what can globular clusters tell us about the formation of the ......2010/11/03  · globular...

66
Aaron Dotter (STScI) Ata Sarajedini (Florida) Jay Anderson (STScI) November 3, 2010 What can globular clusters tell us about the formation of the Galactic halo?

Upload: others

Post on 25-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Aaron Dotter (STScI)Ata Sarajedini (Florida)Jay Anderson (STScI)

    November 3, 2010

    What can globular clusters tell us about the formation of the 

    Galactic halo?

  • 2Micron All Sky Survey

    The Milky Way

  • Messier 92

    What is a globular cluster?

  • 4

     Why study globular clusters?

       They are bright (historically important)

       They are numerous

       Each one is a homogeneous population

           same chemical composition*

            same age                                                                                                       *(sort of)

  • 5

    Background:The Milky Way has about 150 globular clusters

    The most distant (AM1) is at 120 kpc 

    2/3 inside the solar circle, only 8 outside 30 kpc

  • Making a Color-MagnitudeDiagram for Globular Cluster

    Omega Centauri

    Jay Anderson, STScI

    1

  • This is the Early-Release Image of Omega Centauri, taken by WFC3/UVIS on board the

    Hubble Space Telescope (HST)

    http://hubblesite.org/gallery/wallpaper/pr2009025q/

    2

  • This image was made by combining

    separate red, green, and blue images. 4

  • The red image is from filter F814W, which sees only very red light.

    5

  • The green image is from filter F336W, which sees only blue light.

    6

  • The combined image again.

    8

  • The colors are so extreme because…

    9

  • … the red stars have almost no blue light, and the blue stars have almost no red light.

    10

  • Astronomers like to study the colors of stars in a quantitative way.

    12

  • They like to sort the stars by color, putting the blue stars on the left and the red stars on the right.

    13a

  • They like to sort the stars by color, putting the blue stars on the left and the red stars on the right.

    13b

  • They like to sort the stars by color, putting the blue stars on the left and the red stars on the right.

    13d

  • They like to sort the stars by color, putting the blue stars on the left and the red stars on the right.

    13e

  • They like to sort the stars by color, putting the blue stars on the left and the red stars on the right.

    13f

  • They like to sort the stars by color, putting the blue stars on the left and the red stars on the right.

    13h

  • They like to sort the stars by color, putting the blue stars on the left and the red stars on the right.

    13i

  • They like to sort the stars by color, putting the blue stars on the left and the red stars on the right.

    13j

  • Note that there are very few extreme stars; most stars are white, meaning

    they have a balanced spectrum.14

  • Astronomers also like to characterize the stars in terms of brightness.

    14

  • They like to sort the stars, putting the bright stars on top,

    and the faint stars on the bottom.15a

  • They like to sort the stars, putting the bright stars on top,

    and the faint stars on the bottom.15c

  • They like to sort the stars, putting the bright stars on top,

    and the faint stars on the bottom.15d

  • They like to sort the stars, putting the bright stars on top,

    and the faint stars on the bottom.15e

  • They like to sort the stars, putting the bright stars on top,

    and the faint stars on the bottom.15g

  • They like to sort the stars, putting the bright stars on top,

    and the faint stars on the bottom.15h

  • They like to sort the stars, putting the bright stars on top,

    and the faint stars on the bottom.15i

  • They like to sort the stars, putting the bright stars on top,

    and the faint stars on the bottom.15k

  • This is called a Color-Magnitude Diagram

    (CMD).16

  • When Astronomers first plotted stars this way, they realized that stars don’t

    fall just anywhere in the diagram.17

  • The unmistakable order in diagrams like this led astronomers to develop theories

    to explain stellar evolution.19

  • The vast majority of stars lie along the Main Sequence (MS).

    20a

    MS

  • Stars don’t move along this sequence; rather they sit at the same place for a long

    time fusing their hydrogen into helium.20b

    MS

  • The more massive stars consume their hydrogen fuel much faster than the

    lower-mass stars.20d

    MS

  • When fuel becomes sparse in the stellar core, stars readjust their internal structure and move red-ward along the Sub-Giant Branch (SGB).

    21

    MS

    SGB

  • They start to burn the hydrogen in a shell around the core and become big and bloated as they move up the Red Giant Branch (RGB).

