACE seem a natural way to lassify logi s into

\semanti ally easy" and \ omputationally expressive" ones.

Di hotomy Problem

Is there a substru tural logi whi h is neither oNP- omplete nor

PSPACE-hard?

Page 30: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Algebrai Proof Theory for Substru tural

Logi s

Introdu tion to

Substru tural Logi s

.

Algebrai Proof

Theory for

Substru tural

Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

13 / 55

Page 31: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Substru tural proof theory is dying ...

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

14 / 55

� Full of bureau ra y and ad ho studies,

� Few of appli ations,

� Nevertheless there are some brilliant ideas.

Our aim: to salvage those brilliant ideas from the sea of

bureau ra y.

Page 32: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Substru tural proof theory is dying ...

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

14 / 55

� Full of bureau ra y and ad ho studies,

� Few of appli ations,

� Nevertheless there are some brilliant ideas.

Our aim: to salvage those brilliant ideas from the sea of

bureau ra y.

Page 33: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Substru tural proof theory is dying ...

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

14 / 55

� Full of bureau ra y and ad ho studies,

� Few of appli ations,

� Nevertheless there are some brilliant ideas.

Our aim: to salvage those brilliant ideas from the sea of

bureau ra y.

Page 34: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Substru tural proof theory is dying ...

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

14 / 55

� Full of bureau ra y and ad ho studies,

� Few of appli ations,

� Nevertheless there are some brilliant ideas.

Our aim: to salvage those brilliant ideas from the sea of

bureau ra y.

Page 35: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Algebrai proof theory for SL

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

. APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

15 / 55

� Collaborators: Paolo Baldi, Agata Ciabattoni,

Nikolaos Galatos, Rostislav Hor� ��k, Lutz Stra�burger, . . .

� Explore the onne tion between proof theory and ordered

algebra.

{ Uniform proof theory

{ Appli ations to ordered algebra

� Core: ut elimination � algebrai ompletion

� Origin:

{ omputability/redu ibility argument (Tait/Girard)

{ phase semanti ut elimination (Okada 96)

{ algebrai meaning of ut elimination

(Belardinelli-Jipsen-Ono 04)

{ residuated frames (Jipsen-Galatos 13)

� Today I will fo us on ut elimination � algebrai ompletion.

Page 36: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Algebrai proof theory for SL

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

. APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

15 / 55

� Collaborators: Paolo Baldi, Agata Ciabattoni,

Nikolaos Galatos, Rostislav Hor� ��k, Lutz Stra�burger, . . .

� Explore the onne tion between proof theory and ordered

algebra.

{ Uniform proof theory

{ Appli ations to ordered algebra

� Core: ut elimination � algebrai ompletion

� Origin:

{ omputability/redu ibility argument (Tait/Girard)

{ phase semanti ut elimination (Okada 96)

{ algebrai meaning of ut elimination

(Belardinelli-Jipsen-Ono 04)

{ residuated frames (Jipsen-Galatos 13)

� Today I will fo us on ut elimination � algebrai ompletion.

Page 37: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Algebrai proof theory for SL

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

. APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

15 / 55

� Collaborators: Paolo Baldi, Agata Ciabattoni,

Nikolaos Galatos, Rostislav Hor� ��k, Lutz Stra�burger, . . .

� Explore the onne tion between proof theory and ordered

algebra.

{ Uniform proof theory

{ Appli ations to ordered algebra

� Core: ut elimination � algebrai ompletion

� Origin:

{ omputability/redu ibility argument (Tait/Girard)

{ phase semanti ut elimination (Okada 96)

{ algebrai meaning of ut elimination

(Belardinelli-Jipsen-Ono 04)

{ residuated frames (Jipsen-Galatos 13)

� Today I will fo us on ut elimination � algebrai ompletion.

Page 38: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Algebrai proof theory for SL

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

. APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

15 / 55

� Collaborators: Paolo Baldi, Agata Ciabattoni,

Nikolaos Galatos, Rostislav Hor� ��k, Lutz Stra�burger, . . .

� Explore the onne tion between proof theory and ordered

algebra.

{ Uniform proof theory

{ Appli ations to ordered algebra

� Core: ut elimination � algebrai ompletion

� Origin:

{ omputability/redu ibility argument (Tait/Girard)

{ phase semanti ut elimination (Okada 96)

{ algebrai meaning of ut elimination

(Belardinelli-Jipsen-Ono 04)

{ residuated frames (Jipsen-Galatos 13)

� Today I will fo us on ut elimination � algebrai ompletion.

Page 39: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Algebrai proof theory for SL

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

. APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

15 / 55

� Collaborators: Paolo Baldi, Agata Ciabattoni,

Nikolaos Galatos, Rostislav Hor� ��k, Lutz Stra�burger, . . .

� Explore the onne tion between proof theory and ordered

algebra.

{ Uniform proof theory

{ Appli ations to ordered algebra

� Core: ut elimination � algebrai ompletion

� Origin:

{ omputability/redu ibility argument (Tait/Girard)

{ phase semanti ut elimination (Okada 96)

{ algebrai meaning of ut elimination

(Belardinelli-Jipsen-Ono 04)

{ residuated frames (Jipsen-Galatos 13)

� Today I will fo us on ut elimination � algebrai ompletion.

Page 40: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Algebrai proof theory for SL

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

. APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

15 / 55

� Collaborators: Paolo Baldi, Agata Ciabattoni,

Nikolaos Galatos, Rostislav Hor� ��k, Lutz Stra�burger, . . .

� Explore the onne tion between proof theory and ordered

algebra.

{ Uniform proof theory

{ Appli ations to ordered algebra

� Core: ut elimination � algebrai ompletion

� Origin:

{ omputability/redu ibility argument (Tait/Girard)

{ phase semanti ut elimination (Okada 96)

{ algebrai meaning of ut elimination

(Belardinelli-Jipsen-Ono 04)

{ residuated frames (Jipsen-Galatos 13)

� Today I will fo us on ut elimination � algebrai ompletion.

Page 41: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Algebrai proof theory for SL

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

. APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

15 / 55

� Collaborators: Paolo Baldi, Agata Ciabattoni,

Nikolaos Galatos, Rostislav Hor� ��k, Lutz Stra�burger, . . .

� Explore the onne tion between proof theory and ordered

algebra.

{ Uniform proof theory

{ Appli ations to ordered algebra

� Core: ut elimination � algebrai ompletion

� Origin:

{ omputability/redu ibility argument (Tait/Girard)

{ phase semanti ut elimination (Okada 96)

{ algebrai meaning of ut elimination

(Belardinelli-Jipsen-Ono 04)

{ residuated frames (Jipsen-Galatos 13)

� Today I will fo us on ut elimination � algebrai ompletion.

Page 42: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Algebrai proof theory for SL

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

. APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

15 / 55

� Collaborators: Paolo Baldi, Agata Ciabattoni,

Nikolaos Galatos, Rostislav Hor� ��k, Lutz Stra�burger, . . .

