webinar: center for environmentally sustainable...

52
Xiong (Bill) Yu, Ph.D., P.E. Professor, Department of Civil Engineering, Courtesy with EECS, MAE, MSE Director, Laboratory on Multiscale Multiphysics Geoengineering Processes Director, Intelligent Infrastructure and Smart Systems Laboratory Email: [email protected], Phone: 216-368-6247 Case Western Reserve University May 25, 2016 Environmental Responsive Pavement Materials Webinar: Center for Environmentally Sustainable Transportation in Cold Climates

Upload: truongdang

Post on 11-May-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Xiong (Bill) Yu, Ph.D., P.E.

Professor, Department of Civil Engineering, Courtesy with EECS, MAE, MSEDirector, Laboratory on Multiscale Multiphysics Geoengineering Processes

Director, Intelligent Infrastructure and Smart Systems Laboratory

Email: [email protected], Phone: 216-368-6247Case Western Reserve University

May 25, 2016

Environmental Responsive Pavement Materials

Webinar: Center for Environmentally Sustainable Transportation in Cold Climates

Self IntroductionEducation and Training

Ph.D. in Civil/Geotechnical Engineering, Purdue University, 2003

M.S. Electrical Engineering and Computer Science, 2002

M.S. in Civil/Geotechnical Engineering, Tsinghua University, 2000

B.S. in Civil/Hydraulic Engineering, B.S. in Computer Science, Tsinghua University 1997

Academic Appointments

Associate Professor, Department of Civil Engineering, CWRU, since 2011

Courtesy appointments with a few other departments, CWRU

Assistant Professor, Department of Civil Engineering, CWRU, 2005

Postdoctoral Associate, Purdue University, August 2003-January 2005

Graduate and undergraduate research assistantships, 1993-2003

Research Program Geoengineering Multiscale multiphysics processes in geomaterials Energy geotechnology Sustainable geosystem design, retrofit, and renewal

Materials: fundamentals and innovation Porous infrastructure materials (soil, rocks, asphalt, concrete, energy

materials) Functional materials (coating, film, fiber) Smart materials

Infrastructure Sensor & structural health monitoring Intelligent infrastructure system

Case Western Reserve University Cleveland, Ohio

My research group: past membersYan Liu

Assistant Professor, Mount Union University

Xinbao YuAssistant Professor, University of

Texas, Arlington

Bin (Ben) ZhangMichael Baker Jr. Inc.

Zhen (Leo) LiuAssistant Professor,

Michigan Technological University (Dept. of Civil &

Environmental Engineering)

Junliang (Julian) TaoAssistant Professor, University of

Akron

Ye (Sarah) SunAssistant Professor,

Michigan Technological University (Dept. of

Mechanical Engineering)

Welcome highly academically motivated students

Impacts of Environment on Pavement Design/Performance Environmental loads (temperature, humidity, temperature

gradient, freeze-thaw, wet-dry cycles, solar radiation, …): a major factor for pavement design and deterioration.

Climate change leads to extreme environmental loads

FHWA Environmental Review Toolkit

Perception of Pavement from Passive Environment Perspective ? Pavement generally respond passively to environment i.e., Asphalt under A Hot Day: smell (volatile gas emission)

hot (urban heat island)

sticky (lower viscosity)

Undesirable environmental footprint

Perception of Pavement from An Active Environment Perspective ? How about pavement that responds actively to the

Environment? i.e., Asphalt under A Hot Day: smell (volatile gas emission): reduction of smell?

hot (urban heat island): reduction of heat?

sticky (lower viscosity): increase of viscosity?

Undesirable environmental footprint mitigation or even towards beneficial use

Turning Environmental Nuisance into Asset New pavement and pavement material design philosophy

Piezoenergy from vehicle loads (Nathan's Product Design)

100 cm

20 cm

CH 1

CH 2

CH 3

CH 4

CH 5

CH 6

TE Module

Aluminum

Silicone

Asphalt Concrete

Foam

CH 7

Thermal energy harvesting (Wu and Yu 2013)

SolarRoad.com

Nanomodifed self-cleaning concrete (Zhang and Yu 2009)

New Material Design Methodology Performance-driven material design Defining the performance matrix, not limited to mechanical durability

alone

Multifunctional material design Paradigm change due to new multifunctional requirements Environmental friendliness

Life cycle cost benefits

etc.

