water quality and health from source to tap

51
Water Quality and Health from Source to Tap Professor Joan Rose Michigan State University

Upload: others

Post on 04-Jun-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Water Quality and Health from Source to Tap

Water Quality and Healthfrom Source to Tap

Professor Joan RoseMichigan State University

Page 2: Water Quality and Health from Source to Tap

WATER QUALITY AND HEALTHFROM SOURCE TO TAP

Professor Joan B. [email protected]

Homer Nowlin Chair

© 2019 Prof Joan Rose | Michigan State University

Page 3: Water Quality and Health from Source to Tap

How safe is your water?(at the source and at the tap)

How are you solving current problems and challenges?

Is there aWATER CRISIS BREWING?

© 2019 Prof Joan Rose | Michigan State University

Page 4: Water Quality and Health from Source to Tap

Water Quality Impacts on Health 

The Issues:• Aging infrastructure: New materialsremoving lead, preventing leaking,reducing water retention times.• Climate change: quantity and quality challenges• Source water change:  Land‐use changes, New water sources (desalination, 

reuse); pollution of current source; overall water quality change (toxic algae blooms)

• Emerging/ Re‐emerging hazards (chemical and biological) e.g. Legionella. Chronic outcomes. Antibiotic resistance.

• Disinfection: moving disinfection from an art to a science (inactivation studies, sensors, stability, balancing DBPs)

• Social Structures:   Changes in vulnerable and sensitive populations, changes in community structure (access to wholesome food; access to education). 

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 5: Water Quality and Health from Source to Tap

Source Waters and the Connection to Water Quality and Human Health

WATER

Oceans

StreamsRiversFOOD

Produce

PorkFish

Poultry

Beef

HUMAN HEALTHElderly Children

Immuno-compromised

Agricultural Runoff

HandlingPreparation

Consumption

Irrigation

Fertilization

Animal & Human Feces

Recreational& Drinking

Water

Lakes

GroundWater

HealthCare

The global population has reached 7 billion, and meat consumption rates worldwide have outpaced population growth. 

However animal waste now contributes more pollution to waters of the world.

The numbers of cattle, sheep, pigs and chickens are estimated at 1.4, 1, 0.9 and 21 billion, respectively (FAO http://www.fao.org/docrep). 

On average, animals and humans generate 62 and 10 billion kg of excreta per day, respectively (FAOSTAT). 

The amounts of nitrogen, phosphorus, and energy that could be recovered from these excreta are approximately 215 million kg, 143 million kg, and 59,998 tera‐Joule, respectively, and represent a large amount of nutrient‐rich resources (http://www.fao.org/docrep/004/x6518e/x6518e01.htm).

© 2019 Prof Joan Rose | Michigan State University

Page 6: Water Quality and Health from Source to Tap

E coli 0157H7 Outbreak Linked with Romaine Lettuce contaminated irrigation water: Yuma AZ

© 2019 Prof Joan Rose | Michigan State University

Page 7: Water Quality and Health from Source to Tap

Waterborne pathogens threaten human health in the Great Lakes 

Campylobacter, Arcobacter, Giardia

Legionella

Cryptosporidium

Toxic Algal blooms

Norovirus

E.Coli 0157H7 and 

Campylobacter

A sample glass of Lake Erie water is photographed near the Toledo water intake crib in Lake Erie. (Haraz

N. Ghanbari/Associated Press) 

Ohio blames groundwater for Lake Erie island outbreakTuesday, February 22, 2005

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 8: Water Quality and Health from Source to Tap

Walkerton, Canada, 2000Campylobacter, E.coli 0157  

2000 ill, 7 deaths, 30 cases hemolytic uremic 

syndrome 

In August 2016, more than one‐third of the 14,000 residents of the community of Havelock North in New Zealand were sickened with gastrointestinal illness after drinking untreated groundwater contaminated.  It was New Zealand’s largest drinking water outbreak in recorded history.  Other recent reports have noted that many people, especially the elderly, continue to suffer physically and have not fully recovered from the outbreak.1 The regional cost of the outbreak now exceeds $2.7 million in New Zealand dollars.

