wave forces on square caissons_mogridge_jamieson

Upload: maria-miranda

Post on 04-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    1/19

    CHAPTER 1 3 3WAVEFORCESONSQUARECAISSONS

    byG.R.Mogridge*andW.W.Jamieson*

    ABSTRACT

    Theforcesandoverturningmomentsexertedbywavesonlargeverticalsquare-sectioncaissionshavebeenmeasuredinthelaboratory. Eachmodelcaissonextendedfromthebottomofawaveflumethroughthewatersurfaceandwasorientedeitherwithonesideperpendiculartothedirectionofwavepropagationorturnedthroughanangleofforty-fivedegreestothisposition. Foragivenorientation,eachmodelwastestedforarangeofwaveheights(uptothepointofbreaking)forvariouswaveperiodsandwaterdepths. Adigitalcomputerwasusedfortheacquisition,processing,plottingandstorageoftheexperimentaldata.

    Inadditiontotheexperimentalwork,anapproxi-matetheoreticalmethodispresentedwhichallowsthewaveloadingsonasquarecaissontobeestimatedbymeansofasimpledeskcalculation. Theexperimentaldatashowsthatthissimplemethodofcalculationisreasonablyaccurateoverawiderangeofwaveconditionsandcaissonsizes.

    INTRODUCTION

    Inrecentyears,considerableresearchhasbeencarriedouttoestimatethewaveloadsonvariousshapesofmonolithicoffshorestructures;however,verylittleinforma-tionisavailableintheliteratureconcerningwaveloadingsonlargeverticalsquare-sectioncaissonsrestingontheoceanbottomandextendingthroughthewatersurface. HogbenandStanding 3 )describeanumericalmethodwhichcanbeusedforthesolutionofwaveloadsonlargebodiesincludingsquarecaissons. ThesamemethodwaspreviouslyusedbyGarrisonandChow(2),MilgramandHalkyard(7),andnumerousothers. Althoughnumericalmethodscanbeusedforshapes*AssistantResearchOfficers,HydraulicsLaboratory,

    NationalResearchCouncilofCanada,Ottawa,Ontario,Canada,K1A0R6.

    2 2 7 1

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    2/19

    2272OASTALENGINEERING-1976forwhichclosedformsolutionsdonotexist,programmingistimeconsumingandcomputationcostscanbehigh. HogbenandStand-ingpresentedafewresultsofwaveloadsmeasuredonamodelofasquarecaisson. Theexperimentaldatawascomparedwiththenumericalsolution 4 )andalsoanapproximatesolution

    3 )basedonthediffractiontheoryofMacCamyandFuchs(6).Formostoftherangeofrelativecaissonsizestested,theresultsfittedbothsolutionsreasonablywell. Ijima,ChouandYumura 5 )havepresentedanumericalmethodforcalcula^tionofwavescatteringbyisolatedbreakwatersofarbitraryshape. Waveheightdistributionsaboutrectangularbreak-waterswerecalculatedandwerefoundtocomparefavourablywithdistributionsmeasuredinthelaboratory. Althoughwaveforceswerenotmeasuredonthemodelbreakwaters,theywerecalculatedusingtheknownvelocitypotentialsattheboun-dariesofthebreakwaters.Inthispresentationitisassumedthatingeneralterms,thewaveforcesonasquarecaissonorcylinderoccurinasimilarmannertothewaveforcesonacircularcylinder.Thatis,ifthesizeofthesquarecylinderissmallrela-tivetothewavelength,thecylinderdoesnotdeformtheincidentwaveandthewaveforceonthecylinderconsistsofthesumoftheinertialandviscousforces. However,ifthesizeofthecylinderorcaissonislargerelativetotheincidentwavelength,itcausesreflectionanddiffractionoftheincidentwavesandtheviscousdragforcesareneglig-ibleincomparisontotheinertialforces.Thispaperpresentsanapproximatetheorywhichcanbeusedtoestimatethewaveforcesandmomentsonlargevert-icalsquarecaissons. Thetheory,basedonthelineardif-fractiontheoryofMacCamyandFuchs(6),hasbeensimplifiedsothatonlythreegraphsneedbeusedtoobtainthecompletesolution. Forceandmomentmeasurementsonmodelsofsquarecaissonsshowthattheapproximatetheorygivesasatisfac-torysolutionoveralargerangeofcaissonsizesandwaveconditions.

