welcome in genomics 1. 2 welcome in omics omics observation of large data sets which can be made...

55
Welcome in Genomics 1

Upload: maso-giordano

Post on 01-May-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Welcome in

Genomics1

Page 2: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

2

Welcome in “omics”

Page 3: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

“omics” observation of large

data sets which can be made with high

throughput procedures

3

Page 4: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

“omics”genomics

proteomicstranscriptomics

…………………………

diagnosticomics

4

Page 5: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Central Dogma of Molecular BiologyDNA -------------> RNA ------------> PROTEIN

Illustration provided by the National Human Genome Research Institute

The central dogma of molecular biology is based on the principle that the flow of genetic information travels from DNA to RNA and finally to the translation of PROTEINS.   DNA can self replicate in the nucleus of a cell by using one strand of the double helix as a template (this is true for eukaryotes, some organisms such as bacteria have no nucleus and as a result their DNA replicates in the cytoplasm of the single-celled organism).  The DNA also codes for mRNA (messenger RNA) in a process called transcription.  The structure of RNA is similar to that of DNA except that RNA exists as a single stranded unit with Uracil replacing the DNA counterpart Thymine.  The mRNA is then transported out of the nucleus and into the cytoplasm of eukaryotes were proteins are formed through a process called translation.  A series of 3 nucleotides, or codon, is responsible for coding one amino acid.  The amino acids are carried to the site of translation by transfer RNA (tRNA) Long chains of these 20 different amino acids form proteins.

5

Page 6: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

6

Page 7: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

7

Page 8: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

nel DNA B

8

Page 9: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

purina

purina

pirimidina

pirimidina

9

Page 10: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

purina

purina

pirimidina

pirimidina

T A

GC

10

Page 11: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

3.4 Å

11

Page 12: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

3.4 Å x 2.9 Gb = 0.986 m 12

Page 13: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

13

Page 14: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Caratteristiche delle principali forme di DNA

A-DNA B-DNA Z-DNA

Senso dell'elica destrorso destrorso sinistrorso

Unità ripetuta 1 bp 1 bp 2 bp

Rotazione/bp 33.6° 35.9° 60°/2bp

bp medie/giro 10.7 10.0 12

Inclinazione delle bp rispetto all'asse

+19° -1.2° -9°

Passo/bp lungo l'asse

2.3 Å 3.32 Å 3.8 Å

Passo/giro d'elica

24.6 Å 33.2 Å 45.6 Å

Propeller twist medio

+18° +16° 0°

Diametro 25.5 Å 23.7 Å 18.4 Å

ll DNA esiste in diversi tipi di conformazioni. Esse sono denominate A-DNA, B-DNA, C-DNA, D-DNA, E-DNA, H-DNA, L-DNA, P-DNA e Z-DNA. In ogni caso, solo le conformazioni A-DNA, B-DNA e Z-DNA sono state osservate nei sistemi biologici naturali. La conformazione del DNA può dipendere dalla sequenza, dal superavvolgimento, dalla presenza di modificazioni chimiche delle basi o dalle condizioni del solvente, come la concentrazione di ioni metallici. Di tali conformazioni, la conformazione B è la più frequente nelle condizioni standard delle cellule. Le due conformazioni alternative sono differenti dal punto di vista della geometria e delle dimensioni.La forma A è un'ampia spirale destrorsa (il solco minore è largo ma poco profondo, quello maggiore è più stretto e profondo), con un passo di 2,9 nm (circa 11bp) ed un diametro di 2,5 nm. Tale conformazione è presente in condizioni non fisiologiche, quando il DNA viene disidratato. In condizioni fisiologiche, questa conformazione caratterizza gli eteroduplex di DNA e RNA e i complessi formati dalle associazioni DNA-proteina.[51][52]

La conformazione Z è tipica invece delle sequenze che presentano modificazioni chimiche come la metilazione, e dei tratti di DNA ricchi di basi C e G. Essa assume un andamento sinistrorso, opposto rispetto alla conformazione B.[53] Ha un passo di 4,6 nm ed un diametro di 1,8 nm, il solco maggiore più superficiale e quello minore più stretto; deve il suo nome all'andamento a zig-zag che la caratterizza. Queste strutture inusuali possono essere riconosciute da specifiche Z-DNA-binding proteins, con conseguenze notevoli nella regolazione della trascrizione.

A B Z

14

Page 15: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

15

Page 16: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

16

Page 17: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

17

Page 18: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

18

Page 19: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

19

Page 20: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

20

Page 21: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Interazione tra acidi nucleici e proteine

21

Page 22: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Interazione tra acidi nucleici e proteine

22

Page 23: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Dito a zinco

Interazione tra acidi nucleici e proteine

23

Page 24: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Fermatura lampo a leucina

24

Page 25: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Organizzazione del DNA all’interno della cellula

25

Page 26: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

26

Page 27: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

27

Page 28: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Chromatin is the DNA-protein complex that constitutes chromosomes. The major protein component of chromatin is the nucleosome octamer.