� Explore the onne tion between proof theory and ordered

algebra.

{ Uniform proof theory

{ Appli ations to ordered algebra

� Core: ut elimination � algebrai ompletion

� Origin:

{ omputability/redu ibility argument (Tait/Girard)

{ phase semanti ut elimination (Okada 96)

{ algebrai meaning of ut elimination

(Belardinelli-Jipsen-Ono 04)

{ residuated frames (Jipsen-Galatos 13)

� Today I will fo us on ut elimination � algebrai ompletion.

Page 43: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Completions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

. Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

16 / 55

Let A be an FL algebra.

A ompletion of A is a pair of a omplete FL algebra B and an

embedding e : A ,! B.

We may assume A � B.

We onsider 4 types of ompletion:

� Ma Neille ompletions

(Dedekind, Ma Neille, S hmidt, Banas hewski . . . )

� Canoni al extensions

(Tarski, J�onson, Gehrke, Harding . . . )

� Hyper-Ma Neille ompletions

� Hyper anoni al extensions

Page 44: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Completions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

. Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

16 / 55

Let A be an FL algebra.

A ompletion of A is a pair of a omplete FL algebra B and an

embedding e : A ,! B.

We may assume A � B.

We onsider 4 types of ompletion:

� Ma Neille ompletions

(Dedekind, Ma Neille, S hmidt, Banas hewski . . . )

� Canoni al extensions

(Tarski, J�onson, Gehrke, Harding . . . )

� Hyper-Ma Neille ompletions

� Hyper anoni al extensions

Page 45: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

. Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

17 / 55

Dedekind ompletion: ([0; 1℄

Q

;min;max) ,! ([0; 1℄

R

;min;max).

What is the distin tive feature of this ompletion?

For every x 2 [0; 1℄

R

,

x = supfa 2 [0; 1℄

Q

: a � xg = inffa 2 [0; 1℄

Q

: a � xg:

Let A be a latti e. Its ompletion B is

� join-dense if for every x 2 B, x =

W

fa 2 A : a � xg.

� meet-dense if for every x 2 B, x =

V

fa 2 A : a � xg.

Theorem (S hmidt 56, Banas hewski 56)

Every latti e A has a join-dense and meet-dense ompletion A,

unique up to isomorphism, alled the Ma Neille ompletion.

It an be extended to FL algebras too.

Page 46: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

. Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

17 / 55

Dedekind ompletion: ([0; 1℄

Q

;min;max) ,! ([0; 1℄

R

;min;max).

What is the distin tive feature of this ompletion?

For every x 2 [0; 1℄

R

,

x = supfa 2 [0; 1℄

Q

: a � xg = inffa 2 [0; 1℄

Q

: a � xg:

Let A be a latti e. Its ompletion B is

� join-dense if for every x 2 B, x =

W

fa 2 A : a � xg.

� meet-dense if for every x 2 B, x =

V

fa 2 A : a � xg.

Theorem (S hmidt 56, Banas hewski 56)

Every latti e A has a join-dense and meet-dense ompletion A,

unique up to isomorphism, alled the Ma Neille ompletion.

It an be extended to FL algebras too.

Page 47: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

. Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

17 / 55

Dedekind ompletion: ([0; 1℄

Q

;min;max) ,! ([0; 1℄

R

;min;max).

What is the distin tive feature of this ompletion?

For every x 2 [0; 1℄

R

,

x = supfa 2 [0; 1℄

Q

: a � xg = inffa 2 [0; 1℄

Q

: a � xg:

Let A be a latti e. Its ompletion B is

� join-dense if for every x 2 B, x =

W

fa 2 A : a � xg.

� meet-dense if for every x 2 B, x =

V

fa 2 A : a � xg.

Theorem (S hmidt 56, Banas hewski 56)

Every latti e A has a join-dense and meet-dense ompletion A,

unique up to isomorphism, alled the Ma Neille ompletion.

It an be extended to FL algebras too.

Page 48: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

. Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

17 / 55

Dedekind ompletion: ([0; 1℄

Q

;min;max) ,! ([0; 1℄

R

;min;max).

What is the distin tive feature of this ompletion?

For every x 2 [0; 1℄

R

,

x = supfa 2 [0; 1℄

Q

: a � xg = inffa 2 [0; 1℄

Q

: a � xg:

Let A be a latti e. Its ompletion B is

� join-dense if for every x 2 B, x =

W

fa 2 A : a � xg.

� meet-dense if for every x 2 B, x =

V

fa 2 A : a � xg.

Theorem (S hmidt 56, Banas hewski 56)

Every latti e A has a join-dense and meet-dense ompletion A,

unique up to isomorphism, alled the Ma Neille ompletion.

It an be extended to FL algebras too.

Page 49: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Residuated frames

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

.

Residuated

frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

18 / 55

A preframe is W = (W;W

0

; N; Æ; "; �) su h that

� N �W �W

0

,

� (W; Æ; ") is a monoid, � 2W

0

.

A residuated frame is a preframe where for every x 2W; z 2W

0

there are elements x z and z�x 2W

0

su h that

x Æ y N z () x N z�y () y N x z:

Lemma

If W is a preframe, then

~

W := (W; W�W

0

�W;

~

N; Æ; "; ("; �; "))

x

~

N (u; z; v) () uÆxÆv N z

is a residuated frame.

Page 50: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Residuated frames

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

.

Residuated

frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

18 / 55

A preframe is W = (W;W

0

; N; Æ; "; �) su h that

� N �W �W

0

,

� (W; Æ; ") is a monoid, � 2W

0

.

A residuated frame is a preframe where for every x 2W; z 2W

0

there are elements x z and z�x 2W

0

su h that

x Æ y N z () x N z�y () y N x z:

Lemma

If W is a preframe, then

~

W := (W; W�W

0

�W;

~

N; Æ; "; ("; �; "))

x

~

N (u; z; v) () uÆxÆv N z

is a residuated frame.

Page 51: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Residuated frames

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

.

Residuated

frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

18 / 55

A preframe is W = (W;W

0

; N; Æ; "; �) su h that

� N �W �W

0

,

� (W; Æ; ") is a monoid, � 2W

0

.

A residuated frame is a preframe where for every x 2W; z 2W

0

there are elements x z and z�x 2W

0

su h that

x Æ y N z () x N z�y () y N x z:

Lemma

If W is a preframe, then

~

W := (W; W�W

0

�W;

~

N; Æ; "; ("; �; "))

x

~

N (u; z; v) () uÆxÆv N z

is a residuated frame.

Page 52: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Residuated frames

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

.

Residuated

frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

19 / 55

Residuated frames are e�e tive tools to build omplete FL

algeblras.

Given X �W and Z �W

0

,

X

B

:= fz 2W

0

: x N z for every x 2 Xg

Z

C

:= fx 2W : x N z for every z 2 Zg

(

B

;

C

) forms a Galois onne tion:

X � Z

C

() X

B

� Z

that indu es a losure operator (X) := X

BC

on }(W ).