    THEORETICALMETHODItisassumedthatthewaveforceonalargesquare-sectioncylinderorcaissoncanbeexpressedasaninertialforceifthecoefficientofmassusedincludestheeffectsofwavereflectionanddiffraction. Thusthehori-zontalforceperunitlengthofthecaissonisexpressedas

    fx =Cmspb2du'dt 1)whereC isthecoefficientofmassforthesquare-sectioncaisson,pisthemassdensityofthefluid,bisthesidelengthofthecaissonanddu/dtisthehorizontalcomponent

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    3/19

    FORCES ON CAISSONS 2273ofthewaterparticleacceleration. SubstitutingintoEq.1theexpressionfordu/dtfromlinearwavetheorygives

    7 r2pb2H coshk( y+d )ms T2 sinhkd cos(kx-at) 2 )whereHistheincidentwaveheight,Tisthewaveperiod,disthewaterdepth,aisthewavefrequency,a=2 i r / T ,kisthewavenumber, e =2 i r / L ,Listhewavelengthandtisthetime. Thecoordinatesarechosensothatxispositiveinthedirectionofwavepropagationandyispositiveintheupwarddirection. Theoriginofthesecoordinatesisatthestillwaterlevelwherethewatersurfaceelevationplottedagainstxhasamaximumnegativeslope(Fig.4). Byequatingthein-ertialforceperunitlengthonasquarecaissontothatonacircularcaissonofdiameterD

    C pb2du/dt=0.25Cp i r D2du/dtmsitisfoundthatthediameterofanequivalentcircularcylinderis

    3 )

    D =2 b C AC 2e ms' m 4 )IfitisassumedthatC C then,m

    D =2 b / i re 5 )

    TheforceperunitlengthontheequivalentcircularcylinderisobtainedusingthediffractiontheoryofMacCamyandFuchs(6):2pgHcoshk( y+d)k coshkd A(ka cos(at-a ) 6 )

    where

    and

    A(kae = j j |2( kae +Y|2( kae

    a=tanJ^(kae)

    gistheaccelerationduetogravity,aeistheradiusoftheequivalentcircularcylinder,andJ^andY^areBesselfunc-tionsofthefirstandsecondkindrespectively,bothofthefirstorder. Eq.6isequatedtoEq.2forx=0togivetheexpressionforthecoefficientofmassC forasquarecaisson:

    - i T 5 -A

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    4/19

    2274OASTAL ENGINEERING-1976AmodifiedcoefficientofmassC *sdefinedasms

    T C *= yrrrA(ka 8 )ms i

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    5/19

    FORCESONCAISSONS 2 7 5

    EXPERIMENTALMETHOD

    Thesquarecaisson(Fig,1 )usedintheexperimentswas12in.by12in.incrosssectionandwasconstructedof1/4in.thickplexiglass. Itwassupported1/8in.abovetheflumebottombyarigid3in.diametersteeltubeclampedtoasteelframeabovethewaveflume. Aforcemeterwascon-tainedwithinthecaissonandconsistedoftwo3 /4in.dia-meterstainlesssteelstrainrods12in.long.hewaveforceonthecaissonwastransferredtothetopstrainrodthroughahorizontalsteelbarandtothebottomstrainrodthroughasteelbaseplate(Pig.1). Foilstraingaugesgluedonthestrainrodswerealignedsothattotalhorizon-talforcescouldbemeasuredinthedirectionofwavepropa-gationandnormaltothewavedirectiontogivelongitudinalandtransverseforces,respectively. ThephotographinFig.1showstwobrassbushingsonthestrainrodswhichmakethefixedconnectiontothesupporting3in.diametersteeltube.Thesteelplateconnectsthefreeendofthebottomstrainrodtothecaisson,andthesteelbarwhichpassesthroughaperturesinthesupportingtubeconnectsthefreeendoftheupperstrainrodtothecaisson. Usingthetwobridgeout-putsfromthestrainrods,itwaspossibletomeasuretotalforcesandtocalculatethecorrespondingtotaloverturningmoments. A moredetaileddescriptionofthewaveforcemeteranditscalibrationisgivenbyPratteetal.9). Fromthecalibrationcurvesoftheforcemeter,itserrorbandwasestimatedtobelessthan2 %overtherangeofforcesmea-sured. Thenaturalfrequencyofvibrationofthecaissoninthemaximumdepthofwaterwasapproximately11Hz.

