wednesday posterswednesday posters - dartmouth.eduhiddenmonsters/talks/posters_2.pdf · luminous...

20
WEDNESDAY POSTERS WEDNESDAY POSTERS

Upload: hadiep

Post on 27-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

WEDNESDAY POSTERSWEDNESDAY POSTERS

Photometric Redshifts for the Large-Area Stripe82X Multi-wavelength survey

Tonima Tasnim Ananna, Yale University

Our results have about ~14% outliers

and a 6% sigma

Prof. Meg Urry, Dr. Mara Salvato, Dr. Stephanie LaMassa, Dr. Eilat Glikman

Uncovering the Role of Obscuration in the Merger/AGN ConnectionLaura BlechaJSI Postdoctoral Fellow, University of MarylandIn collaboration with Shobita Satyapal (GMU), Sara Ellison (UVic), & Greg Snyder (STScI)

a b c d

Blecha et al. in prep

Red WISE colors peak near coalescence (LIRG/ULIRG phase):

Mid-IR AGN lifetime vs. merger stage

Efficient Dual AGN selection w/ WISE

a b c d

Luminous AGN Heavy ‘environmental’ obscuration

time [Gyr]

N gas

[log

cm

-2]

L AG

N [e

rg s

-1]

24

23

22

46454443

WISE AGN WISE Dual AGN

proj. BH sep [kpc]proj. BH sep [kpc]

Δt [l

og G

yr] 0

-1

-2

0

-1

-20 20 40 0 20 40

W2 - W3

W1

- W2

t=0BH Mergertfinal

J143631+343829zphot: 0.32E(B−V): 2.48χ

2red: 1.87

AGN: 8.368e−16Elip: 4.501e−17Im: 7.617e−17Sbc: 1.336e−15

0.1 1.0 10.0Rest Wavelength [µm]

10−1

100

101

102

103

104

105

F ν[µ

Jy]

J021809−045945zphot: 1.03E(B−V): 8.84χ

2red: 2.55

AGN: 2.610e−16Elip: 0.000e+00Im: 2.655e−17Sbc: 1.699e−16

0.1 1.0 10.0Rest Wavelength [µm]

10−1

100

101

102

103

104

105

F ν[µ

Jy]

J110722+013336zphot: 0.52E(B−V): 5.91χ

2red: 6.14

AGN: 1.971e−16Elip: 1.902e−16Im: 4.850e−19Sbc: 1.072e−15

0.1 1.0 10.0Rest Wavelength [µm]

10−1

100

101

102

103

104

105

F ν[µ

Jy]

J153846+012951zphot: 0.56E(B−V): 6.21χ

2red: 7.08

AGN: 3.551e−16Elip: 2.466e−16Im: 7.412e−17Sbc: 0.000e+00

0.1 1.0 10.0Rest Wavelength [µm]

10−1

100

101

102

103

104

105

F ν[µ

Jy]

J133331−012653zphot: 0.48

E(B−V): 10.34χ

2red: 17.96

AGN: 2.597e−16Elip: 4.589e−16Im: 1.241e−16Sbc: 1.903e−16

0.1 1.0 10.0Rest Wavelength [µm]

10−1

100

101

102

103

104

105

F ν[µ

Jy]

J171834+594534zphot: 0.70E(B−V): 3.56χ

2red: 3.00

AGN: 7.308e−17Elip: 0.000e+00Im: 0.000e+00Sbc: 6.954e−16

0.1 1.0 10.0Rest Wavelength [µm]

10−1

100

101

102

103

104

105F ν

[µJy

]

Modeling obscured quasar spectral energy distributions and redshifts with WISE

Christopher M. Carroll1, Ryan C. Hickox1, Kevin N. Hainline21Dartmouth College, 2Steward Observatory

ObjectiveObscured quasars represent a large fraction of the total number of powerful active galactic nuclei (AGNs) and observations of these enigmatic objects are necessary to describe the full quasar population. Dust extinction in obscured quasars grants us the ability to observe their host galaxies, and modeling the spectral energy distributions (SEDs) for these systems allows us to make connections between AGN emission and physical properties of their hosts. We obtain estimates of photometric redshift from obscured quasars identified by their mid-infrared photometry detected by the Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010) and cross-matched with optical photometry from the Sloan Digital Sky Survey (SDSS; York et al. 2000).