Page 53: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Residuated frames

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

.

Residuated

frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

19 / 55

Residuated frames are e�e tive tools to build omplete FL

algeblras.

Given X �W and Z �W

0

,

X

B

:= fz 2W

0

: x N z for every x 2 Xg

Z

C

:= fx 2W : x N z for every z 2 Zg

(

B

;

C

) forms a Galois onne tion:

X � Z

C

() X

B

� Z

that indu es a losure operator (X) := X

BC

on }(W ).

Page 54: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Residuated frames

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

.

Residuated

frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

20 / 55

Given W = (W;W

0

; N; Æ; "; �) and X;Y �W ,

G(W ) := the set of Galois- losed subsets of W

(X = (X) = X

BC

)

XnY := fy : x Æ y 2 Y for every x 2 Xg

Y=X := fy : y Æ x 2 Y for every x 2 Xg

X Æ

Y := (X Æ Y )

X [

Y := (X [ Y )

Lemma

W

+

:= (G(W );\;[

; Æ

; n; =; ("); �

C

)

is a omplete FL algebra, alled the omplex algebra of W.

Page 55: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Appli ations of residuated frames

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

.

Residuated

frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

21 / 55

Fm := the set of formulas.

Fm

:= the set of formula sequen es.

� Let W

f

:= (Fm

; Fm [ f;g; N

f

; Æ; ;; ;) where

� N

f

� i� �) � is ut-free derivable.

Then W

+

f

is an FL algebra su h that

j=

W

+

f

1 � ' implies ) ' is ut-free derivable.

) Algebrai ut elimination.

� Given an FL algebra A, let W

A

:= (A;A;�

A

; �; 1; 0).

Then W

+

A

is the Ma Neille ompletion of A.

Page 56: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Appli ations of residuated frames

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

.

Residuated

frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

21 / 55

Fm := the set of formulas.

Fm

:= the set of formula sequen es.

� Let W

f

:= (Fm

; Fm [ f;g; N

f

; Æ; ;; ;) where

� N

f

� i� �) � is ut-free derivable.

Then W

+

f

is an FL algebra su h that

j=

W

+

f

1 � ' implies ) ' is ut-free derivable.

) Algebrai ut elimination.

� Given an FL algebra A, let W

A

:= (A;A;�

A

; �; 1; 0).

Then W

+

A

is the Ma Neille ompletion of A.

Page 57: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Appli ations of residuated frames

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

.

Residuated

frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

21 / 55

Fm := the set of formulas.

Fm

:= the set of formula sequen es.

� Let W

f

:= (Fm

; Fm [ f;g; N

f

; Æ; ;; ;) where

� N

f

� i� �) � is ut-free derivable.

Then W

+

f

is an FL algebra su h that

j=

W

+

f

1 � ' implies ) ' is ut-free derivable.

) Algebrai ut elimination.

� Given an FL algebra A, let W

A

:= (A;A;�

A

; �; 1; 0).

Then W

+

A

is the Ma Neille ompletion of A.

Page 58: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

From axioms to rules

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

.

From axioms to

rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

22 / 55

Let L be a SL (axiomati extension of FL). To obtain an analyti

al ulus for L, axioms have to be transformed into stru tural rules:

'! ' � ' ' � '! ' :(' ^ :')

�;�;�;�) �

�;�;�) �

�;�;�) � �;�;�) �

�;�;�;�) �

�;�)

�)

Let V be a subvariety of FL. To show that V is losed under

ompletions, identities have to be transformed into quasi-identities:

x � xx xx � x x ^ :x � 0

xx � z

x � z

x � z y � z

xy � z

xx � 0

x � 0

Fundamental Question

Whi h axioms/identities an be transformed into \good" stru tural

rules/quasi-identities?

Page 59: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

From axioms to rules

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

.

From axioms to

rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

22 / 55

Let L be a SL (axiomati extension of FL). To obtain an analyti

al ulus for L, axioms have to be transformed into stru tural rules:

'! ' � ' ' � '! ' :(' ^ :')

�;�;�;�) �

�;�;�) �

�;�;�) � �;�;�) �

�;�;�;�) �

�;�)

�)

Let V be a subvariety of FL. To show that V is losed under

ompletions, identities have to be transformed into quasi-identities:

x � xx xx � x x ^ :x � 0

xx � z

x � z

x � z y � z

xy � z

xx � 0

x � 0

Fundamental Question

Whi h axioms/identities an be transformed into \good" stru tural

rules/quasi-identities?

Page 60: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

From axioms to rules

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

.

From axioms to

rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

22 / 55

Let L be a SL (axiomati extension of FL). To obtain an analyti

al ulus for L, axioms have to be transformed into stru tural rules:

'! ' � ' ' � '! ' :(' ^ :')

�;�;�;�) �

�;�;�) �

�;�;�) � �;�;�) �

�;�;�;�) �

�;�)

�)

Let V be a subvariety of FL. To show that V is losed under

ompletions, identities have to be transformed into quasi-identities:

x � xx xx � x x ^ :x � 0

xx � z

x � z

x � z y � z

xy � z

xx � 0

x � 0

Fundamental Question

Whi h axioms/identities an be transformed into \good" stru tural

rules/quasi-identities?

Page 61: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Substru tural hierar hy

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

. Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

23 / 55

P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

pp

pp

pp

pp

p6

pp

pp

pp

pp

p6

6

�� 6

�I

6

�� 6

�I

6

�� 6

�I

Classi� ation of axioms

P

0

;N

0

::= the set of variables

P

n

::= N

n�1

j 1 j P

n

_ P

n

j P

n

� P

n

N

n

::= P

n�1

j 0 j N

n

^N

n

j P

n

! N

n

Some N

2

axioms:

�! 1, 0! � weakening

�! � � � ontra tion

� � �! � expansion

n

! �

m

knotted axioms (n;m � 0)

:(� ^ :�) no- ontradi tion

Page 62: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

N

2

orresponds to sequent al ulus and Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

. Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

24 / 55

P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

pp

pp

pp

pp

p6

pp

pp

pp

pp

p6

6

�� 6

�I

6

�� 6

�I

6

�� 6

�I

Theorem (Ciabattoni-Galatos-T. 12)

1. Every N

2

axiom an be transformed into a

set of stru tural rules in sequent al ulus FL.

2. For every set E of N

2

axioms, the following

are equivalent.

� FL(E) admits a strongly analyti sequent

al ulus ( ut elimination for derivations with

assumptions + subformula property).

� FL(E) is losed under Ma Neille omple-

tions.

� E is a y li (a synta ti riterion).

3. The above three hold whenever (w) 2 E.

Page 63: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

N

2

orresponds to sequent al ulus and Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

. Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

24 / 55

P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

pp

pp

pp

pp

p6

pp

pp

pp

pp

p6

6

�� 6

�I

6

�� 6

�I

6

�� 6

�I

Theorem (Ciabattoni-Galatos-T. 12)

1. Every N

2

axiom an be transformed into a

set of stru tural rules in sequent al ulus FL.

