week 7,9,10

10
Rood$ing Basement Walls Drainage Windows & Doors Week 7 Detailing for Heat and Moisture Overview, Prevent water from flowing through roof sheeting panels and expanding and contracting of gutters to be designed for this. Moisture penetration points Water can enter through gaps and splashback from hitting another object. Strategies for stopping water from entering Remove openings: However if openings cant be removed, Waterproofing can be done by using sealants such as silicone or gaskets made of artificial rubbers. These are both flexible and waterproof materials that can allow for tolerances that cause unplanned openings. These materials wear out and need to be maintained. Keeps water away: Eves, sloping roofs and roof/wall flashings can do this. Overlaps can be used to on tiles, roof sheeting and weatherboard cladding systems, this works by allowing water to slope away from the building. Neutralize the forces that move water through openings: The forces consist of gravity, momentum, surface tension and air pressure. Again slopes and overlaps with double cavity brick walls with a membrane and flashing allowing moisture to flow out. At doors there are thresholds and a sloping pavement to direct the flow away form the door. Only a 1% slope is needed and it will prevent water penetration. Capillary action can be broken with gaps and openings which prevent the flow of water and hence water entering. Air barriers are used to prevent the problems of air pressure, with the tendency for water to be pumped in to the building. Figure 1: Moisture Penetration Points

Upload: jshue

Post on 11-Mar-2016

217 views

Category:

Documents


1 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Week 7,9,10

Rood$ing  

Basement  

Walls   Drainage  

Windows  &  Doors  

 Week  7    Detailing  for  Heat  and  Moisture    Overview,  Prevent  water  from  flowing  through  roof  sheeting  panels    and  expanding  and  contracting  of  gutters  to  be  designed  for  this.    Moisture  penetration  points          

• Water  can  enter  through  gaps  and  splash-­‐back  from  hitting  another  object.      Strategies  for  stopping  water  from  entering  

• Remove  openings:    However  if  openings  cant  be  removed,    Waterproofing  can  be  done  by  using  sealants  such  as  silicone  or  gaskets  made  of  artificial  rubbers.  These  are  both  flexible  and  waterproof  materials  that  can  allow  for  tolerances  that  cause  unplanned  openings.  These  materials  wear  out  and  need  to  be  maintained.  

• Keeps  water  away:  Eves,  sloping  roofs  and  roof/wall  flashings  can  do  this.  Overlaps  can  be  used  to  on  tiles,  roof  sheeting  and  weatherboard  cladding  systems,  this  works  by  allowing  water  to  slope  away  from  the  building.  

• Neutralize  the  forces  that  move  water  through  openings:  The  forces  consist  of  gravity,  momentum,  surface  tension  and  air  pressure.  Again  slopes  and  overlaps  with  double  cavity  brick  walls  with  a  membrane  and  flashing  allowing  moisture  to  flow  out.  At  doors  there  are  thresholds  and  a  sloping  pavement  to  direct  the  flow  away  form  the  door.  Only  a  1%  slope  is  needed  and  it  will  prevent  water  penetration.  Capillary  action  can  be  broken  with  gaps  and  openings  which  prevent  the  flow  of  water  and  hence  water  entering.    

• Air  barriers  are  used  to  prevent  the  problems  of  air  pressure,  with  the  tendency  for  water  to  be  pumped  in  to  the  building.  

Figure  1:  Moisture  Penetration  Points  

Page 2: Week 7,9,10

Detailing  for  Heat    Controlling  heat  aims  to,  in  summer:  Reduce  heat  gain  and  use  cool  sea  breezes  to  cool  down,  while  in  winter,  maximize  heat  from  sun  and  reduce  heat  loss.    Conduction    Thermal  insulation:  Reduces  conduction,  bulk  insulation  has  high  R  values  and  can  be  fitted  into  wall  frames.    Thermal  Breaks:  Low  conductive  rubber  materials  reducing  heat  transfer.    Double  Glazing:  Glass  is  very  poor  at  retaining  heat  and  is  where  most  of  the  heat  is  lost  in  a  building.  By  allowing  air  spaces  between  the  glass  panes  it  reduces  heat  loss  considerably  well,  while  still  letting  natural  light  in.    Radiation  Reflective  surfaces  can  reduce  heat  Shading  verandahs,  eaves,  screens,  roof  gardens    Thermal  mass  Stores  heat  gained  from  the  sunlight  during  the  day  and  releases  it  slowly  at  night.  Best  materials  for  thermal  mass  are  Brick  masonry  and  concrete,  water  around  the  building  such  as  a  pond  or  close  to  the  beach  can  help  provide  this  benefit.      Reducing  air  leakage  Building  wrap  in  polyethylene  can  be  both  an  air  barrier  and  for  waterproofing.  This  can  reduce  heat  loss  dramatically  when  air  leakages  are  all  found  and  controlled.          

Page 3: Week 7,9,10

Materials                           hi                                  

Rubber  

• Flexible,  elastic,  waterproof  are  good  insulators,  cost  effect  and  durable.    