ConclusionWe model the SEDs of obscured quasars within the SDSS+WISE footprint and obtain estimates of photometric redshift, as well as physical properties such as nuclear extinction. We compare our method with SDSS DR12 photometric redshifts and seek to improve our prescription bias. Using a combination of spectroscopic and photometric redshifts we determine the luminosity distribution of obscured AGN and determine the obscured fraction as a function of luminosity.

AcknowledgementsThis material is based upon work supported in part by the National Science Foundation under Grant Nos. 1211096 and 1515986, and the NASA ADAP under Grant No. NNX12AE38G. This work made use of data from the Southern African Large Telescope (SALT).

ReferencesAhn et al. 2012, ApJS, 203, 21 Gordon & Clayton 1998, ApJ, 500, 816Assef et al. 2010, ApJ, 713, 970 Hickox et al. 2007, ApJ, 671, 1365Beck et al. 2016, MNRAS, 460, 1371 Stern et al. 2012, ApJ, 753, 30Cardelli et al. 1989, ApJ, 345, 245 Wright et al. 2010, ApJ, 140, 1868DiPompeo, et al., 2015, MNRAS, 452, 3124 York et al. 2000, AJ, 120, 1579

SDSS DR12

0.0 0.5 1.0 1.5 2.0 2.5 3.0zspec

0.0

0.5

1.0

1.5

2.0

2.5

3.0

This work

0.0 0.5 1.0 1.5 2.0 2.5 3.0zspec

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z pho

t

Obscured fractionFor SDSS+WISE AGN with spectroscopic (SDSS DR9; Ahn et al. 2012) and photometric (SDSS DR12; Beck et al. 2016; XDQSO+WISE; DiPompeo et al. 2015) redshifts, we convert the rest-frame 8 μm flux to bolometric luminosity Lbol using the AGN template. We determine the obscured fraction fobsc and note that for Lbol ≥ 1046, fobsc > 50%, while fobsc drops at low Lbol due to the decreasing efficiency of selecting obscured AGN using mid-IR color criteria (e.g., Hickox et al. 2007).

SED modellingWe model our SEDs using empirical galaxy+AGN templates constructed by Assef et al. (2010). We model extinction with a Small Magellanic Cloud (SMC) like extinction curve for λ < 3300 Å (Gordon & Clayton 1998), and a Galactic extinction curve at longer wavelengths (Cardelli et al. 1989).

Redshift comparisonOur approach models heavily obscured quasars and produces photometric redshifts comparable to their known spectroscopic redshifts. There is systematic bias toward high redshift which is currently under investigation. Here we compare our work to the updated SDSS DR12 photometric redshifts (Beck et al. 2016).

Obscured quasar sampleUtilizing both optical and mid-IR photometry, color selection criteria indicative of obscuration can be used to detect obscured quasars from existing data (Hickox et al. 2007; Stern et al. 2012). Our full sample consists of all obscured AGN detect detected within the SDSS+WISE

footprint which satisfy our color section criteria:• W1 − W2 ≥ 0.8 (Vega): indicative of obscuration (Stern et al. 2012)• r − W2AB > 3.1 (AB): removes broad-line AGN contamination (Hickox et al. 2007)WISE color–color diagram (Vega) displaying the ability to select select differentdifferent classes of objects based on mid-IR emission (Wright

et al. 2010). A WISE color cut of W1 − W2 ≥ 0.8 readily identifies obscured sources.

0.30<z<0.70

43 44 45 46 47log( Lbol )

0

20

40

60

80

100

Obs

cure

d fra

ctio

n, f

Obs

c [%

]

0.30<z<0.70

43 44 45 46 47log( Lbol )

0

200

400

600

800

1000

Freq

uenc

y

ObscuredUnobscured

Obscured fractionsBolometric luminosities

Christopher CarrollPoster 19

LMT Early Science: Molecular Gas in CT AGN I. Cruz-González et al.

Large Millimeter Telescope Early Science results of a systematic study of molecular gas of nearby CT AGN.