2. For every set E of N

2

axioms, the following

are equivalent.

� FL(E) admits a strongly analyti sequent

al ulus ( ut elimination for derivations with

assumptions + subformula property).

� FL(E) is losed under Ma Neille omple-

tions.

� E is a y li (a synta ti riterion).

3. The above three hold whenever (w) 2 E.

Page 64: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

N

2

orresponds to sequent al ulus and Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

. Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

24 / 55

P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

pp

pp

pp

pp

p6

pp

pp

pp

pp

p6

6

�� 6

�I

6

�� 6

�I

6

�� 6

�I

Theorem (Ciabattoni-Galatos-T. 12)

1. Every N

2

axiom an be transformed into a

set of stru tural rules in sequent al ulus FL.

2. For every set E of N

2

axioms, the following

are equivalent.

� FL(E) admits a strongly analyti sequent

al ulus ( ut elimination for derivations with

assumptions + subformula property).

� FL(E) is losed under Ma Neille omple-

tions.

� E is a y li (a synta ti riterion).

3. The above three hold whenever (w) 2 E.

Page 65: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Let's limb up the hierar hy

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

. Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

25 / 55

P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

pp

pp

pp

pp

p6

pp

pp

pp

pp

p6

6

�� 6

�I

6

�� 6

�I

6

�� 6

�I

Classi� ation of axioms

P

0

;N

0

::= the set of variables

P

n

::= N

n�1

j 1 j P

n

_ P

n

j P

n

� P

n

N

n

::= P

n�1

j 0 j N

n

^N

n

j P

n

! N

n

Some P

3

axioms:

(�! �) _ (� ! �) prelinearity

� _ :� ex luded middle

:� _ ::� weak ex luded middle

:(� � �) _ (� ^ � ! � � �) weak nilpotent minimum

W

ki=0

(�

i

!

W

j 6=i

j

) bounded width � k

W

ki=0

(�

0

^ � � � ^ �

i�1

! �

i

) bounded size � k

Page 66: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Limitation of sequent al ulus/Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

. Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

26 / 55

Fa t

Every stru tural rule in sequent al ulus is either derivable or on-

tradi tory in Int.

�) � �) �

�;�) �

�) �

) �

Theorem (G.Bezhanishvili-Harding 04)

There is no intermediate variety between HA and BA that is losed

under Ma Neille ompletions.

Eg. prelinearity annot be dealt with by sequent

al ulus/Ma Neille ompletions.

Page 67: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Limitation of sequent al ulus/Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

. Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

26 / 55

Fa t

Every stru tural rule in sequent al ulus is either derivable or on-

tradi tory in Int.

�) � �) �

�;�) �

�) �

) �

Theorem (G.Bezhanishvili-Harding 04)

There is no intermediate variety between HA and BA that is losed

under Ma Neille ompletions.

Eg. prelinearity annot be dealt with by sequent

al ulus/Ma Neille ompletions.

Page 68: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?
Page 69: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus (Avron 91)

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

28 / 55

� Hypersequents: �

1

) �

1

j � � � j �

m

) �

m

(meaning (�

1

! �

1

) _ � � � _ (�

m

! �

m

))

� Hypersequent al ulus for FL onsists of

Rules of FL Ext-Weakening Ext-Contra tion

� j �;�) �

� j �) �! �

� j �) �

� j �) � j �) �

� j �) �

� (pl) (�! �) _ (� ! �) is equivalent (in FLew) to

� j �

1

;�

1

) � � j �

2

;�

2

) �

� j �

1

;�

2

) � j �

1

;�

2

) �

( om)

�) � � ) �

�) � j � ) �

( om)

) �! � j ) � ! �

(! r)

) (�! �) _ (� ! �) j ) (�! �) _ (� ! �)

(_r)

) (�! �) _ (� ! �)

(EC)

Page 70: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus (Avron 91)

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

28 / 55

� Hypersequents: �

1

) �

1

j � � � j �

m

) �

m

(meaning (�

1

! �

1

) _ � � � _ (�

m

! �

m

))

� Hypersequent al ulus for FL onsists of

Rules of FL Ext-Weakening Ext-Contra tion

� j �;�) �

� j �) �! �

� j �) �

� j �) � j �) �

� j �) �

� (pl) (�! �) _ (� ! �) is equivalent (in FLew) to

� j �

1

;�

1

) � � j �

2

;�

2

) �

� j �

1

;�

2

) � j �

1

;�

2

) �

( om)

�) � � ) �

�) � j � ) �

( om)

) �! � j ) � ! �

(! r)

) (�! �) _ (� ! �) j ) (�! �) _ (� ! �)

(_r)

) (�! �) _ (� ! �)

(EC)

Page 71: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus (Avron 91)

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

28 / 55

� Hypersequents: �

1

) �

1

j � � � j �

m

) �

m

(meaning (�

1

! �

1

) _ � � � _ (�

m

! �

m

))

� Hypersequent al ulus for FL onsists of

Rules of FL Ext-Weakening Ext-Contra tion

� j �;�) �

� j �) �! �

� j �) �

� j �) � j �) �

� j �) �

� (pl) (�! �) _ (� ! �) is equivalent (in FLew) to

� j �

1

;�

1

) � � j �

2

;�

2

) �

� j �

1

;�

2

) � j �

1

;�

2

) �

( om)

�) � � ) �

�) � j � ) �

( om)

) �! � j ) � ! �

(! r)

) (�! �) _ (� ! �) j ) (�! �) _ (� ! �)

(_r)

) (�! �) _ (� ! �)

(EC)

Page 72: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus (Avron 91)

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

28 / 55

� Hypersequents: �

1

) �

1

j � � � j �

m

) �

m

(meaning (�

1

! �

1

) _ � � � _ (�

m

! �

m

))

� Hypersequent al ulus for FL onsists of

Rules of FL Ext-Weakening Ext-Contra tion

� j �;�) �

� j �) �! �

� j �) �

� j �) � j �) �

� j �) �

� (pl) (�! �) _ (� ! �) is equivalent (in FLew) to

� j �

1

;�

1

) � � j �

2

;�

2

) �

� j �

1

;�

2

) � j �

1

;�

2

) �

( om)

�) � � ) �

�) � j � ) �

( om)

) �! � j ) � ! �

(! r)

) (�! �) _ (� ! �) j ) (�! �) _ (� ! �)

(_r)

) (�! �) _ (� ! �)

(EC)

Page 73: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

Page 74: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j ) (� � �)! 0 j ) � ^ � ! � � �

Page 75: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j � � � ) 0 j ) � ^ � ! � � �

Page 76: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j �; � ) 0 j ) � ^ � ! � � �

Page 77: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j �; � ) j ) � ^ � ! � � �

Page 78: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j �; � ) j � ^ � ) � � �

Page 79: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j ) � ^ �

� j �; � ) j ) � � �

Page 80: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j ) � � j ) �

� j �; � ) j ) � � �

Page 81: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j ) � � j ) � � j � � � ) Æ