    Waveprofilesintheflumeweremeasuredusinganon-contactingcapacitivewavetransducersuspendedabovethewatersurfacemidwaybetweenthecylinderandtheflumewall.Thewaveflumewasapproximately6ft.wide,4 .5ft.deepand2 2 0ft.long.Alimitednumberoftestswereconductedusingasquarecaisson2ft.by2ft.incrosssectiontoobtainforceandmomentdataforlargervaluesoftherelativesizeb/L. Themodelcaissonwassuspendedfromaforcemeterinawaveflume12ft.wide,4 .5ft.deepand16 2ft.long. Theforcemeter(Fig.2 )consistedofthreealuminumstrainmem-bers3in.indiameter. ThestrainsinthesememberscausedbywaveloadsweremeasuredusingsemiconductorstraingaugesformingsixWheatstonebridges. Threebridgesmeasuredstrainduetobendingandgaveoutputsproportionaltolongi-tudinal,transverseandverticalforces. Threebridgesmea-suredstrainduetotorqueandgaveoutputsproportionaltothemomentsaboutthethreecoordinateaxes. Adetaileddes-criptionofthisforcemeterisgivenbyFunke(1).Preliminarytestsinthe12ft,waveflumewerecarriedoutwitha12in.square-sectioncaisson(Fig.2 )toconfirmexperimentsalreadyconductedinthe6ft.flume.

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    6/19

    2276OASTAL ENGINEERING-1976Waveheightsweremeasuredusingacapacitiverodwavegaugeatthelocationofthemodelbutwithoutthemodelintheflume. Thus,adifferentmethodofmeasuringincidentwaveheightswasanadditionalcheckonthe6ft,flumeresults.

    Monochromaticwavesweregeneratedinfivewaterdepthsrangingfrom9.7to29.0in.andninewaveperiodsweretestedfrom0.77to2.58sec. Foreachwaterdepthandperiodtested,anumberofwaveheightsweregeneratedrang-ingfromsmallamplitudewavestothosethatwereonthepointofbreaking. Eachmodelcaissonwastestedwithtwofacesparalleltotheincidentwavefronts g=0)andalsoat45tothisposition g=45) . Adigitalcomputerwasusedfortheacquisition,processing,plottingandstorageofdata. Samplingofthedatawascommencedafterthewavespassingthemodelreachedsteadystateconditions. Foreachtest,thewaveprofileandthecorrespondingwaveforcesweresampledeveryonehundredthofasecondforatotalofsixseconds. Totalforcesandoverturningmomentswerecomputedandautomaticallyplottedalongwiththemeasuredwavepro-file. Experimentalresultswerealsoprintedanddatawasstoredonmagnetictape. Althoughithasnotbeenpossibletoincludealltheexperimentaldatainthispaper,there-sultspresentedarerepresentativeofthecompletetestingprogram. AcomprehensivepresentationoftheexperimentalresultsmaybefoundinMogridgeandJamieson(8).

    EXPERIMENTALRESULTS

    Thenumberofwavesineachtestrecordvarieddependingonthewaveperiodbecauseofthefixedsamplingtimeofsixseconds. Anytestwithavariationinwaveheightormaximumforcemeasurementwithintherecordofmorethan5%wasdiscarded. Fromthetestrecords,totalforcesandoverturningmomentsweretakenasaverageabsolutemaximumvaluesofpositiveandnegativemeasurements,forwhichthevariationwasnormallylessthan5%. Theforcesandcorrespondingmomentsmeasuredinthetransversedirec-tionwerenegligibleandarenotincludedinthepresentationofexperimentalresults.

    Usingthemeasuredabsolutemaximumforceswithknownvaluesofwaveheight,length,periodandcaissonsize,C n f ewascalculatedforvaryingvaluesofb/LandthenplottedonthetheoreticalcurveinFig.3 . DimensionlessmomentswerealsocalculatedusingtheknownvaluesofCjfsandwereplottedonthetheoreticalcurveinFig.5 . Theexperimentaldatashowsgoodagreementwiththetheoryforb/Lbetween0.092and0.399andalsoford/Lbetween0.063and0.78 6 .Theresultsshownforb/Landd/Lgreaterthan0.09wereobtainedbyaveragingallthetestresultswithwavesteep-nesseslessthan0.09. Forb/Landd/Llessthan0.09,onlydataforwavesteepnessesoflessthan0.01wereused. Evenwiththisrestrictiononthedataused,thereisstillsome