Redshift Search Receiver (RSR) spectra of CT AGN to probe their molecular gas emission to study the mechanisms driving the AGN emission at millimeter wavelengths and the possible SF enhancement for CT AGN.

RSR spectra from 74 to 111 GHz, allows velocity line widths from 85 to 125 km/s across the whole 3 mm band, with a beam size (FWHM) of 31, 25 and 21 arcsec at 73, 92 and 111 GHz, respectively.

Spatially probe scales from ∼20 kpc up to ∼190 kpc for nearby CT AGN.

Tracing the HI content in distant reddened QSOs with ASKAP

Marcin Glowacki

USING THE AUSTRALIAN SKA PATHFINDER

ASKAP SPECTRUM OF PKS 1829-718

LOOKING FOR NEUTRAL HYDROGEN GAS IN DUST-OBSCURED QUASARS

Galaxy-scale Bars in SDSS Spirals Do Not Influence Average Black Hole Growth

A n d y D . G o u l d i n g

g ou l d i n g@a s t r o . p r i n c e t o n . e du

Stacking of Chandra X-ray data of SDSS spiral galaxies as a function of bar/non-bar properties show no difference between average growth rates of BHs

Inves'ga'ngtheconnec'onbetweenAGNsandtheirhost-galaxyproper'esthroughSEDdecomposi'on

Li-Ting Hsu (ASIAA, Taiwan), Mara Salvato (MPE, Germany), Kirpal Nandra (MPE, Germany) et al.

∆(U-V) (mag)

Norm

alize

d nu

mbe

r

0.0<z<0.5

0.000.050.100.150.20 Galaxies

0.5<z<1.0

1.0<z<1.5

1.5<z<2.0

2.0<z<2.5

-3 -2 -1 0 10.000.050.100.150.200.250.30

AGNs

-3 -2 -1 0 1

-3 -2 -1 0 1

-3 -2 -1 0 1

-3 -2 -1 0 1

0.0 0.5 1.0 1.5 2.0 2.5Redshift

-2.0

-1.5

-1.0

-0.5

0.0

Mode

valu

e of ∆

(U-V

) in

the b

lue c

loud

GalaxyAGN

Green

RedCorrec'onsforX-rayAGNhostcolors:1)  Dustde-reddening2)  SubtractAGNcontribu9onbySEDdecomposi9on

Bluecloud Redsequence

BlueàAGNhoststendtoappearinthegreenvalleyàUndergoingthequenchingofstarforma'on

Poster23

Mobile Monsters : Gotta catch ‘em allA Search for Recoiling Black Holes in Nearby Early Type Galaxies

Yashashree Jadhav

Central SMBH

Center of light of the galaxy

24

Isophotes

Not to scale

Constraining*black*hole*masses*in*low3accreting*active*galactic*nuclei*using*X3ray*spectra

In*Suk*Jang1,2,3 &*Mario*Gliozzi31*New*York*University, Tandon School*of*Engineering,*The*Department*of*Applied*Physics,*Brooklyn,*NY2 Manhattan*College,*The*Department*of*Physics,*Riverdale,*NY3 George*Mason*University,*The*Department*of*Physics*and*Astronomy,*Fairfax,*VA Summary

The$X(ray)scaling)method)was$introduced$to$measure$MBH using$the$temporal$and$spectral$properties$of$GBHs$and$recently$tested$to$samples$of$AGN$and$ULX.

Here$we$investigate$the$limits$of$applicability$of$this$method$to$lowBaccreting$active$galactic$nuclei$(AGN),$using$a$control$sample$with$goodBquality$XBray$data$and$dynamically$measured$mass.$

The$inverse$correlation$of$Γ − #X #Edd$ was$

found$in$several$lowBaccreting$BHs$and$confirmed$by$this$sample.$The$correlation$was$used$to$constrain$%BH within$a$factor$of$~10from$the$dynamically$determined$values.$

We$provide$a$simple$recipe$to$determine$%BHusing$solely$XBray$spectral$data,$which$can$be$used$as$a$sanity$check$for$%BH determination$based$on$indirect$optical$methods.$

Poster*25

Note:&Please&read&the&introduction&as&indicated.&Introduction

1 2

3log(MBH )$=$log(LX )$−$(Γ −$B)/A −$38.11$

MBH values&were&computed&using&the&correction&of&Γ − log #, #Edd$

Chandra observations of 0.5<z<1 3CRR sources

low NH NLRG

We study a complete, low frequency radio (178 MHz) selected, and hence orientation unbiased sample of medium redshift (0.5<z<1) 3CRR sources observed by Chandra. !Radio-core dominance (RCD) provides an estimate of AGN orientation. Great sample to study orientation effects in AGN although limited to radio-loud sources.