� j �; � ) j ) Æ

Page 82: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j ) � � j ) � � j �; � ) Æ

� j �; � ) j ) Æ

Page 83: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j ) � � j ) � � j �; � ) Æ

� j �; � ) j ) Æ

Page 84: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j ) � � j ) � � j �; � ) Æ

� j �) �

� j �; � ) j ) Æ

Page 85: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j ) � � j ) � � j �; � ) Æ

� j �) � � j �) �

� j �;�) j ) Æ

Page 86: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j ) � � j ) � � j �; � ) Æ

� j �) � � j �) � � j �)

� j �;�) j �) Æ

Page 87: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j ) � � j ) � � j �; � ) Æ

� j �) � � j �) � � j �) � j Æ;�) �

� j �;�) j �;�) �

Page 88: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j ) � � j ) � � j �; �;�) �

� j �) � � j �) � � j �)

� j �;�) j �;�) �

Page 89: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j �) � � j �) � � j �; �;�) �

� j �) � � j �) �

� j �;�) j �;�) �

Page 90: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j �; �;�) � � j �; �;�) �

� j �) � � j �) �

� j �;�) j �;�) �

Page 91: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j �;�;�) � � j �;�;�) �

� j �;�;�) � � j �;�;�) �

� j �;�) j �;�) �

Page 92: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hypersequent al ulus

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

.

Hypersequent

al .

Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

29 / 55

Theorem (CGT 08)

Every P

3

axiom is equivalent (in FLew) to a set of stru tural

rules in hypersequent al ulus.

:(� � �) _ (� ^ � ! � � �)

is equivalent to

� j �;�;�) � � j �;�;�) �

� j �;�;�) � � j �;�;�) �

� j �;�) j �;�) �

� Cf. A kermann Lemma-based Algorithm

(Conradie-Palmigiano)

� Implemented by (Ciabattoni-Spendier)

Page 93: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hyper-Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

. Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

30 / 55

Let A be an FLew algebra. De�ne

W

h

A

:= (A�A;A�A;N; (�;_); (1; 0); (0; 0))

(a; h) N (b; k) () 1 = (a! b)_h _ k

Theorem

W

h+

A

is a ompletion of A, alled the hyper-Ma Neill ompletion.

Theorem (CGT)

For every set E of P

3

axioms,

� FLew(E) admits a strongly analyti hypersequent al ulus.

� FLew(E) is losed under hyper-Ma Neille ompletions.

Page 94: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hyper-Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

. Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

30 / 55

Let A be an FLew algebra. De�ne

W

h

A

:= (A�A;A�A;N; (�;_); (1; 0); (0; 0))

(a; h) N (b; k) () 1 = (a! b)_h _ k

Theorem

W

h+

A

is a ompletion of A, alled the hyper-Ma Neill ompletion.

Theorem (CGT)

For every set E of P

3

axioms,

� FLew(E) admits a strongly analyti hypersequent al ulus.

� FLew(E) is losed under hyper-Ma Neille ompletions.

Page 95: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Hyper-Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

. Hyper-Ma Neille

Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

30 / 55

Let A be an FLew algebra. De�ne

W

h

A

:= (A�A;A�A;N; (�;_); (1; 0); (0; 0))

(a; h) N (b; k) () 1 = (a! b)_h _ k

Theorem

W

h+

A

is a ompletion of A, alled the hyper-Ma Neill ompletion.

Theorem (CGT)

For every set E of P

3

axioms,

� FLew(E) admits a strongly analyti hypersequent al ulus.

� FLew(E) is losed under hyper-Ma Neille ompletions.

Page 96: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Class N

3

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

. Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

31 / 55

P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

pp

pp

pp

pp

p6

pp

pp

pp

pp

p6

6

�� 6

�I

6

�� 6

�I

6

�� 6

�I

Some N

3

axioms:

� ^ (� _ )! (� ^ �) _ (� ^ ) distributivity

(�! � � �)! � an ellativity

� ^ � ! � � (�! �) divisibility

BL := FLew + (pl) + (div)

L := BL+ (in)

Theorem ( f. Kowalski-Litak 08)

The varieties BL, MV(= V( L)) are not losed under

any ompletions. Hen e the logi s BL and L do not

admit any strongly analyti al ulus.

Limitation of uniform proof theory!

Page 97: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Class N

3

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

. Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

31 / 55

P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

pp

pp

pp

pp

p6

pp

pp

pp

pp

p6

6

�� 6

�I

6

�� 6

�I

6

�� 6

�I

Some N

3

axioms:

� ^ (� _ )! (� ^ �) _ (� ^ ) distributivity

(�! � � �)! � an ellativity

� ^ � ! � � (�! �) divisibility

BL := FLew + (pl) + (div)

L := BL+ (in)

Theorem ( f. Kowalski-Litak 08)

The varieties BL, MV(= V( L)) are not losed under

any ompletions. Hen e the logi s BL and L do not

admit any strongly analyti al ulus.

Limitation of uniform proof theory!

Page 98: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Class N

3

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

. Class N

3

Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

31 / 55

P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

pp

pp

pp

pp

p6

pp

pp

pp

pp

p6

6

�� 6

�I

6

�� 6

�I

6

�� 6

�I

Some N

3

axioms:

� ^ (� _ )! (� ^ �) _ (� ^ ) distributivity

(�! � � �)! � an ellativity

� ^ � ! � � (�! �) divisibility

BL := FLew + (pl) + (div)

L := BL+ (in)

Theorem ( f. Kowalski-Litak 08)

The varieties BL, MV(= V( L)) are not losed under

any ompletions. Hen e the logi s BL and L do not

admit any strongly analyti al ulus.

Limitation of uniform proof theory!

Page 99: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Summary

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

. Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

32 / 55

P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

pp

pp

pp

pp

p6

pp

pp

pp

pp

p6

6

�� 6

�I

6

�� 6

�I

6

�� 6

�I

N

2

: sequent al ulus

Ma Neille ompletions

P

3

: hypersequent al ulus

hyper-Ma Neille ompletions

N

3

: limitation of uniform proof theory

� Axioms ) rules is important in both proof

theory and algebra.

� The hyper- onstru tion (proof theory) is

useful for ompletions (algebra) too.

� Limitation of proof theory is imposed by al-

gebrai fa ts.

Page 100: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Summary

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

APT for SL

Completions

Ma Neille omp.

Residuated frames

From axioms to rules

Subst. hierar hy

Limitation

Hypersequent al .

Hyper-Ma Neille

Class N

3

. Summary

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

32 / 55

P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

pp

pp

pp

pp

p6

pp

pp

pp

pp

p6

6

�� 6

�I

6

�� 6

�I

6

�� 6

�I

N

2

: sequent al ulus

Ma Neille ompletions

P

3

: hypersequent al ulus

hyper-Ma Neille ompletions

N

3

: limitation of uniform proof theory

� Axioms ) rules is important in both proof

theory and algebra.

� The hyper- onstru tion (proof theory) is

useful for ompletions (algebra) too.