    22a

    MS

    SGB

    RGB

  • When the core has enough mass, it is finally able to ignite helium into carbon.

    22c

    MS

    SGB

    RGB

  • The star readjusts its structure again and finds itself on the Horizontal Branch (HB).

    23a

    MS

    SGB

    RGBHB

  • The helium fuel is not as potent as the hydrogen, so it runs out quickly.

    23b

    MS

    SGB

    RGBHB

  • When the helium is gone, the star has no more fuel. With nothing left to burn, it fades away into

    blue darkness as a White Dwarf (WD).24

    MS

    SGB

    RGBHB

    WD

  • Since a star’s color and brightness tell us

    its evolutionary phase, we can easily

    identify stars by phase in the image.

    25

    MS

    SGB

    RGBHB

    WD

  • On to business...

    ● Globular clusters give us insight into the formation of the part of a galaxy where they're found

    ● Using models, we can measure both chemical composition and age for a globular cluster

    ● Hubble has observed ~50% of our GCs

  • 47

    M13d(VI)~1

    47 Tucd(VI)~0.15

    The Horizontal Branch (HB) can vary in appearance based on a few different parameters intrinsic to a stellar population, e.g. a globular cluster

  • 48

    Sea

    rle 

    & Z

    inn

     (19

    78)

    47 Tuc

    M13

    Che

    mic

    al C

    om

    po

    sitio

    n

    HB Morphology

  • 49

    Background

    Outer halo first explored during 1960's:●Sandage & Wallerstein●van den Bergh●Sandage & Wildey

    Searle & Zinn 1978:HBs become redder with increasing RGC

    Led to suggestion that outer halo did not form in a short period of time

  • 50

    The most metalpoor GCs are predicted—by standard horizontal branch models—to be young because the HBs move back to the red.

    This conflicts with main sequence turnoff age estimates, which are the gold standard for stellar evolution.

    Lee, Demarque, & Zinn (1994)

  • 51

    The Outermost Halo: 50+ kpc

  • 52

    AM1 (120 kpc) and Pal 14 (70 kpc) are 1.52 Gyr younger than the inner halo.(Dotter, Sarajedini, & Yang, 2008)

  • 53

    Harris et al. (1997) found NGC 2419 to be typical of old, metalpoor GCs.  Sandquist & Hess (2008) who found multimodal HB with a faint blue tail.

  • 54

  • 55Dotter et al. (2010)

  • 56

    Age

  • 57

    Galaxy Formation: Initial Collapse vs. Subsequent Accretion

    1. How many of the Galactic GCs are from initial collapse?

    2. How many from later accretions of dwarf galaxies?Dwarf galaxies exhibit different AMR and abundance ratios

    Connection between inner halo (#1) and outer halo (#2)?

  • 58

    How many blue?How many red?

  • 59

    The NotSoOuter Halo: 10 – 50 kpc

  • 60

    How many blue?How many red?

  • 61Muratov & Gnedin (2010)

  • 62

    Can't do it with one type of accreted galaxy!                   (Mackey & Gilmore 2004)

  • 63

    *Some GCs depart from the haloor bulge trends in [/Fe] ratios

    Boxes are abundances from dSphs

    Some GCs clearly follow dSph trend

    (Priztl, Venn, & Irwin 2005)

  • 64

    The “standard” HB models assume constant or Reimers mass loss.  Neither of these choices is appropriate for red giants.

    If we assume the main sequence turnoff ages are correct, how should mass loss vary?                                                                         (Dotter 2008)

  • Assuming mass loss relation from previous slide.

    Look at the old GCs.

    Age = 13 Gyr

    Dots – 1,000 MC             realizations

    Large circles  data

    Implications:●Stochastic effects●mass loss ~ metallicity

                   (Dotter 2008)

  • 66

    Movies shown in the talk are available from:

    http://mesa.sourceforge.nethttp://hubblesite.org/newscenter/archive/releases/2010/28/video/b/http://hubblesite.org/newscenter/archive/releases/2010/28/video/d/

    http://mesa.sourceforge.net/http://hubblesite.org/newscenter/archive/releases/2010/28/video/b/http://hubblesite.org/newscenter/archive/releases/2010/28/video/d/