New tools and design methods required to accelerate material discovery i.e., material genome How to account for the inherent variability of non man-made materials

A Case Studyof

Thermochromic asphalt

Dr. Jianying (Jane) Hu, EIT

(https://www.google.com/search?q=asphalt+pavement&espv=2&biw=1920&bih=935&source=lnms&tbm=isch&sa=X&ved=0ahUKEwig9b_FrjKAhWMbj4KHaTpCb0Q_AUIBigB#imgrc=gKY5

vq28MtIndM%3A)

Motivation• Fact: Asphalt has strong absorption of solar radiation

(https://www.google.com/search?q=structure+of+bitumen&espv=2&biw=1269&bih=839&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiVwJ6FsubKAhUMcT4KHX9HBSwQ_AUIBigB#tbm=isch&q=hot+asphalt+pavement&imgdii=npmEgGBJt3HMIM%3A%3BnpmEgGBJt3HMIM%3A%3BYO__TCnMqzIcX

M%3A&imgrc=npmEgGBJt3HMIM%3A)

Rutting

• Problems: Sustainability of asphalt pavement; Environmental issues; Energy consumption

Motivation (cont.)

Heat Island Effect

Thermal Cracking

(https://www.google.com/search?q=hot+surface+of++asphalt+pavement+in+summer&espv=2&biw=1920&bih=935&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKE)

(http://sustainable-infra.wikispaces.com/19.+Transportation )

(http://www.weatherquestions.com/What_is_the_urban_heat_island.htm)

(http://www.dot.state.mn.us/mnroad/projects/Low Temperature Cracking/ )

• Cool Pavement: to reduce temperature of asphalt pavement

Cool Pavement

Colored asphalt

Porous pavement

Solar Panel

(http://wiki.coe.neu.edu)

(http://www.asphaltroads.org/water-quality/)

(http://asphaltmagazine.com/the-future-is-bright-for-solar-energy-and-asphalt-pavements/)

Motivation (cont.)

Low temperature

cracking ?

Summer Winter

• Innovative Strategy: can we dynamically modulate surface temperature of the pavement?

Schematic principle of thermochromic asphalt pavement

Innovation (cont.)

• Change of Thermochromic Materials with TemperatureThermochromic Materials

• Molecules of Thermochromic Materials

Thermochromic Materials (cont.)

Solvent

Shell

Dye

Developer

Black, blue and red thermochromic asphalt binder

Black, blue and red thermochromic asphalt concrete

• Preparation of Thermochromic Asphalt Binder and Concrete

Experimental Characterization

Thermal Properties

Optical Properties

Mechanical Properties

Thermal Performance

Stability during Production

Thermochromicasphalt

19

Experimental Characterization

Thermal Properties of Asphalt Binder: Heat Capacity and Thermal Conductivity by Modulated DSC

-20 -10 0 10 20 30 40 501100

1200

1300

1400

1500

1600

1700

1800

1900 pure asphalt binder black asphalt binder blue asphalt binder red asphalt binder

Specific heat capacity and thermal conductivity of various asphalt binders

-20 -10 0 10 20 30 40 500.10

0.12

0.14

0.16

0.18

0.20 pure asphalt binder black asphalt binder blue asphalt binder red asphalt binder

Temperature (°C)

Hea

t C

apac

ity

(J/(

kg·K

))

Th

erm

al C

ond

uct

ivit

y (W

/(m

·K))

Temperature (°C)

Thermal Properties

Optical Properties

Mechanical Properties

Thermal Performance

Stability during Production

Thermochromicasphalt

21

• Optical Properties of Thermochromic Powders: Reflectance Spectra by UV-Vis-IR Spectrophotometer

300 600 900 1200 1500 18000

10

20

30

40

50

60

70

80

90

100at 25 C black

blue red

300 600 900 1200 1500 18000

10

20

30

40

50

60

70

80

90

100at 35 C black

blue red

Spectral reflectance of thermochromic powders under different temperatures

Wavelength (nm)

Ref

lect

ance

(%

)

Wavelength (nm)

Spectral reflectance of various asphalt binders under different temperatures

300 600 900 1200 1500 18000

1

2

3

4

5

6

7

8

9

10at 25 C pure asphalt binder

black asphalt binder blue asphalt binder red asphalt binder

300 600 900 1200 1500 18000

1

2

3

4

5

6

7

8

9

10at 35 C pure asphalt binder

black asphalt binder blue asphalt binder red asphalt binder

• Optical Properties of Asphalt Binders

Ref

lect

ance

(%

)