Havelock, New Zealand 2016

Campylobacter~4600 ill, 3 deaths

3‐D computer‐generated image of Campylobacter based upon scanning electron micrographic imagery Courtesy of CDC/James Archer 

© 2019 Prof Joan Rose | Michigan State University

Page 9: Water Quality and Health from Source to Tap

Hazard ID

Dose Response Exposure

Characterization

Management

NATIONAL ACADEMY OF SCIENCES RISK ASSESSMENT PARADIGM

SCIENCE AND DECISIONS:  Advancing Risk Assessment, (2009)Committee on Improving Risk Analysis Approaches Used by the EPANATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIESTHE NATIONAL ACADEMIES PRESS, DC. www.nap.edu

© 2019 Prof Joan Rose | Michigan State University

Page 10: Water Quality and Health from Source to Tap

RISK FRAMEWORKS FOR DEFINING SAFE WATER

The Hazards and impacts

The Dose‐responseThe Exposure

Risk Characterization

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 11: Water Quality and Health from Source to Tap

Safety is at the intersection of our scientific knowledge, our ability to control risks and societal engagement all influenced by technology

Knowledge Control

s

Societal Engagement Safe

© 2019 Prof Joan Rose | Michigan State University

Page 12: Water Quality and Health from Source to Tap

Why knowledge matters

• “The Fix” for water problems is long-term and complex

• Need to move political will

• Need evidence and science-based knowledge to make continual progress

• Need better diagnostic tools to provide information to address health risks

© 2019 Prof Joan Rose | Michigan State University

Page 13: Water Quality and Health from Source to Tap

How do we solve the water pollution problems  and protect water quality?

TECHNOLOGY

ASSESSMENT

IMPROVED KNOWLEDGE & DECISION MAKING

© 2019 Prof Joan Rose | Michigan State University

Page 14: Water Quality and Health from Source to Tap

Growth Based Methods:  Common Fecal Indicator Organisms for measuring water quality

Fecal coliforms

Agar and coloniesE.coli

MPN and coloniesTotal coliforms  MPN

Filtering  or processing 100 ml water samples

© 2019 Prof Joan Rose | Michigan State University

Page 15: Water Quality and Health from Source to Tap

Innovative Water Technology Water Genomics and Safety 

Polymerase chain reaction (PCR):

Small amount of DNA amplified in   a thermal cycler 

Amplified products are measured at the end point of amplification by agarose gel electrophoresis

Quantitative PCR (qPCR):

Amplified PCR products are detected real‐time during the early phases of the reaction.

15© 2019 Prof Joan Rose | Michigan State University

Page 16: Water Quality and Health from Source to Tap

Sources of E.coli, Fecal Pollution and Pathogens

Agricultural run‐off

Animal farming operations

Waste water/Sewage treatment Septic systems

Combined Sewer Overflow

Wildlife

Microbial Source Tracking

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 17: Water Quality and Health from Source to Tap

Water Diagnostics using digital droplet polymerase chain reaction 

• B.theta for human sewage

• M2 bovine marker

• > 10,000 tests (droplets) per well

Sewage Positive

Cow manure Positive

Positive for both genes

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 18: Water Quality and Health from Source to Tap

Water quality of the source

64 River systems  

Baseflow (October 2010)Spring thaw (March 2011)Early summer rain (June 2011)

84% Lower Peninsula drainage area In Stream Conditions:• River discharge (ADCP and USGS)• Temperature • Physical chemistry (pH and specific 

conductance)Chemistry and Nutrients:• Nutrients (N, P, TN, TP, TDN, TDP, 

SRP)• Ions (Na, Ca, Mg, Cl, K, NO3, SO4, 

NH3)• Dissolved organic carbon• Alkalinity• Stable isotopes (δH2 and δO18)Algae and Chlorophyll:• Chlorophyll a• Epiphytic algae (hard and soft 

substrate)

• B. theta– Sensitivity: 80 to 100%– Specificity: 100%

• CowM2– Sensitivity: 100%– Specificity: >95%

• Pig2Bac– Sensitivity: 100%– Specificity: 99%

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 19: Water Quality and Health from Source to Tap

CAFOs in 2017: 

• Approximately 21M animals confined in 272 animal farms in Michigan

• Producing approximately 3.3 billion gallons of manure, urine, and other liquid wastes per year

Source: USDA, 2017, https://www.sierraclub.org/michigan/cafo‐map, and https://nocafos.org/  

Concentrated Animal Feeding Operations (CAFOs)

https://www.sierraclub.org/michigan/cafo‐map

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 20: Water Quality and Health from Source to Tap

Discharges from Septic Tanks and Wastewater Treatment Facilities 

Luscz EC, Kendall AD, Hyndman DW (2015) High resolution spatially explicit nutrient source models for the Lower Peninsula of Michigan. J Great Lakes Res 41(2):618–229.