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    7/19

    FORCESON CAISSONS 277deviationoftheC sdatainFig,3,butthemomentdatainFig.5showsgoodagreement. Itisconcludedthattheapprox-imatetheorycanbeusedforsituationswhereb/Landd/Larebothgreaterthanapproximately0.09.lthoughthereisnodatapresentedinthispaperdefiningthed/Llimit,experi-mentswereconductedford/Lapproximatelyequalto0,09andb/Lgreaterthan0.09forwhichtheexperimentaldataagreedwiththelineartheory. Additionaldataford/Lequalto0.08andb/Lgreaterthan0.09,didnotfitthetheoreticalcurve,thusdefiningd/Lofapproximately0.09asthelimitforthetheory.

    Toexaminethevariationoftheforcesandmomentswithwavesteepness,theyhavebeenexpressednon-dimension-allyandplottedagainstH/LinFigs.6to8 . Theexperimen-talresultsforb/Landd/Lgreaterthan0.09(Figs.6and7 )showreasonableagreementwiththetheoreticalcurvesforwavesteepnessupto0.09. Fig.8showsdataforwhichthereisareasonablecomparisonwiththetheoreticalcurvesonlyforverylowwavesteepnessbecauseb/Lislessthan0.09.Forcloseagreementathighwavesteepness,itisnecessaryforbothb/Landd/Ltobegreaterthan0,09. Thelargestdeviationbetweenthetheoryandtheexperimentalresultsisapproximately85%andoccursforthemomentmeasurementforB=45,b/L=0.047andH/L=0.0 3 2. Thelargedifferencesfromthelineartheoryforb/Landd/Llessthan0.09andlargeH/Larebelievedtobeduetonon-linearityofthewavesandtheeffectofviscosityintroducingdragforcesofconsiderablemagnitude. Forb/Landd/Llargerthan0.09,theseeffectsareapparentlynegligiblealthoughatvaluesofd/Lapproaching0.09,thewaveswereobviouslynon-linearandtherewasflowseparationatthecornersofthecaissonunderallwaveconditions.

    TherearetwofactorswhichareevidentintheexperimentalresultsfromwhichthedatainFig.8hasbeenobtained. Firstly,theabsolutevaluesofpositiveandnega-tivewaveloadsarenolongerapproximatelyequal. Theydifferfromtheiraveragevaluesbyasmuchas3 0%forthedatainFig.8forwhichb/L=0.04 7and =45. Secondly,thephaseanglesbetweenwaveloadrecordsandwaveprofilesdonotcorrespondtothetheoreticalvaluesforagivenbyEq.6 . Toillustratethis,resultswhichcomparewellwiththetheoryhavebeenplottedinFig.9andresultsforb/Lequalto0.047whichdonotcomparewellwiththetheoryhavebeenplottedinFig.10. InFig,9 ,positiveandnega-tiveforcesareapproximatelyequalandforallwavesteep-nessesthemeasuredphasedifferencebetweentheforcere-cordsandthewaveprofilesareapproximatelyequaltothetheoreticalvalueofa=8.8. AlthoughthetheoreticalphasedifferencefortheresultsinFig.10isa=1.3,themeasuredphasedifferenceincreasestoalmost50withincreasingwavesteepness. Thisischaracteristicofanincreasingdragforce. However,theincreasingphaseangle

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    8/19

    2278OASTAL ENGINEERING-1976canalsobeduetothenon-linearityofthewavesbecausethemaximumaccelerationofthefluidnolongeroccursatthestillwaterlevel.

    Althoughmostoftheexperimentalresultsdescribedabovewereobtainedina6ft,wideflume,someexperimentswereconductedina12ft.flumeusingdifferentequipmentandtechniques. Sincetheresultsareintermixed,itisnecessarytoshowhowthemeasurementsinthetwowaveflumescompared. Thecomparisonismadebyrepeatingthesametestsineachwaveflumeusing12in.squarecaissons. ThefirstcomparisonshowninFig.11isforb/L=0.184,d/L=0.4 45andB=0. Thesecondcomparison(Fig.11)isforaseriesoftestswheretherearelargedeviationsfromthetheory,thatis,forb/L=0.047,d/L=0.115and3=0, Inbothcasesthedataobtainedinthetwoflumesagreeclosely,givinganaddeddegreeofconfidencetotheexperimentalresults.