Wavelength (nm) Wavelength (nm)

• Optical Properties of Asphalt Concrete

300 600 900 1200 1500 18003502

4

6

8

10

12

14

16 Original Asphalt Binder Control HMA 6% Black HMA 6% Blue HMA 6% Red HMA

Ref

lect

ance

(%

)

Wavelength (nm)

Spectral reflectance of various asphalt samples under room temperature

Pure asphalt binder

Pure asphalt concreteRed asphalt concreteBlue asphalt concreteBlack asphalt concrete

Thermal Properties

Optical Properties

Mechanical Properties (Superpave Tests)

Thermal Performance

Stability during Production

Thermochromicasphalt

• Study of Thermochromic Asphalt Pavement

25

Thermochromic Asphalt Pavement (cont.)

PG 64-22Asphalt binder

Original asphalt binder

3%, 6% and 10% black asphalt binder

3% and 6% blue asphalt binder

3% and 6% red asphalt binder

Conventional tests

RV at 135 °C

DSR BBR

≤ 3 Pa·sUnaged,

G*/sin(δ) ≥ 1.00 kPa

RTFO aged,G*/sin(δ) ≥ 2.20 kPa

RTFO+PAV aged,G*sin(δ) ≤ 5000 kPa

RTFO+PAV aged,S≤ 300 MPa, m ≥ 0.300

Same as original binder

Experimental design to characterize mechanical properties of binders using Superpave binder performance tests

• Superpave Performance Tests on Asphalt Binder

0 63 10410

420

430

440

450

460

470

480 black asphalt binder blue asphalt binder red asphalt binder

RV test results for various asphalt binders

• RV Results

Content of powder (%)

Vis

cosi

ty (

mP

a·s)

Rotational viscometer

• Dynamic Shear Rheometer (DSR) Results: Rutting Resistance

High Temperature PG:• original asphalt binder: 64 °C• 3% blue asphalt binder: 64 °C• 3% red asphalt binder: 64 °C

• 3% black asphalt binder: 70 °C• 6% black asphalt binder: 76 °C• 10% black asphalt binder: 76 °C• 6% blue asphalt binder: 70 °C• 6% red asphalt binder: 70 °C

1.573.19

6.69

31.1

1.732.87

1.78 2.191.65

3.98

24.9

0.862 1.41 0.889 1.070.882.12

0.7511.10

5

10

15

20

25

30

64 °C 70 °C 76 °C 82 °C

original binder

3% black binder

6% black binder

10% black binder

3% blue binder

6% blue binder

3% red binder

6% red binder

3% black binder

6% black binder

10% black binder

3% blue binder

6% blue binder

3% red binder

6% red binder

unaged asphalt binders

G*/

sinδ

(kP

a)

3.13

6.33

11.2

36.3

4.446.7

4.25.87

1.442.89

6.02

25.7

2.02 3.071.94 2.68

1.393.18

17.3

1.47 1.291.66

0

5

10

15

20

25

30

35

40

64 °C 70 °C 76 °C 82 °C

original binder

3% black binder

6% black binder

10% black binder

3% blue binder

6% blue binder

3% red binder

6% red binder

RTFO aged asphalt binders

• DSR Results: Fatigue Cracking ResistanceG

*sinδ

(kP

a)

DSR test results for RTFO and PAV aged asphalt binders

45404880

5140

56305320 5340 5500

6140

3560 3720 3710 3810

4260

0

1000

2000

3000

4000

5000

6000

original binder

25 °C 28 °C

3% black binder

6% black binder

10% black binder

3% blue binder

6% blue binder

3% red binder

6% red binder

(RTFO+PAV) aged asphalt binders

0 3 6 10170

180

190

200

210

220

230

240 black asphalt binder blue asphalt binder red asphalt binder

0 3 6 100.285

0.290

0.295

0.300

0.305

0.310

0.315

0.320

0.325 black asphalt binder blue asphalt binder red asphalt binder

• Bending Beam Rheometer (BBR) Results

Powder Content (%) Powder Content (%)