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 21: Water Quality and Health from Source to Tap

The distribution of the human sewage marker Bacteroides

• Increasing B. theta related to more septic tanks

• More E.coli related to more total phosphorous and increasing stream temperature

Significant  Knowledge Gaps Exist for Septics

< 4.6

4.6 - 4.9

4.9 - 5.2

5.2 - 5.6

> 5.6

B. theta concentrations(Log CE/100 ml)

²0 60 12030 Kilometers

< 0.8

0.8 - 1.4

1.4 - 2.37

2.37 - 2.9

> 2.9

E. coli concentrations(Log MPN/100 ml)

E.coli © 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 22: Water Quality and Health from Source to Tap

BovinePorcine

Low flow

Spring melt

Summer rain

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 23: Water Quality and Health from Source to Tap

Temporal and Spatial Resolution toward Solutions 

5 Watersheds across Michigan– Little Pigeon (1) 14km2

– Sandy Creek (2) 82km2

– Macatawa (4) 292km2

– Kawkawlin (3) 582km2

– River Raisin (7) 2683km2

• Sampling – April – August 2017– Winter Baseflow– Spring Snow melt

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 24: Water Quality and Health from Source to Tap

Little Pigeon Watershed• Area: 14 km2

• 1 Sampling Site • Land Cover (2011)

– 18.9% Urban– 16.4% Agricultural– 41.9% Forest– 16.3% Wetland

Sandy Creek Watershed

• Area: 82km2

• 2 Sampling Sites• Land use (2011)

– 82% Urban– 28.2% Agricultural– 10.6% Forest– 2.7% Wetland

© 2019 Prof Joan Rose | Michigan State University

Page 25: Water Quality and Health from Source to Tap

Macatawa Watershed• Area: 292km2

• Land Use– 23.5% Urban– 67.8% Agricultural– 4.0% Forest– 3.1% Wetland

Kawkawlin Watershed

• Area: 582km2

• Land Cover (North & South Branches)– 2.6 % & 12.6% Urban– 43.1% & 73.3% Agricultural– 40.2% & 7.5% Forest– 7.9% & 1.6% Wetland 

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 26: Water Quality and Health from Source to Tap

River Raisin Watershed

• 7 Sampling Sites• Area: 2683 km2

• Land Use– 10.8% Urban– 67.4% Agricultural– 11.1% Forest– 8.3% Wetland

© 2019 Prof Joan Rose | Michigan State University

Page 27: Water Quality and Health from Source to Tap

© 2019 Prof Joan Rose | Michigan State University

Page 28: Water Quality and Health from Source to Tap

© 2019 Prof Joan Rose | Michigan State University

Page 29: Water Quality and Health from Source to Tap

© 2019 Prof Joan Rose | Michigan State University

Page 30: Water Quality and Health from Source to Tap

Apr

il 20

17M

ay 2

017

June

201

7Ju

ly 2

017

Aug

ust 2

017

Nov

embe

r 201

7M

arch

201

8M

ay 2

018

RR1RR2RR3RR4RR5RR6RR7SC1SC2

LPR1MAC1MAC2MAC3MAC4KAW1KAW2KAW3

CowM2 Log10 GC/100mL

2.6

2.8

3.0

3.2

3.4

© 2019 Prof Joan Rose | Michigan State University

Page 31: Water Quality and Health from Source to Tap

Findings and QuestionsTemporal clusters• Rain driven• Legacy inputs (eg N 20 year legacy via ground water, pathogens 1 year legacy?)• Spring (and Fall) application of K, P, N fertilizers and manure(what about biosolids or septage?)• Bigger Policies how they impact the land and water No application on 

frozen ground

Spatial clusters– Septic tanks /ground water pollution – Tillage /No Tillage– Tile drains ‐Types (Presence/absence)– Buffers– Wetlands as reservoirs

© 2019 Prof Joan Rose | Michigan State University

Page 32: Water Quality and Health from Source to Tap

Critical Infrastructure Sectorshttps://www.dhs.gov/critical-infrastructure-sectors

There are 16 critical infrastructure sectors whose assets, systems, and networks, whether physical or virtual, are considered so vital to the United States that their incapacitation or destruction would have a debilitating effect on security, national economic security, national public health or safety, or any combination thereof.