� Limitation of proof theory is imposed by al-

gebrai fa ts.

Page 101: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand's theorem via hyper anoni al

extensions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

.

Herbrand's

theorem via

hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

33 / 55

Page 102: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Predi ate substru tural logi s

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

. Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

34 / 55

Let L be a propositional substru tural logi .

QL := the predi ate extension of L obtained by adding

8x:�(x)! �(t) �(t)! 9x:�(x)

� ! �(x)

� ! 8x:�(x)

�(x)! �

9x:�(x)! � (x not free in �)

Page 103: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand property

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

.

Herbrand

property

Canoni al extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

35 / 55

De�nition

L satis�es the Herbrand property if for every set of universal

formulas and every quanti�er-free formula '(x),

`

QL

9x:'(x) ()

Æ

`

L

'(t

1

) _ � � � _ '(t

n

)

for some t

1

; : : : ; t

n

;

where

Æ

:= f (t) : 8x: (x) 2 g.

Herbrand property is related to ompa tness phenomena

(previous talk).

What is the algebrai form of ompa tness?

Page 104: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand property

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

.

Herbrand

property

Canoni al extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

35 / 55

De�nition

L satis�es the Herbrand property if for every set of universal

formulas and every quanti�er-free formula '(x),

`

QL

9x:'(x) ()

Æ

`

L

'(t

1

) _ � � � _ '(t

n

)

for some t

1

; : : : ; t

n

;

where

Æ

:= f (t) : 8x: (x) 2 g.

Herbrand property is related to ompa tness phenomena

(previous talk).

What is the algebrai form of ompa tness?

Page 105: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Canoni al extensions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

.

Canoni al

extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

36 / 55

Let C be a Boolean algebra and X

C

be its Stone spa e. Then

C

:= (P(X

C

);\;[;

C

)

is a ompletion of C.

Let D be a bounded distributive latti e and Y

D

be its Priestly

spa e. Then

D

:= (P

#

(Y

D

);\;[)

is a ompletion of D.

Re all that

Ma Neille ompletions = join-dense, meet-dense ompletions

Do we have a similar abstra t hara terization for C

;D

?

Page 106: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Canoni al extensions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

.

Canoni al

extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

36 / 55

Let C be a Boolean algebra and X

C

be its Stone spa e. Then

C

:= (P(X

C

);\;[;

C

)

is a ompletion of C.

Let D be a bounded distributive latti e and Y

D

be its Priestly

spa e. Then

D

:= (P

#

(Y

D

);\;[)

is a ompletion of D.

Re all that

Ma Neille ompletions = join-dense, meet-dense ompletions

Do we have a similar abstra t hara terization for C

;D

?

Page 107: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Canoni al extensions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

.

Canoni al

extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

36 / 55

Let C be a Boolean algebra and X

C

be its Stone spa e. Then

C

:= (P(X

C

);\;[;

C

)

is a ompletion of C.

Let D be a bounded distributive latti e and Y

D

be its Priestly

spa e. Then

D

:= (P

#

(Y

D

);\;[)

is a ompletion of D.

Re all that

Ma Neille ompletions = join-dense, meet-dense ompletions

Do we have a similar abstra t hara terization for C

;D

?

Page 108: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Canoni al extensions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

.

Canoni al

extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

37 / 55

Let A be a latti e. Its ompletion B is

� dense if for every x 2 B, there exist C

i

;D

j

� A

(i 2 I; j 2 J) su h that

x =

_

i2I

^

C

i

=

^

j2J

_

D

j

:

� ompa t if for every C;D � A,

^

C �

_

D =)

^

C

0

_

D

0

for some �nite C

0

� C and D

0

� D.

Theorem (Gehrke-Harding 01)

Every latti e A has a dense and ompa t ompletion A

, unique

up to isomorphism, alled the anoni al extension.

Page 109: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Canoni al extensions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

.

Canoni al

extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

37 / 55

Let A be a latti e. Its ompletion B is

� dense if for every x 2 B, there exist C

i

;D

j

� A

(i 2 I; j 2 J) su h that

x =

_

i2I

^

C

i

=

^

j2J

_

D

j

:

� ompa t if for every C;D � A,

^

C �

_

D =)

^

C

0

_

D

0

for some �nite C

0

� C and D

0

� D.

Theorem (Gehrke-Harding 01)

Every latti e A has a dense and ompa t ompletion A

, unique

up to isomorphism, alled the anoni al extension.

Page 110: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Canoni al extensions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

.

Canoni al

extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

37 / 55

Let A be a latti e. Its ompletion B is

� dense if for every x 2 B, there exist C

i

;D

j

� A

(i 2 I; j 2 J) su h that

x =

_

i2I

^

C

i

=

^

j2J

_

D

j

:

� ompa t if for every C;D � A,

^

C �

_

D =)

^

C

0

_

D

0

for some �nite C

0

� C and D

0

� D.

Theorem (Gehrke-Harding 01)

Every latti e A has a dense and ompa t ompletion A

, unique

up to isomorphism, alled the anoni al extension.

Page 111: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand property via ompa t ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

.

HP ompa t

ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

38 / 55

A ompletion of A is ompa t if for every C;D � A,

^

C �

_

D =)

^

C

0

_

D

0

for some �nite C

0

� C and D

0

� D.

Theorem

If V(L) is losed under ompa t ompletions, then L satis�es the

Herbrand property.

Page 112: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand property for �nite-valued logi s

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

. HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

39 / 55

Theorem (Gehrke-Harding 01)

Let V be a variety of monotone latti e expansions.

If V is generated by a �nite algebra, then V is losed under anon-

i al extensions.

Corollary

Every �nite-valued substru tural logi satis�es the Herbrand prop-

erty.

It a tually applies to a mu h wider range of �nite-valued logi s.

The GH theorem is an algebrai ounterpart of the uniform

midsequent theorem for �nite-valued logi s

(Baaz-Ferm�uller-Za h 94).

Page 113: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand property for �nite-valued logi s

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

. HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

39 / 55

Theorem (Gehrke-Harding 01)

Let V be a variety of monotone latti e expansions.

If V is generated by a �nite algebra, then V is losed under anon-

i al extensions.

Corollary

Every �nite-valued substru tural logi satis�es the Herbrand prop-

erty.

It a tually applies to a mu h wider range of �nite-valued logi s.

The GH theorem is an algebrai ounterpart of the uniform

midsequent theorem for �nite-valued logi s

(Baaz-Ferm�uller-Za h 94).

Page 114: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand property for �nite-valued logi s

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

. HP for �nite

HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

39 / 55

Theorem (Gehrke-Harding 01)

Let V be a variety of monotone latti e expansions.

If V is generated by a �nite algebra, then V is losed under anon-

i al extensions.

Corollary

Every �nite-valued substru tural logi satis�es the Herbrand prop-

erty.

It a tually applies to a mu h wider range of �nite-valued logi s.

The GH theorem is an algebrai ounterpart of the uniform

midsequent theorem for �nite-valued logi s

(Baaz-Ferm�uller-Za h 94).