• Used  for  seals  at  control  joints  and  around  openings,  $loor  lining  as  they  provide  grip,  electrical  insulation  and  hosing  and  piping.  

Plastic  

• Light,  medium-­‐low  hardness,    easily  molded  into  desired  shape,  can  be  both  ductile  and  brittle.  

• Different  types  are  Thermoplastics,  Thermosetting  plastics  or  Elastomers.  

• Tend  to  be  waterproof,  good  insulators,  cost  effective  and  can  be  recycled,  meaning  low  embodied  energy.  Used  for  piping  and  substitute  for  glass.  

Paint  

• Are  liquid  untill  applied  and  dry  when  in-­‐contact  with  air.  Can  have  different  colours  and  applications  

• Finishes  used  to  colour  or  protect  a  surface.  Gloss  can  be  used  to  waterproof  the  surface  as  are  non  soluble,  it  is  also  easier  to  clean.    Needs  to  be  resistant  to  chipping,  cracking  and  peeling.    

Page 4: Week 7,9,10

 Week  9    This  week,  Kane  Construction  was  so  kind  enough  to  let  us  view  their  5  floor  extension  of  the  Owen  Dixon  Chambers  which  was  a  commercial  building  with  offices  for  barristers  called  “chambers”.  The  construction  process  was  quite  different  from  a  usual  building  as  it  was  an  extension  as  well  as  there  being  limited  storage  areas  and  loading  bays.  The  extension  consisted  of  light  weight  concrete  panels  (Hebel)  and  steel  structure,  due  to  needing  to  reduce  weight  as  much  as  possible  as  it  was  sitting  on  top  of  an  existing  building.  The  structure  of  the  existing  building  was  not  to  be  strengthened.  Around  the  plant  area  where  there  was  heavy  machinery,  Bondek  was  used  as  a  concrete  slab  system.    Construction  Program    

1. Set  up  appropriate  site  accommodation,  signage,  gantries  and  hoardings.  2. Erect  tower  crane  off  existing  top  roof.  3. Create  a  loading  bays,  storage  and  hoisting  zones.  4. Start  erecting  steel  structural  framing  system  and  lightweight  concrete  planks  were  placed  then  grouted  up.  5. Internal  walls  and  services  placed  6. Glass  Façade  panels.  7. Finishes,  painting,  carpets  etc.  

 Hebel    Hebel  panels  came  in  600Wx  180D  and  were  aerated  and  lightweight.  Being  small  dimensions  it  made  it  easier  for  lifting  it  into  the  building  where  it  was  narrow.  It  had  steel  reinforcement  mesh  both  top  and  bottom  and  inbetween  panels  to  connect  them  structurally.  They  would  sit  on  top  of  steel  UB  sections  and  have  intermediate  supports  allowing  it  to  span  5-­‐7metres.        

Page 5: Week 7,9,10

Façade                                      Facades  are  imported  from  China  and  are  glass  with  a  metal  frame  and  tinted.  Each  panel  connects  to  the  slab  where  there  is  a  rebate  and  an  angle  bracket  as  a  fixing  plate  which  bolts  the  panels  in  structurally.  The  panels  connect  to  each  other  through  a  male  and  female  joints  allowing  easy  installation  and  overlapping  allowing  waterproofing.    Hoardings:  A  high  temporary  fence  or  structure  enclosing  a  demolition  or  a  building  site  during  works.  Restricts  access  and  provides  side  protection  to  the  public.    Gantry:  A  structure,  which  covers  a  public  way  and  provides  protection  from  both  the  side  and  overhead.    Hoisting  Zone:  A  zone  of  the  gantry  dedicated  for  the  craning  or  hoisting  of  materials  from  the  road  to  the  building  site.  Has  to  be  able  to  fit  large  semi  trailers  and  take  the  point  loads.  

Figure  2  Facade  Panels,  Left:  Fixing  Plate  bolted  to  slab  

Page 6: Week 7,9,10

People  involved  in  Construction  of  Owen  Dixon  Chambers

           

Client  (Owen  Dixon  

Chambers)  

Contractor  (Kane  

Construction)  