    CONCLUSIONS

    Anapproximatemethod(Figs,3 ,4and5 )basedonthediffractiontheoryofMacCamyandFuchs 6 )hasbeendevelopedtogivethesolutionforthewaveloadsonasquarecaissonpiercingthewatersurface. Themethodhasbeenfoundtobesatisfactoryforrelativecaissonsizesofb/Lfrom0.09to0.40,forrelativewaterdepthsofd/Lfrom0.09to0.79andwavesteepnessesupto0.09. Forb/Landd/Llessthan0.09,thetheoreticalmethodcannotbeusedexceptforwavesofverylowsteepness,becauseviscousdragforcesandnon-linearityofthewavesbecomeimportant. Theabovelimitsofapplicabilityforthetheoryarethesamewhetherthealignmentofthesquarecaissonisbeamontothewaves,8=0,orturnedthroughanangleof45tothisposition.

    ACKNOWLEDGEMENT

    ThisprojectwasfundedinpartbytheDepartmentofPublicWorks,Canada.

    REFERENCES

    Funke,E.R., ASixDegreeofFreedomDynamometerfortheMeasurementofWaveForcesonModelsofOffshoreStruc-tures ,NationalResearchCouncilofCanada,HydraulicsLaboratory,LaboratoryTechnicalReportNo.LTR-HY-54,1976.

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    9/19

    FORCES ONCAISSONS 279

    2 .arrison,C.J,andP.Y,Chow, WaveForcesonSubmergedBodies ,Proc,ASCE,Vol.98,No.WW3,August,1972,pp.375-392,3 .ogben,N.andR.G.Standing, WaveLoadsonLargeBodies ,InternationalSymposiumontheDynamicsof

    MarineVehiclesandStructuresinWaves,editedbyR.E.D,BishopandW.G.Price,MechanicalEngineeringPublicationsLimited,London,1975,pp.2 58- 2 7 7.4 .ogben,N.andR.G.Standing, ExperienceinComputingWaveLoadsonLargeBodies ,SeventhOffshoreTechnologyConference,Houston,PaperNo.OTC2189,May,1975,pp.413-431.5 .jima,T. ,C.R.ChouandY.Yumura, WaveScatteringbyPermeableandImpermeableBreakwaterofArbitraryShape ,Proc.FourteenthCoastalEngineeringConference,Copen-hagen,Vol.3 ,Chap.110,June,1974,pp.1886-1905.6 .acCamy,R.C.andR.A.Fuchs, WaveForcesonPiles: ADiffractionTheory ,U.S.Army,BeachErosionBoard,TechnicalMemorandumNo.69,December,1954,17pp..7 .ilgram,J.H.andJ.E.Halkyard, WaveForcesonLargeObjectsintheSea ,JournalofShipResearch,Vol.15,No.2 ,June,1971,pp.115-124.8 .ogridge,G.R.andW.W.Jamieson, ADesignMethodfor

    theEstimationofWaveLoadsonSquareCaissons ,NationalResearchCouncilofCanada,HydraulicsLabora-tory,LaboratoryTechnicalReportNo.LTR-HY-57,197 6 .9 .ratte,B.D.,E.R.Funke,G.R.MogridgeandW.W.Jamieson,WaveForcesonaModelPile ,FirstCanadianHydraulicsConference,Edmonton,May,1973,pp.523-543.

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    10/19

    2280 COASTAL ENG INEERING 197 6

    TPSRNR If*

    It J

    f t _ _ m .

    LU

    >

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    11/19

    FORCESON CAISSONS 2281

    FIG.2 MODEL CAISSONAND FORCE METER (I2FTWAVE FLUME)

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    12/19

    2282 COASTALENG INE ERING 1976

    Fmax y2THEORY 10-0EXPERIMENT1 45

    *>< >

    ^B

    I46769b/L

    FIG.3 C^sAS FUNCTIONOF b/L

    (DEGREES)

    +204 -0

    0-0-20-30-40-50-60

    _\ >y H ys r

    COORDINAn kxt)rE SYSTEMJHL I' ' ^m Ts '

    O-1-2-3 0-4 0'5 0-6 0-7 0-8 0-9-0b/L

    F I G 4 PHASEANGLE AS AFUNCTIONOFb/L

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    13/19

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    14/19

    2284 COASTALENG INEERING 197 6EXPERIMENTAL 45.MACCAMYAND FUCH5 Fmax.MmaX'AVERAGEOFMAX IMUMFORCESANDMOMENTSNPOSITIVENDNEGATIVEIRECTIONS