Sti

ffn

ess

(MP

a)

m-v

alu

e

Low Temperature PG:• Original asphalt binder: -22 °C• 3% black asphalt binder: -22 °C• 6% red asphalt binder: -22 °C

• 6% black asphalt binder: -16 °C• 10% black asphalt binder: -16 °C• 3% blue asphalt binder: -16 °C• 6% blue asphalt binder: -16 °C• 3% red asphalt binder: -16 °C

• Rutting Resistance of Asphalt Concrete

5 5001000 80000

1

2

3

4

5

6

6% Black HMA 6% Blue HMA 6% Red HMA

Number of Load Cycles

Ru

ttin

g D

epth

(m

m)

AASHTO TP63 (100 lb, 165-175 °F)

Rutting depth of the HMA over 8000 loading cycles

• Moisture Resistance of Asphalt Concrete

conditioned

unconditioned

100 StTSRSt

AASHTO T283 (100 lb, 59 °C)

81.4 80.275.7

6% Black HMA 6% Blue HMA 6% Red HMA0

10

20

30

40

50

60

70

80

90

100

TSR

(%)

Moisture Susceptibility of various HMA mixtures

Thermal Properties

Optical Properties

Mechanical Properties

Thermal Performance

Stability during Production

Thermochromicasphalt

33

• Thermal Performance: Experimental Setup

Experimental Setup for surface temperature measurement of the samples

Thermochromic asphalt concrete10 cm × 6 cm

Thermochromic asphalt binder7.5 cm × 4.2 cm × 0.2 cm

Blue asphalt binderRed asphalt binder

Pure asphalt binder Black asphalt binder

Conventional HMA Black HMA

Blue HMA Red HMA

• Thermal Performance of Thermochromic Asphalt Binder: Experimental Observation in Summer, 2012

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00-8

-6

-4

-2

0

2

4

6

8 black asphalt binder blue asphalt binder red asphalt binder

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:0015202530354045505560657075 black asphalt

blue asphalt red asphalt pure asphalt

Time (hr)

Su

rfac

e T

emp

erat

ure

(°C

)

Time (hr)

Tem

per

atu

re D

iffe

ren

ce (

°C)

Surface temperature and temperature difference between thermochromic asphalt binders and pure asphalt binder

8:30 9:54 11:2412:5414:2415:5417:2418:5420:2421:5411:30-1

0

1

2

3

4

5

6

7

8

9

black asphalt binder blue asphlat binder red asphlat binder pure asphalt binder

8:30 10:0011:3013:0014:3016:0017:3019:0020:3022:0023:30-1.0

-0.5

0.0

0.5

1.0

1.5 black asphalt binder blue asphalt binder red asphalt binder

• Thermal Performance of Thermochromic Asphalt Binder: Experimental Observation in Winter, 2013

Surface temperature and temperature difference between thermochromic asphalt binders and pure asphalt binder

Time (hr)

Su

rfac

e T

emp

erat

ure

(°C

)

Time (hr)

Tem

per

atu

re D

iffe

ren

ce (

°C)

0 5 10 15 20 25 30 35 40 45 50 55 60

-6

-5

-4

-3

-2

-1

0Black asphalt concrete

0 5 10 15 20 25 30 35 40 45 50 55 60-7

-6

-5

-4

-3

-2

-1

0

Blue asphalt concrete

0 5 10 15 20 25 30 35 40 45 50 55 60-4

-3

-2

-1

0Red asphalt concrete

Daily cooling effects using black, blue and red asphalt concrete

• Long-term Thermal Performance of Thermochromic HMA between May and June, 2014

Dai

ly M

ax. ∆

T (

°C)

Days of Exposure

0 5 10 15 20 25 30 35 40 45 50 55 60-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4 Black asphalt concrete

0 5 10 15 20 25 30 35 40 45 50 55 600.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Blue asphalt concrete

0 5 10 15 20 25 30 35 40 45 50 55 600.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Red asphalt concrete

Nocturnal warm effects by using black, blue and red asphalt concrete

Days of Exposure

Noc

turn

al M

ax. ∆

T (

°C)

• Long-term Thermal Performance of Thermochromic HMA between May and June, 2014

Service life of the Pavement versus maximum pavement temperature (Mallick et al. 2013. Vol. 8, pp. 219-236: Springer Netherlands.)

