waterhyacinth_uc_davis (1)

35
Economic aspects of control: Harvesting water hyacinth for renewable biofuels and fertilizer Mike E. Cox, CEO Laura M. Cox, PhD

Upload: mike-cox

Post on 23-Jan-2018

330 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WaterHyacinth_UC_Davis (1)

Economic aspects of control: Harvesting water hyacinth for

renewable biofuels and fertilizer

Mike E. Cox, CEOLaura M. Cox, PhD

Page 2: WaterHyacinth_UC_Davis (1)

Robert Hungate: Anaerobic Microbiology Pioneer

Page 3: WaterHyacinth_UC_Davis (1)

Expansion of an invasive species, water hyacinth

(Photo credit: Wes Rhea, Visit Stockton)

Page 4: WaterHyacinth_UC_Davis (1)

Floating boat bridge, Bangladesh

Page 5: WaterHyacinth_UC_Davis (1)

Economic impact of water hyacinth

• Loss of revenue for marinas and surrounding businesses

• Damage to boats

• Cost of spraying and removal by State employees

• Cost of mechanical removal

Page 6: WaterHyacinth_UC_Davis (1)

Methods of removal

Proposed previously by congress to combat water hyacinth in 1910

Handpicking: 100 acres/year

Herding: 500-1,000 acres/year

Susan Tripp Pollard

Spraying: up to 3,500 acres/year

Mechanical removal

Page 7: WaterHyacinth_UC_Davis (1)

Water Hyacinth CollectionClean Lakes Inc.

Page 8: WaterHyacinth_UC_Davis (1)

Disposal of invasive water hyacinthClean lakes Inc.

Page 9: WaterHyacinth_UC_Davis (1)

Statewide challenges in water hyacinth disposal

• Water hyacinth decomposing in water depletes dissolved oxygen and destroys habitats

• One acre can weigh up to 200 tons

• Must find disposal sites for mechanically harvested plants

• Water hyacinth decomposing on land releases CO2 and other greenhouse gases

Page 10: WaterHyacinth_UC_Davis (1)

Vision for the future: Anaerobic Fermentation

• Generate hydrogen and fertilizer from water hyacinth

• Economically incentivize mechanical removal

• Develop a disposal process that does not release greenhouse gas

• Conserve all water throughout the process

Page 11: WaterHyacinth_UC_Davis (1)

Traditional anaerobic digestion

• Group A Organisms:

– Convert carbohydrates to hydrogen, carbon dioxide and organic acids

• Group B Organisms

– Convert hydrogen and carbon dioxide to methane

• Group C Organisms

– Convert organic acids to methane

Page 12: WaterHyacinth_UC_Davis (1)

Sergei Winogradsky

1856-1953

Modern Winograsky Column, Anaerobe Systems

Page 13: WaterHyacinth_UC_Davis (1)

Grass Winogradsky Window

Summer 2006

Jennifer Conrey

Ashley Fetterman

Mike Cox

`

Page 14: WaterHyacinth_UC_Davis (1)

Day 1

Page 15: WaterHyacinth_UC_Davis (1)

Day 2

Page 16: WaterHyacinth_UC_Davis (1)

Day 6

Page 17: WaterHyacinth_UC_Davis (1)

Day 9

Page 18: WaterHyacinth_UC_Davis (1)

Day 12

Page 19: WaterHyacinth_UC_Davis (1)

Day 30

Page 20: WaterHyacinth_UC_Davis (1)

Day 43

Page 21: WaterHyacinth_UC_Davis (1)

Anaerobe Systems Process

Convert plant-based waste into high value products

Evaluatesubstrates

Optimize organism

Optimize operational

dynamics

Page 22: WaterHyacinth_UC_Davis (1)

Making the media

Page 23: WaterHyacinth_UC_Davis (1)

Optimizing biogas production

Water hyacinth

132 PB CB 1210

4

8

12

16

Organism

PS

I

No supplements

Water hyacinth

None A B A + B0

4

8

12

16

PB

CB

121

132

Supplements

PS

I

Effect of Supplementation

Page 24: WaterHyacinth_UC_Davis (1)

Preparing the fermenter

Page 25: WaterHyacinth_UC_Davis (1)

Fermentation process – building reliability

Sterile processingControlled at many levels• Organism inoculated• Temperature• pH• Pressure• Osmotic pressure• Sugar content• Atmospheric conditions

Page 26: WaterHyacinth_UC_Davis (1)

Water Hyacinth Batch Fermentation

Page 27: WaterHyacinth_UC_Davis (1)

Fermentation end productsBiogas composition Organic acid composition

48% H248% CO23.5% N20.5% O2

All CO2 is captured

Page 28: WaterHyacinth_UC_Davis (1)

Fermentation End Products

Hydrogenfor fuel cells

Liquid Fertilizer Soil amendment

Page 29: WaterHyacinth_UC_Davis (1)

Economic Benefits

Products

• Each ton of water hyacinth can produce 2 kilograms of hydrogen

• Each ton can produce 1000 kilograms of liquid fertilizer

Environmental Cost Reduction

• Credits for CO2 captured and H2 produced

• Reduce land needed for dumping

Local Business Benefits

• Clear the waterways for commerce

• Permit recreational activities in the delta

Page 30: WaterHyacinth_UC_Davis (1)

Invasive Arundo donax

Page 31: WaterHyacinth_UC_Davis (1)

Arundo donax environmental impact

• 10,000 acre infestation in Orange County

• Uses an estimated 57,000 acre feet of water

• Clogs waterways

• Competition with native species

• Fire danger

• Alter hydrological regimes

Page 32: WaterHyacinth_UC_Davis (1)

Scalable, Adaptable, and LocalLocal processing plantSourced Materials

Invasive Species

Agricultural Waste

Products

Hydrogen

CO2 + KOH = potassium carbonate fertilizer

Liquid Fertilizer

Solid Soil Amendment

Page 33: WaterHyacinth_UC_Davis (1)

Current Hydrogen Applications

Hydrogen Gas Stations

Page 34: WaterHyacinth_UC_Davis (1)

Birth of Industrial Fermentation

Chaim Weizmann1874-1952

Commercial Solvents(Photo credit MargaretBourke-White)

Page 35: WaterHyacinth_UC_Davis (1)

Thank You