Page 115: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand property for N

2

logi s

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

. HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

40 / 55

Theorem (Gehrke-Harding-Venema 05)

Let V be a variety of bounded monotone latti e expansions. If

V is losed under Ma Neille ompletions, it is also losed under

anoni al extensions.

Ma Neille ompletions preserve (in) ::�! �.

Canoni al extensions preserve (dist)

(� _ �) ^ $ (� ^ ) _ (� ^ ).

Corollary

Every substru tural logi axiomatized by

� a y li N

2

axioms

� and/or (in), (dist)

satis�es the Herbrand property.

Page 116: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand property for N

2

logi s

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

. HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

40 / 55

Theorem (Gehrke-Harding-Venema 05)

Let V be a variety of bounded monotone latti e expansions. If

V is losed under Ma Neille ompletions, it is also losed under

anoni al extensions.

Ma Neille ompletions preserve (in) ::�! �.

Canoni al extensions preserve (dist)

(� _ �) ^ $ (� ^ ) _ (� ^ ).

Corollary

Every substru tural logi axiomatized by

� a y li N

2

axioms

� and/or (in), (dist)

satis�es the Herbrand property.

Page 117: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand property for N

2

logi s

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

. HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

40 / 55

Theorem (Gehrke-Harding-Venema 05)

Let V be a variety of bounded monotone latti e expansions. If

V is losed under Ma Neille ompletions, it is also losed under

anoni al extensions.

Ma Neille ompletions preserve (in) ::�! �.

Canoni al extensions preserve (dist)

(� _ �) ^ $ (� ^ ) _ (� ^ ).

Corollary

Every substru tural logi axiomatized by

� a y li N

2

axioms

� and/or (in), (dist)

satis�es the Herbrand property.

Page 118: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand property for N

2

logi s

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

. HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

41 / 55

The GHV theorem states:

Ma Neille ompletions =) Canoni al extensions:

It onforms to the proof theoreti intuition:

Cut elimination =) Herbrand's theorem:

Page 119: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

What about P

3

logi s?

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

. HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

42 / 55

P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

pp

pp

pp

pp

p6

pp

pp

pp

pp

p6

6

�� 6

�I

6

�� 6

�I

6

�� 6

�I

Some P

3

axioms:

(�! �) _ (� ! �) prelinearity

� _ :� ex luded middle

:� _ ::� weak ex luded middle

:(� � �) _ (� ^ � ! � � �) weak nilpotent minimum

W

ki=0

(�

i

!

W

j 6=i

j

) bounded width � k

W

ki=0

(�

0

^ � � � ^ �

i�1

! �

i

) bounded size � k

We want ompa t ompletions that preserve P

3

axioms.

) Hyper anoni al extensions.

Page 120: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

What about P

3

logi s?

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

. HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

42 / 55

P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

pp

pp

pp

pp

p6

pp

pp

pp

pp

p6

6

�� 6

�I

6

�� 6

�I

6

�� 6

�I

Some P

3

axioms:

(�! �) _ (� ! �) prelinearity

� _ :� ex luded middle

:� _ ::� weak ex luded middle

:(� � �) _ (� ^ � ! � � �) weak nilpotent minimum

W

ki=0

(�

i

!

W

j 6=i

j

) bounded width � k

W

ki=0

(�

0

^ � � � ^ �

i�1

! �

i

) bounded size � k

We want ompa t ompletions that preserve P

3

axioms.

) Hyper anoni al extensions.

Page 121: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Reminder: Ma Neille and hyper-Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

. HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

43 / 55

Let A be an FL algebra.

Ma Neille ompletion of A is W

+

A

where

W

A

:= (A;A;�; �; 1; 0):

Assuming A is FLew, hyper-Ma Neille ompletion is W

h+

A

where

W

h

A

:= (A�A;A�A;N; � � � )

(a; h) N (b; k) () 1 = (a! b)_h _ k:

Page 122: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Reminder: Ma Neille and hyper-Ma Neille ompletions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

. HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

43 / 55

Let A be an FL algebra.

Ma Neille ompletion of A is W

+

A

where

W

A

:= (A;A;�; �; 1; 0):

Assuming A is FLew, hyper-Ma Neille ompletion is W

h+

A

where

W

h

A

:= (A�A;A�A;N; � � � )

(a; h) N (b; k) () 1 = (a! b)_h _ k:

Page 123: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Canoni al and hyper anoni al extensions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

. HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

44 / 55

Canoni al extension of A is W

�+

A

where

W

A

:= (F

A

; I

A

; N; Æ; "1; #0);

F

A

:= the �lters of A

I

A

:= the ideals of A

f N i () f \ i 6= ;

Assuming A is FLew, hyper anoni al extension of A is W

H+

A

where

W

H

A

:= (F

A

�I

A

; I

A

�I

A

; N; � � � )

(f; j) N (i; k) () 1 2 (f ! i)_j _ k

Page 124: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Canoni al and hyper anoni al extensions

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

. HP for N2

HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

44 / 55

Canoni al extension of A is W

�+

A

where

W

A

:= (F

A

; I

A

; N; Æ; "1; #0);

F

A

:= the �lters of A

I

A

:= the ideals of A

f N i () f \ i 6= ;

Assuming A is FLew, hyper anoni al extension of A is W

H+

A

where

W

H

A

:= (F

A

�I

A

; I

A

�I

A

; N; � � � )

(f; j) N (i; k) () 1 2 (f ! i)_j _ k

Page 125: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand property for P

3

logi s

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

HP for N2

. HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

45 / 55

Theorem

Hyper anoni al extensions are ompa t ompletions. They pre-

serve all P

3

identities.

Corollary

Every substru tural logi over FLew axiomatized by P

3

axioms

satis�es the Herbrand property.

It applies to MTL, G, LQ and many more uniformly.

Page 126: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand property for P

3

logi s

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

HP for N2

. HP for P3

Class N

3

Herbrand's theorem

for 98

Further topi s

45 / 55

Theorem

Hyper anoni al extensions are ompa t ompletions. They pre-

serve all P

3

identities.

Corollary

Every substru tural logi over FLew axiomatized by P

3

axioms

satis�es the Herbrand property.

It applies to MTL, G, LQ and many more uniformly.

Page 127: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Class N

3

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

. Class N

3

Herbrand's theorem

for 98

Further topi s

46 / 55

P

3

N

3

P

2

N

2

P

1

N

1

P

0

N

0

pp

pp

pp

pp

p6

pp

pp

pp

pp

p6

6

�� 6

�I

6

�� 6

�I

6

�� 6

�I

Re all that MV(= V( L)) is not losed under any

ompletions.

Theorem (Baaz-Met alfe 08)

L does not satisfy the Herbrand property, al-

though it does satisfy an \approximate" Her-

brand theorem.

Page 128: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand's theorem for 98-formulas

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

.