1. Quasars: soft HR, low obscuration NH < 1022.5cm-2 and face-on orientation (high RCD) !2. NLRGs: wide range of HR, range of NH > 1020.5cm-2 and higher inclination angles (low RCD) !3. Strong correlation of LX(0.3-8keV)/Lradio and NH with RCD is consistent with orientation-dependent obscuration as in Unification models:

Ratio of unobscured/obscured sources = 1 14% of sample are Compton-thick candidates - high L[OIII]/L(2-8keV) and/or L(30!m)/L(2-8keV)

low NH !NLRGs

Joanna Kuraszkiewicz et al.

[#27]&Nuclear&Stellar&Kinema4cs&of&Swi9&BAT&AGNs&with&Matched&Inac4ve&Galaxies&&

MingEYi&Lin&(MPE),&Richard&Davies&(MPE),&Leonard&Burtscher&(MPE),&David&Rosario&(Durham)�

•  Key$Goal:$We$want$to$assess$the$nuclear$star$forma5on$in$associa5on$with$BH$accre5on.$•  Sample$&$Observa5ons:$BAT$selected$AGNs$with$matched$inac5ve$galaxies,$observing$with$VLTI

SINFONI$H+K.$•  Results:$We$show$the$kinema5cs$of$nuclear$CO(2I0)$2.29μm$stellar$absorp5on.$

Velocity�

Radius$(arcsec)� Radius$(arcsec)� Radius$(arcsec)�

Inac4ve&Galaxies� AGNs�Inac4ve&Galaxy�

drop�

Velocity$dispersion�

Survey Parameters• 825 hours with Warm Spitzer• SpIES (Timlin et al. 2016) spans 115 deg2 on

SDSS Stripe 82 and surrounds the 28 deg2

SHELA survey (Papovich et al. 2015)• Depth of 5.75 μJy (5σ point source) at 4.5 μm

Science Goals• Quasar Clustering at 𝒛~𝟒• 𝑧~6 Quasars• Obscured AGN• Massive Red Galaxies at 𝑧 > 1

Catalogs• A dual band and two single band catalogs• 5.4 million dual-band detections• Catalog paper published in ApJS• Data and catalogs public

SpIES: The Spitzer IRAC Equatorial SurveyJohn D. Timlin1,*, Nicholas P. Ross2, Gordon T. Richards1, Angelica Rivera1

1Department of Physics, Drexel University, Philadelphia, PA 2ROE, Edinburgh, Scotland, UK

SpIES Data Type 2 QSO Detection High-z Clustering• ~5000 high-z (3 < z < 5) QSO candidates

selected using SDSS and SpIES colors • Photometric redshifts assigned to each

(Richards et al. 2015)

• Preliminary projected correlation function (no zinformation)

• Compare to the models in Myers et al. 2006

𝐵𝑖𝑎𝑠𝑄 =ξ𝑄ξ𝐷𝑀

• Constrain Feedback Models (Hopkins 2007)

SpIES probes much deeper than WISE allowing for discovery of new objects such as high-zand type 2 quasars

• Use photo-z’s to compute z-space correlation function

• Compare to Shen 2007 high-z results (biased sample??)