• Thermal Performance of HMA: Temperature and Service Life

50 52 54 56 58 60 62 64 66 68 70 72

8

10

12

14

16

18

20

Ser

vice

Lif

e (y

ears

)

Maximum Pavement Temperature (°C)

5 Years

Thermal Properties

Optical Properties

Mechanical Properties

Thermal Performance

Stability during Production

Thermochromicasphalt

• Stability during Production

Warm-mix asphalt (WMA)105–140 ºC

Hot-mix asphalt (HMA)140–170 ºC

Thermal treatment of asphalt binder at 105, 140, 170 and 200ºC for 0.5 h, 1 h and 2 h

Change in solar reflectance

FTIR analysisTGA

TGA curves of thermochromic asphalt binders

• Weight Loss by TGA Analysis

0 100 200 300 40075

80

85

90

95

100

pure asphalt binder black asphalt binder blue asphalt binder red asphalt binder

Temperature (°C)

Wei

ght

(%)

Change in solar reflectance of treated binders compared to untreated binders

-4

-2

0

2

4

6 105 °C 140 °C 170 °C 200 °C

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

(0.5 h) (1 h)

(2 h)

Incr

ease

per

cen

tage

(%

)

Blackbinder

Blackbinder

Blackbinder

Bluebinder

Bluebinder

Bluebinder

Red binder

Red binder

Redbinder

• Change in Solar Reflectance

Incr

ease

per

cen

tage

(%

)

Black asphalt binder

• Fourier Transform Infrared Spectroscopy (FTIR) Analysis

Wavenumber (cm-1)

Ab

sorp

tion

400 800 1200 1600 2000 2400 2800 3200 3600 40000.00

0.05

0.10

0.15

0.20

0.250.000

0.005

0.010

0.015

0.020400 800 1200 1600 2000 2400 2800 3200 3600 4000

untreated

treated at 200 C

400 800 1200 1600 2000 2400 2800 3200 3600 40000.00

0.05

0.10

0.15

0.20

0.250.00

0.01

0.02

0.03

0.04

0.05400 800 1200 1600 2000 2400 2800 3200 3600 4000

untreated

treatedat 200 C

400 800 1200 1600 2000 2400 2800 3200 3600 40000.00

0.02

0.04

0.0

0.1

0.2

0.3400 800 1200 1600 2000 2400 2800 3200 3600 4000

untreated

treated at 200 C

Blue asphalt binder Red asphalt binder

Summary of Experimental Results Thermal Properties: Heat capacity Thermal conductivity

Optical Properties: Solar reflectance Refractive index

Mechanical Properties: High temperature PG Low temperature PG

Thermal Performance: Surface temperature of 6 °C (daytime or summer) and 2 °C (evening

or winter) Temperature gradient

Production Conditions: Black asphalt using WMA Blue and red asphalt using HMA and WMA

Summary of Environmental/Solar Responsive Asphalt Pavement

Thermochromic solar responsive pavement positively modulate the surface temperature of asphalt road Lower temperature during hot summer day, higher temperature

during cold time Design and production conditions designed from a multifunctional

material characterization matrix Optical, thermal, mechanical, pyrolysis

A new perspective to look at the design and application of infrastructure materials Performance driven design of materials

The Next Step: Thermochromic Smart Coating

• Smart building envelope

Schematic principle

• Fabrication: Hot Press

Photograph of films

Process of Hot Press

PVC film Blue/PVC film Blue-TiO2/PVC film

• Optical Properties: Reflectance Spectra

300 600 900 1200 1500 18000

5

10

15

20

25

30

35

40 PVC film 5% blue-PVC film 0.5% blue-3% TiO2-PVC film

Ref

lect

ance

(%

)

Reflectance spectra of thermochromic CoatingsWavelength (nm)

• FEM Simulation of Thermochromic Coatings

0 3 6 9 12 15 18 21 2415

20

25

30

35

40

45

50

55

60

65

PVC film 5% blue-PVC film 0.5% blue-3% TiO2-PVC film

PVC based films:• 5% blue: 3.7 °C• 0.5% blue-3% TiO2: 6.8 °C

Comparison between surface temperatures of films

Su

rfac

e T

emp

erat

ure

(°C

)

Time (h)

Thermochromic Coating (cont.)

Acknowledgement Funding Agencies

National Science Foundation

The Ohio Department of Transportation/FHWA

Thank you!