Water and WastewaterTransportation

Information Technology Energy Food and Agriculture

Health Care and Public Health

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 33: Water Quality and Health from Source to Tap

The public believes the Safe Drinking Water Act protects water at the tap

© 2019 Prof Joan Rose | Michigan State University

Page 34: Water Quality and Health from Source to Tap

Etiology of 928 drinking water–associated outbreaks, by year —U.S. (1971–2014)

• 2013–2014, 42 drinking water–associated outbreaks were reported

1006 cases of illness, 124 hospitalizations, and 13 deaths• Legionella was responsible for 57% of outbreaks and 13% of illnesses

• Most commonly identified deficiencies leading to drinking water–associated outbreaks were Legionellain building plumbing systems (66%) and untreated groundwater (13%)

© 2019 Prof Joan Rose | Michigan State University

Page 35: Water Quality and Health from Source to Tap

New Challenges: Pathogens in the Premise PlumbingPathogen Disease(s) Mode of exposure

Legionella pneumophila Legionnaires’ Disease (pneumonia) / Pontiac fever in children

Inhalation or aspiration

Pseudomonas aeruginosa Urinary tract infections, respiratory infections, dermatitis, soft tissue infections, bacteremia, bone and joint infections, GI infections

Wound infection, inhalation

Mycobacterium avium Pulmonary disease, cervical lymphadenitis (children)

Inhalation or aspiration

Acanthamoeba Acanthamoeba keratitis Wound infection 

Naegleria fowleri Primary amoebic meningoencephalitis

Nasal aspiration

© 2019 Prof Joan Rose | Michigan State University

Page 36: Water Quality and Health from Source to Tap

Public health hospitalization costs associated with US drinking water*

• CDC estimates drinking water disease costs > $970 m/yr– Legionnaires’ disease, otitis externa, and non‐tuberculous mycobacterial (NTM) account for

>40 000 hospitalizations/yearDisease Annual costs

Cryptosporidiosis $46M

Giardiasis $34M

Legionnaires’ disease $434M

NTM infection/Pulmonary $426M/ $195M

*Collier et al. (2012) Epi Inf 140(11): 2003‐13 

36

© 2019 Prof Joan Rose | Michigan State University

Page 37: Water Quality and Health from Source to Tap

Flint  Michigan a Perfect Storm• The Flint plant was completed in 1954.• Population in Flint peaked in 1960 at ~200,000• Flint has purchased water from Detroit Water and 

Sewage Department (DWSD) since 1967 from Lake Huron and treated at the Fort Gratiot plant

• Population now <100,000;  Water usage is down by 2/3

• Vulnerable, low‐income residents • Older houses with lead services lines and/or 

plumbing (estimated at 15,000)• Some distribution mains thought to be lead 

Slide provided by Dr. Susan MastenEnvironmental EngineeringMichigan State University © 2019 Prof Joan Rose | Michigan State University

Page 38: Water Quality and Health from Source to Tap

Timeline• July 2011 Report on the evaluation of the Flint River                   as a long‐term source of drinking water issued

• April 9, 2014 MDEQ approves permit• April 25, 2014 Flint River changeover ceremony• April 30, 2014 DWSD Water line closed• June 2014 Complaints regarding water quality begin (smell, taste, discoloration)

• August 14, 2014 Flint water tests positive for E coli.  Boil water advisories issued two days later. Problems continue with three boil water advisory notices issued in a 22‐day span in summer

Slide provided by Dr. Susan Masten, Environmental Engineering, Michigan State University

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 39: Water Quality and Health from Source to Tap

Timeline

• November 2, 2014 City increases hydrant flushing to address red water concerns

• December 16, 2014 City receives official violation notice from DEQ for violations of the Safe Drinking Water Act for total trihalomethanes

• June 2015 Second violation of D/DBP Rule

• Late July 2015 Flint installs a granular activated carbon filter to control THMs by removing organic matter