WISE recovers 55% of SDSS quasars whereas SpIESrecovers 98%; objects as faint as i=22 and as distant as z=6

For QSOs with z > 3.5, WISErecovers 25% (the Assef cuts recover 3.5%) whereas SpIESmatches to 94%

SpIES Ch2 WISE W2

Comparison of SpIES vs. WISE imagesSpIES [4.5]=22.0, WISE W2=18.8 AB magnitude

SpIES PSF: 2”.02, WISE W2 PSF: 6”.4

• Found 77 type 2 quasar candidates in SpIESand 44 in SHELA

• Candidates have WISE 24μm > 5mJy, are in SpIES, and either are not detected in SDSS (69 objects) or are very red with r-W4>13 (8 objects)

• Goal is to identify ~1 high-z (z>1) type 2 QSO per square degree to match the type 1 density

Acknowledgements: - This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech- Special thanks to Joe Hennawi for his work with high-z type 2 classification

* Feel free to contact John Timlin at [email protected] with any questions or comments

An example of the same type 2 candidate in SDSS (left), SpIES (middle), and WISE W4 (right)

Ionization echoes, thermal echoes, Ionization echoes, thermal echoes, and low-z Lyman- and low-z Lyman-αα blobs (z~0.3) blobs (z~0.3) Mischa Schirmer,Mischa Schirmer, S. Malhotra, N. Levenson, H. Fu, R.E. Davies, S. Malhotra, N. Levenson, H. Fu, R.E. Davies,

W. Keel, P. Torrey, V. Bennert, A. Pancoast, J. TurnerW. Keel, P. Torrey, V. Bennert, A. Pancoast, J. Turner

Thermalechoes

Gemini GMOS images in gri filters

Green Bean Galaxies: Amongst the most luminous [OIII] emitters in the Universe – at low redshift, overlooked for 15 years!Host rapidly fading AGN (Schirmer+ 2016)

Low-z Ly-α blobs, rapidly disappearing in the Universe

20

arc

se

c

Mid-IR selected high-z type-2 QSOs:obscured star-forming young quasars?

Probing the QSOs evolutionary sequence

Giulio Violino

Kristen Coppin, Jason Stevens

Selection criteria:Selection criteria:Martinez-Sansigre

- S24um > 300 uJy

- S3.6um < 45 uJy

- 350uJy < S1.4GHz < 2 mJy

Herschel FluxesHerschel Fluxes

Radio emissionRadio emission

Merger-Starburst → obscured QSO obscured QSO → unobscured QSO

#30#30

SED fitsSED fits

X-ray Multi-epoch and Multi-instrument Study of Galaxy MCG-05-23-16: the Accurate Measure of BH spin for the moderate absorption AGN

Yu Wang (Fudan University, Shanghai ) Observations (18 obs,

15yr, ~1 500 ks): XMM,

Chandra, Suzaku and

NuSTAR

Three epochs: Dec. 2005,

June 2013, and Feb. 2015

to March

Lightcurves in 2.0-10.0 keV

Motivation: To obtain a more accurate BH spin, and study the evolution of the

accretion disk properties with time/intensity.

Results: the more accurate BH spin is 0.8.

08/08/16 Claudio Ricci 1

RefleX:&X'ray&Comptoniza3on,&absorp3on&&and&reflec3on&in&AGN!

New!Monte!Carlo!ray.tracing!code!to!study!reprocessed!and!absorbed!X.ray!emission!

Reflex!vs!MYTorus!

RXTorus:!!torus!model!with!varying!covering!factor!(includes!Rayleigh!scaBering)!

Stephane(Paltani(&(Claudio(Ricci((submi7ed)(

Compton!Shoulder!

10/08/16 Claudio Ricci 1

WISE%J1036+0449,%an%Hot%DOG%at%z~1%detected%by%NuSTAR!C.#Ricci,#R.#Assef,#D.#Stern,#R.#Niku4a,#

the#NuSTAR#collabora;on#and#the#Hot#DOG#collabora;on#

•  NH~2&15x1023!cm&2!

•  Lbol!=8x1046!erg!s&1!

•  Edd.!Ra?o!=!2.7!

09/08/16 Claudio Ricci 1

IC#751:#the#first#changing3look#AGN##discovered#by#NuSTAR'!

C.#Ricci,#F.#Bauer,#P.#Arevalo#and#the#NuSTAR#collabora;on#(2016,#ApJ#820,#5)#

Clouds!are!located!between!!32!and!95!light7days!

Column!de

nsity

!(102

2 !cm

72)!