28

Page 29: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

29

Page 30: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

30

Page 32: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

32

Page 33: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

33

Page 34: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Acetilazione degli istoni = scompattamento

Deacetilazione degli istoni = compattamento

34

Page 35: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Avvolgimenti e super-avvolgimenti del DNA delle cellule procariotiche

35

Page 36: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

In terms of the "3 kingdoms of Life", it looks as though the DNA in Eubacteria is negatively supercoiled, the DNA in Archaebacteria is positively supercoiled, and the DNA in eukaryotes is, on average, wrapped around proteins and not very supercoiled at all, except for small regions around actively transcribed gene

36

Page 37: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Cromosoma di Escherichia coli

37

Page 38: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Human Chromosomes This shows the 23 paired chromosomes of a human male. These little bundles of data carry all the genetic information needed to make a complete guy. This is how chromosomes look when they're not replicating -- so the DNA is tightly coiled. 38

Page 39: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

An

alisi

gen

om

ich

e

39

Page 40: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

http://www.genomesonline.org/gold_statistics.htm

40

Page 41: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

http://www.genomesonline.org/gold_statistics.htm

41

Page 42: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

42

Page 43: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Aeropyrum pernix Agrobacterium tumefaciens Anabaena Anopheles gambiae Apis mellifera Aquifex aeolicus Arabidopsis thaliana Archaeoglobus fulgidus Ashbya gossypii Bacillus anthracis Bacillus cereus Bacillus halodurans Bacillus licheniformis Bacillus subtilis Bacteroides fragilis Bacteroides thetaiotaomicron Bartonella henselae Bartonella quintana Bdellovibrio bacteriovorus Bifidobacterium longum Blochmannia floridanus Bordetella bronchiseptica Bordetella parapertussis Bordetella pertussis Borrelia burgdorferi Bradyrhizobium japonicum Brucella melitensis Brucella suis Buchnera aphidicola Burkholderia mallei Burkholderia pseudomallei Caenorhabditis briggsae Caenorhabditis elegans Campylobacter jejuni Candida glabrata Canis familiaris Caulobacter crescentus Chlamydia muridarum Chlamydia trachomatis Chlamydophila caviae Chlamydophila pneumoniae Chlorobium tepidum Chromobacterium violaceum Ciona intestinalis Clostridium acetobutylicum Clostridium perfringens Clostridium tetani Corynebacterium diphtheriae Corynebacterium efficiens Coxiella burnetii Cryptosporidium hominis Cryptosporidium parvum Cyanidioschyzon merolae Debaryomyces hansenii Deinococcus radiodurans Desulfotalea psychrophila Desulfovibrio vulgaris Drosophila melanogaster Encephalitozoon cuniculi Enterococcus faecalis Erwinia carotovora

Escherichia coli Fusobacterium nucleatum Gallus gallus Geobacter sulfurreducens Gloeobacter violaceus Guillardia theta Haemophilus ducreyi Haemophilus influenzae Halobacterium Helicobacter hepaticus Helicobacter pylori Homo sapiens Kluyveromyces waltii Lactobacillus johnsonii Lactobacillus plantarum Legionella pneumophila Leifsonia xyli Lactococcus lactis Leptospira interrogans Listeria innocua Listeria monocytogenes Magnaporthe grisea Mannheimia succiniciproducens Mesoplasma florum Mesorhizobium loti Methanobacterium thermoautotrophicum Methanococcoides burtonii Methanococcus jannaschii Methanococcus maripaludis Methanogenium frigidum Methanopyrus kandleri Methanosarcina acetivorans Methanosarcina mazei Methylococcus capsulatus Mus musculus Mycobacterium bovis Mycobacterium leprae Mycobacterium paratuberculosis Mycobacterium tuberculosis Mycoplasma gallisepticum Mycoplasma genitalium Mycoplasma mycoides Mycoplasma penetrans Mycoplasma pneumoniae Mycoplasma pulmonis Mycoplasma mobile Nanoarchaeum equitans Neisseria meningitidis Neurospora crassa Nitrosomonas europaea Nocardia farcinica Oceanobacillus iheyensis Onions yellows phytoplasma Oryza sativa Pan troglodytes Pasteurella multocida Phanerochaete chrysosporium Photorhabdus luminescens Picrophilus torridus