    =0 168 =0 137

    FIG.6 DIMENSIONLESSMAXIMUM FORCES AND OVERTURNINGMOMENTSONA SQUARECAISSON

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    15/19

    FORCES ON CAISSONS 2285 EXPERIMENTAL j8.o-J45 O WACCAMYAN DFUCHSFmax .Mmax 'AVERAGEOFMAX IMUMFORCESAND MOMENTSNPOSITIVEANDNEGATIVEDIRECTIONS

    0-7 1 1 1

    0-6 70-5 0-4 0-3 0-2 U 9* ~ 0-

    1 1 00306C 1-2 1 i 1 1-00-8 _ Mmax 0-6 0-4 0-2 y 1 00306H/L

    pit?

    1 2

    10

    o0 8 0 6 - 1 ?

    0my O n

    0-4

    0-2 ~ ~yj

    004-0608FIG.7 DIMENSIONLESS MAXIMUM FORCES AND OVERTURNING MOMENTS

    ONAQUARECAISSON

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    16/19

    2286 COASTALENG INEERING 197 6EXPERIM ENTAL 0 = 45 0MACCAMYNDFUCHSFmax .Mmax .AVERAGEOFMAX IMUMFORCESAN D MOMENTSNPOSITIVEANDNEGATIVEDIRECTIONS

    0-7 ~ I0-60-5 ~ 0 4

    0O -

    0-3

    0-2 o0-t -

    002-04H/L Mmax pgb4 t-2 I -0-80-6 0-4 o0-2-- 073 . - O-0 8 0 70 60 5

    _ 1O

    0 ~ 0

    ~ ~ a

    ,0010203H/L 1-2

    1 1 1

    10 o0-8

    0

    O

    0-6 0 ~

    0-4OB

    < f l0-2

    002H/L

    00304 FIG.8 DIMENSIONLESS MAXIMUM FORCES AND OVERTURNINGMOMENTSONAQUARECAISSON

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    17/19

    FORCESON CAISSONS 2287

    [IIy 'TIME\ST IMETIMEH/L =0-010/L 0-020 H/L0-032/L0-059 H/L -0075

    0-7

    Fmax^9b3

    0-60-50-40-30 2 0 1

    EXPERIMENTAL DMACCAMYANDUCHS

    0-03 006 009H/L

    FIG.9 PHASING BETWEEN WAVE PROFILESNDORCERECORDS FORNCREASING WAVETEEPNESS=0-128 j =0-246 3 0

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    18/19

    2288 COASTAL ENG INEERING 197 6

    TIMETIMEH/L =0004 H/L =0010 H/L =0021 H/L0032

    FmaxPQb

    1 00 9080 70 60 504

    0 30 20

    0

    Fmo*.MA X I MUM FORCEEXPERIMENTAL( Fmo,NPOSITIVEDIRECTION . A FmgiINNEGATIVEDIRECTION O ~ * MacCAMYAN DFUCHS G

    0A

    o ^ ^^ A _ o A A

    ~ _

    10-01 002

    H/L003 004

    FIG.10 PHASING BETWEENWAVE PROFILESNDORCE RECORDS FORNCREASING WAVETEEPNESS

    ~0047, -|-0- 5 y 8=45

  • 8/13/2019 Wave Forces on Square Caissons_Mogridge_Jamieson

    19/19

    FORCESON CAISSONS 22896FTWIDEFLUME3 I2FTWIDEFLUME

    Fmax.Mmax'AVERAGEOFMAX IMUM FORCESANDMOMENTS INPOSITIVEANDNEGATIVEDIRECTIONS

    0-6 0-5 _ . .0-4 _ G0 _

    Fmax pQb 0-3

    0-20- _

    o

    B

    0(3

    O

    O

    I00408

    H /L ~ =0-184 , -y- -445 =0

    0-8 ^ ~ 10-7 0

    0-6 o-5 a

    0-4 O

    0-3 ~ o0-2 O l

    f i

    MmaxpQ bA

    1-21 1 1

    o1-0

    Oa 0-8

    G 0-6 0-4

    a

    E

    0-2 < * > % 0020304H/L

    0115 f-0

    FIG.II COMPARISONOFTESTESULTS USING DIFFERENTEXPERIMENTALMETHODS