Herbrand's

theorem for 98

Further topi s

47 / 55

Herbrand's theorem for 98-formulas:

� ` 9x8y:'(x; y) () � ` '(t

1

; y

1

) _ � � � _ '(t

n

; y

n

)

where t

i

does not ontain y

i

; : : : ; y

n

.

The general form requires the onstant domain axiom ( d):

8x:(�(x) _ �)$ (8x:�(x)) _ �:

Its algebrai ounterpart is meet in�nite distributivity:

(mid)

^

i2I

(x

i

_ y) = (

^

i2I

x

i

) _ y:

Page 129: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand's theorem for 98-formulas

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

.

Herbrand's

theorem for 98

Further topi s

48 / 55

Lemma

Let A be an FL algebra.

� If A is distributive, then A

satis�es (mid).

� If A is an MTL algebra, then A

h

satis�es (mid).

Theorem

Let L be a substru tural logi . Herbrand's theorem for 98-

formulas holds for QL( d) if

� either L is axiomatized by distributivity and some N

2

axioms,

� or L is axiomatized by (e), (w), (pl) and and some P

3

axioms.

Page 130: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Herbrand's theorem for 98-formulas

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Predi ate SL

Herbrand property

Canoni al extensions

HP ompa t ompl.

HP for �nite

HP for N2

HP for P3

Class N

3

.

Herbrand's

theorem for 98

Further topi s

48 / 55

Lemma

Let A be an FL algebra.

� If A is distributive, then A

satis�es (mid).

� If A is an MTL algebra, then A

h

satis�es (mid).

Theorem

Let L be a substru tural logi . Herbrand's theorem for 98-

formulas holds for QL( d) if

� either L is axiomatized by distributivity and some N

2

axioms,

� or L is axiomatized by (e), (w), (pl) and and some P

3

axioms.

Page 131: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Further topi s

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

. Further topi s

Extra ting info

Interpolation

Density rule elim.

Con lusion

49 / 55

Page 132: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Extra ting algebrai information from proof theory

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

. Extra ting info

Interpolation

Density rule elim.

Con lusion

50 / 55

� Apparently there is no ni e duality between FL algebras and

residuated frames.

� Residuated frames are lose to syntax so that one an

en ode synta ti information into frames.

� By en oding proof theoreti arguments into frames and

taking the omplex algebra, one an obtain an algebrai

onstru tion.

Page 133: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Case study: Interpolation ) Amalgamation

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

Extra ting info

. Interpolation

Density rule elim.

Con lusion

51 / 55

Let X;Y be sets of propositional variables.

Maehara's lemma

If `

FLe

�;�) � with � � Fm(X) and �;� � Fm(Y ),

there is � 2 Fm(X \ Y ) su h that

`

FLe

�)� and `

FLe

�;�) �:

Page 134: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Case study: Interpolation ) Amalgamation

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

Extra ting info

. Interpolation

Density rule elim.

Con lusion

52 / 55

Let A;B;C be FLe algebras.

Suppose that A is a subalgebra of both B and C.

B

A

C

��

inj

�R

inj

De�ne

W

I

:= (B � C;B [ C;N; � � � )

(b; ) N

0

() 9i 2 A: b �

B

i and i �

C

0

(b; ) N b

0

() 9i 2 A: �

C

i and ib �

B

b

0

:

Page 135: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Case study: Interpolation ) Amalgamation

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

Extra ting info

. Interpolation

Density rule elim.

Con lusion

53 / 55

Then the omplex algebra gives rise to an amalgam.

B

A

W

+

I

C

p

p

p

p

p

R

inj

��

inj

�R

inj

p

p

p

p

p

inj

(interpolation)

+

= amalgamation

Page 136: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Case study: Interpolation ) Amalgamation

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

Extra ting info

. Interpolation

Density rule elim.

Con lusion

53 / 55

Then the omplex algebra gives rise to an amalgam.

B

A

W

+

I

C

p

p

p

p

p

R

inj

��

inj

�R

inj

p

p

p

p

p

inj

(interpolation)

+

= amalgamation

Page 137: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Another su ess: density rule elimination ) densi� ation

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

Extra ting info

Interpolation

. Density rule elim.

Con lusion

54 / 55

Likewise, the next talk by Hor� ��k is an out ome of:

(density rule elimination)

+

= densi� ation

The slogan is:

(proof theoreti argument)

+

= algebrai onstru tion

This way we an salvage ni e proof theoreti ideas and bring

them to ordered algebras.

Page 138: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Another su ess: density rule elimination ) densi� ation

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

Extra ting info

Interpolation

. Density rule elim.

Con lusion

54 / 55

Likewise, the next talk by Hor� ��k is an out ome of:

(density rule elimination)

+

= densi� ation

The slogan is:

(proof theoreti argument)

+

= algebrai onstru tion

This way we an salvage ni e proof theoreti ideas and bring

them to ordered algebras.

Page 139: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Con lusion

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

Extra ting info

Interpolation

Density rule elim.

. Con lusion

55 / 55

We have explored the onne tion between proof theoreti

arugments and algebrai ompletions based on the substru tural

hierar hy:

sequent al . (N

2

) hypersequent al . (P

3

)

ut elimination Ma Neille ompl. hyper-Ma Neille ompl.

Herbran's theorem anoni al ext. hyper anoni al ext.

It is residuated frames that onne t the two:

(proof theoreti argument)

+

= algebrai onstru tion.

Substru tural proof theory is full of burea ra y, but hopefully

there are still something good to be salvaged.

Page 140: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Con lusion

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

Extra ting info

Interpolation

Density rule elim.

. Con lusion

55 / 55

We have explored the onne tion between proof theoreti

arugments and algebrai ompletions based on the substru tural

hierar hy:

sequent al . (N

2

) hypersequent al . (P

3

)

ut elimination Ma Neille ompl. hyper-Ma Neille ompl.

Herbran's theorem anoni al ext. hyper anoni al ext.

It is residuated frames that onne t the two:

(proof theoreti argument)

+

= algebrai onstru tion.

Substru tural proof theory is full of burea ra y, but hopefully

there are still something good to be salvaged.

Page 141: events.illc.uva.nlevents.illc.uva.nl/Tbilisi/Tbilisi2013/uploaded_files/inlineitem/terui.pdf · What re a substructural logics? Intro duction to Substructural Logics. What re a SLs?

Con lusion

Introdu tion to

Substru tural Logi s

Algebrai Proof

Theory for

Substru tural Logi s

Herbrand's theorem

via hyper anoni al

extensions

Further topi s

Extra ting info

Interpolation

Density rule elim.

. Con lusion

55 / 55

We have explored the onne tion between proof theoreti

arugments and algebrai ompletions based on the substru tural

hierar hy:

sequent al . (N

2

) hypersequent al . (P

3

)

ut elimination Ma Neille ompl. hyper-Ma Neille ompl.

Herbran's theorem anoni al ext. hyper anoni al ext.

It is residuated frames that onne t the two:

(proof theoreti argument)

+

= algebrai onstru tion.

Substru tural proof theory is full of burea ra y, but hopefully

there are still something good to be salvaged.