Employees  

Construction  Manager   Site  Manager  

OH&S  Of$icer  

Subcontractors  

Carpenters   Crane  operators  

Electrician   Plumbers  

Consultants  

Quantity  Surveyors   Engineers  

Architect   Environmental  Engineers  

Suppliers  

Page 7: Week 7,9,10

 Week  10    Lateral  Loads  Lateral  loads  are  mostly  due  to  wind  and  earthquakes.  With  large  structures  and  being  tall  and  slender    there  are  large  amount  of  surface  area  and  hence  large  lateral  forces.    A  strong  base  is  needed  for  earthquakes.    Bracing  or  shear  walls  as  well  as  rigid  connections  can  be  used  to  resist  lateral  loads.  Shear  walls  transfer  the  horizontal  forces,  vertically  down  to  the  footings  and  rigid  connections.  Columns  and  slab  connections  can  be  moment  resisting  (rigid)  and  prevents  a  structure  from  overturning  when  effected  by  lateral  forces.  Roofing  needs  to  be  secured  as  well  as  it  gets  uplift  and  suction  from  lateral  loads  travelling  over  it.  In  earthquakes  if  buildings  are  not  symmetry,  structural  isolation  is  needed  as  the  buildings  will  vibrate  at  different  rates.    Wind  forces  on  the  roof  are  carried  to  the  ceiling  sheeting/diaphragm  through  the  roof  and  ceiling  framing  Wind  forces  on  the  top  half  of  the  wall  are  carried  to  the  ceiling  diaphragm.  Wind  forces  on  the  bottom  half  of  the  wall  are  carried  to  the  ground  through  wall  framing,  slab  and  footing.  Bracing  is  used  to  support  the  wall  framing  and  increase  its  structural  capacity.                      

Page 8: Week 7,9,10

   Durability  issues  of  Reinforced  Concrete  Steel  reinforced  concrete  is  not  immune  to  the  effects  of  environment.  There  are  environmental  factors  such  as  temperature.  

Durability  is  attracting  more  and  more  world  attention  and  increasing  being  studied.  This  review  aims  to  give  a  brief  description  the  known  factors  in  scientific  literature  that  can  influence  the  durability  on  concrete.  Temperature    Daily  and  seasonal  temperature  variations  will  cause  changes  in  the  concrete  volume.  Temperature  raises  causes  concrete  to  expand  

and  the  concrete  to  contracts  when  temperature  falls  and  effects  are  at  freezing  and  thawing.  Volume  changes  in  concrete  can  produce  significant  stresses  in  the  concrete  and  these  tensile  stresses  can  cause  the  concrete  to  crack.  Fire  Fire  around  concrete  structures  can  weaken  the  superstructure  and  decrease  the  concrete  strength.  The  heat  can  cause  distortion,  

excessive  deflection  and  expansion,  buckling  of  the  steel  reinforcement.    Moisture    Changes  in  the  moisture  content  in  concrete  will  result   in  either  concrete  expansion  as  the  concrete  gains  moisture  or  contraction  

when  concrete  loses  moisture.    As  concrete  is  being  cured  the  surface  of  the  concrete  will  dry  and  shrink  at  different  rates  to  the  inner  regions  of  the  concrete.  If  left  unrestrained  cracking  can  occur.    Contaminants      Contaminants  in  water  that  were  absorbed  into  the  concrete  may  cause  staining,  steel  corrosion,  or  sulphate  attack.  Contaminants  

include  chloride  and  sulphate  salts  and  carbonates.    An   increase   in   the   size   of   salt   crystals   in   the  

capillaries   near   the   evaporating   surface   can   cause  cracking.                  

Page 9: Week 7,9,10

     Carbonation    Concrete   undergoes   shrinkage   due   to   carbonation.   Carbon   dioxide   in   the   atmosphere   reacts   in   the   presence   of  moisture   cement  

minerals  usually  being  the  carbonic  acid.  If  the  steel  reinforcement  is  placed  too  close  to  the  surface,  corrosion  can  occur  as  a  result.  Acid  attack      Portland  cement  paste  has  a  high  pH  value  of  around  12.5  to  13.5.When  it  comes  in  contact  with  an  acidic  environment  acid  attacks  

the  concrete.    The  reaction  dissolves  cement  matrix  into  a  soft  mush.  The  steel  reinforcement  depassivates  leading  to  corrosion.  Chloride  Attack  Common  sources  of  chloride  are  salt  spray  in  marine  conditions,  chloride  contaminated  water  such  as  beach  sand,  admixtures  such  as  

Calcium  Chloride  and  the  de-­‐icing  salt.    Concentrations  of  chlorides  in  the  concrete  will  cause  the  reinforcing  steel  to  corrode  and  will  also  cause  the  concrete  to  crack  and  disintegrate  .  Sulphate  attack  Some  soils  contain  alkali,  magnesium  and  calcium  sulphates.  When  these  sulphates  come  into  contact  with  groundwater,  they  form  a  sulphate   solution.   Seawater  may   also   contain   significant   sulphate   content   .   The   sulphate   attacks   the  hardened   cement  paste.   This  results  in  expansion  and  disruption  of  concrete  and  depassivates  steel  reinforcement  .    Recommendations  to  allow  structurally  stable  concrete  and  reduce  collapses  and  failures.    

• More  concrete  cover  to  prevent  carbonation  • Increasing  the  cement  water  ratio  as  cement  is  alkaline  and  neutralizes  acid  attack.    • Install  fire  proofing  measures  to  prevent  extreme  heat  transfer    • Ensure  proper  vibrating  to  make  sure  no  honey  combing  occurs.  • Increase  concrete  to  reinforcement  cover  so  that  there  is  more  cement  neutralizing  the  acidic  outside  environment.  

     

Page 10: Week 7,9,10