Steve Carmody/Michigan Radio

www.Flintwaterstudy.org

Slide provided by Dr. Susan Masten,Environmental Engineering, Michigan State University

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 40: Water Quality and Health from Source to Tap

Timeline

• October 16, 2015 Flint switches back to “Detroit” water which comes from Lake Huron

• December 9, 2015 Flint starts adding additional phosphate to increase the concentration from 1 to 2.5 mg/L for corrosion control

http://flintwaterstudy.org/page/2/

Slide provided by Dr. Susan MastenEnvironmental EngineeringMichigan State University

© 2019 Prof Joan Rose | Michigan State University

Page 41: Water Quality and Health from Source to Tap

Legionnaire’ Disease: 87 cases, 10 deaths

(http://www.huffingtonpost.com/entry/flint‐water‐legionnaires‐lead‐crisis_us_569d09d6e4b0ce4964252c33)© 2019 Prof Joan Rose | Michigan State University

Page 42: Water Quality and Health from Source to Tap

© 2019 P

rof Joan Rose | M

ichigan State U

niversity

Page 43: Water Quality and Health from Source to Tap

MSU Building WQ Objectives• Goal: To evaluate the water quality of academic buildings which have varying water residence times, use and chlorine residual.

• Sub‐objectives include: 1. Examine bacteriological water quality associated with the 

“freshness” and use of water in buildings2. Examine the presence of Legionella, L. pneumophila and L.p

Serogroup 1. Amoeba3. Evaluate composite sampling 10L samples; 4. Evaluate the role of taps on water quality

© 2019 Prof Joan Rose | Michigan State University

Page 44: Water Quality and Health from Source to Tap

© 2019 Prof Joan Rose | Michigan State University

Page 45: Water Quality and Health from Source to Tap

Monitoring and Control?• Exposure needs to be assessed• Legionella sp, Lp,Lpsg1  sampling needs to undertaken in the distribution system in the premise plumbing, hospitals and susceptible areas (water heaters, shower heads, taps) fountains and homes

• How, why and where to L.p (sg1?) bloom?• What is the role of water quality, nutrients, iron, temperature, amoeba.

• What about other premise plumbing pathogens?

© 2019 Prof Joan Rose | Michigan State University

Page 46: Water Quality and Health from Source to Tap

Using risk analysis what  is the goal for premise plumbing, goal at the tap?

Development of treatment standards for drinking water treatment to remove pathogens from water

4 logs viruses

2 to 3 logs protozoa

5 to 6 logs bacteria

Is 10‐4 the correct goal?

© 2019 Prof Joan Rose | Michigan State University

Page 47: Water Quality and Health from Source to Tap

•WHAT IS THE ROLE OF WATER INDUSTRY?

•WHO WILL TAKE A LEADERSHIP ROLE?

© 2019 Prof Joan Rose | Michigan State University

Page 48: Water Quality and Health from Source to Tap

How safe is your water?(at the source and at the tap)

How are you solving current problems and challenges?

Is there aWATER CRISIS BREWING?

© 2019 Prof Joan Rose | Michigan State University

Page 49: Water Quality and Health from Source to Tap

Figure 1. Conceptual diagram showing how the IN‐Water Network connects people working within the One Water Approach (based on US Water Alliance 2016). 

© 2019 Prof Joan Rose | Michigan State University

Page 50: Water Quality and Health from Source to Tap

Water quality diagnosticsContaminant databases

Environmental Sources and Fate

Innovative Technology

Risk & Communication

Target organisms Genetic variation Detection technologies

Surface water, groundwater, distribution system Disinfection/deactivationModeling for decision support system

Risk assessment and management

Flexible control technologies (physical and temporal scales) 

Water Safety

© 2019 Prof Joan Rose | Michigan State University

Page 51: Water Quality and Health from Source to Tap

Acknowledgements

• Rose Lab Group• Joan B. Rose• Matthew Flood• Jean Pierre 

Nshimyimana• Rebecca Ives• Sherry Martin• Anthony Kendall• David Hyndman

Research Funded by the Michigan Corn Growers Association and MSU’s Project Green

THANK YOU FOR YOUR ATTENTION

Michigan Corn Marketing Program

© 2019 Prof Joan Rose | Michigan State University