Plasmodium falciparum Plasmodium yoelii yoelii Populus trichocarpa Porphyromonas gingivalis Prochlorococcus marinus Propionibacterium acnes Protochlamydia amoebophila Pseudomonas aeruginosa Pseudomonas putida Pseudomonas syringae Pyrobaculum aerophilum Pyrococcus abyssi Pyrococcus furiosus Pyrococcus horikoshii Pyrolobus fumarii Ralstonia solanacearum Rattus norvegicus Rhodopirellula baltica Rhodopseudomonas palustris Rickettsia conorii Rickettsia typhi Rickettsia prowazekii Rickettsia sibirica Saccharomyces cerevisiae Saccharopolyspora erythraea Salmonella enterica Salmonella typhimurium Schizosaccharomyces pombe Shewanella oneidensis Shigella flexneria Sinorhizobium meliloti Staphylococcus aureus Staphylococcus epidermidis Streptococcus agalactiae Streptococcus mutans Streptococcus pneumoniae Streptococcus pyogenes Streptococcus thermophilus Streptomyces avermitilis Streptomyces coelicolor Sulfolobus solfataricus Sulfolobus tokodaii Synechococcus Synechocystis Takifugu rubripes Tetraodon nigroviridis Thalassiosira pseudonana Thermoanaerobacter tengcongensis Thermoplasma acidophilum Thermoplasma volcanium Thermosynechococcus elongatus Thermotagoa maritima Thermus thermophilus Treponema denticola Treponema pallidum Tropheryma whipplei Ureaplasma urealyticum Vibrio cholerae

Ad oggi conosciamo il genoma completo di quasi 2000 specie del regno animale e vegetale

43

Page 44: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

nucleotidi

Il codice a barre della natura

Che c’è? Non hai mai visto un codice a barre?

Il DNA barcoding è una metodica molecolare sviluppata per l'identificazione di identità biologiche, che si basa sull'analisi della variabilità di un marcatore molecolare. Nel mondo animale, i cosiddetti metazoi, il marcatore principalmente utilizzato è un frammento del gene mitocondriale, codificante la subunità I della citocromo ossidasi, coxI.

44

Page 45: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

45

Page 46: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

The UK MRC funds the Fugu Genomics Group at the HGMP-RC, as part of its commitment to comparative mapping and sequencing of vertebrate genomes. The group, headed by Greg Elgar, is involved in a number of projects geared towards understanding sequence data generated by the human genome project. Fugu rubripes (the Japanese puffer fish) is particularly suited to this kind of analysis because whilst its 400Mb genome is eight times smaller than human's, it has a similar repertoire of genes. These genome characteristics along with the large evolutionary distance between bony fish and mammals make Fugu a useful tool for studying gene evolution. See Elgar et al., 1999 for further details. Please use the links in the navigation bars at the bottom of this webpage to access areas of the website.

46

Page 47: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

47

Page 48: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

48

Page 49: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Adenina (A) Citosina (C)Guanina (G)Timina (T)

frammento di DNA

--ATGCGTACTGGTACTAAATGCGTACTGG----TAGCCATGACCATGATTTAGCCATGACC--

le 4 basi componenti la doppia elica del DNA

Genoma umano: 3 miliardi di coppie di basi in 46

cromosomiGenoma umano:

2 metri di DNA suddiviso in 46 cromosomi

contenuti in ciascuno dei nostri 50.000 miliardi di

cellule

Genoma suino: 2,7 miliardi di coppie di basi in 38

cromosomi49

The only cells which lack DNA are the mature red blood cells (erythrocytes). This is because they lack a nucleus, which is where the DNA is found in other cells. Red blood cells also lack mitochondria which themselves have DNA. Therefore they not only lack nuclear DNA, but mitochondrial DNA as well. 

Page 50: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

--ATGCGTACTGGTACTAAATGCGTACTGG----TAGCCATGACCATGATTTAGCCATGACC--

Mappatura del genoma umano(6 aprile 2000) = decodifica della

sequenza dei 3 miliardi di coppie di basi ed individuazione dei geni

gene = istruzione per costruire le molecole della vita (le

proteine) Genoma umano: 3 miliardi di

coppie di basi in 46 cromosomi

Genoma suino: 2,7 miliardi di coppie di basi in 38

cromosomi

1,2 miliardi di coppie di basi

fritillaria130 miliardi di paia di basi in 36 cromosomi50

Page 51: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

--ATGCGTACTGGTACTAAATGCGTACTGG----TAGCCATGACCATGATTTAGCCATGACC--

51

Page 52: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

--ATGCGTACTGGTACTAAATGCGTACTGG----TAGCCATGACCATGATTTAGCCATGACC--

mappatura dei

microsatelliti microsatelliti: sequenze ripetute da 10 a 100 volte di DNA (privo di geni) costituite da unità di ripetizione molto corte (1-5 bp)

CAGT

2 bp ripetute 8 volte

I microsatelliti sono utilizzabili come marcatori molecolari 52

Page 53: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

--ATGCGTACTGGTACTAAATGCGTACTGG----TAGCCATGACCATGATTTAGCCATGACC--

mappatura dei

microsatelliti

http://www.koshland-science-museum.org/exhibitdna/crim02.jsp

53

Page 54: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

--ATGCGTACTGGTACTAAATGCGTACTGG----TAGCCATGACCATGATTTAGCCATGACC--

mappatura dei

microsatelliti

54

Page 55: Welcome in Genomics 1. 2 Welcome in omics omics observation of large data sets which can be made with high throughput procedures 3

Biotecnologie - Ingegneria molecolare a DNA

55