water cycle

11
Hydrologic cycle The Earth 's water is always in movement, and the water cycle, also known as the hydrologic cycle, describes the continuous movement of water on, above, and below the surface of the Earth. Since the water cycle is truly a "cycle," there is no beginning or end. Water can change states among liquid , vapor , and ice at various places in the water cycle, with these processes happening in the blink of an eye and over millions of years. Although the balance of water on Earth remains fairly constant over time, individual water molecules can come and go in a hurry, but there is always the same amount of water on the surface of the earth.

Upload: faheem-tariq

Post on 14-Nov-2015

3 views

Category:

Documents


0 download

DESCRIPTION

water cycle

TRANSCRIPT

  • Hydrologic cycle The Earth's water is always in movement, and the water cycle, also known as the hydrologic cycle, describes the continuous movement of water on, above, and below the surface of the Earth. Since the water cycle is truly a "cycle," there is no beginning or end. Water can change states among liquid, vapor, and ice at various places in the water cycle, with these processes happening in the blink of an eye and over millions of years. Although the balance of water on Earth remains fairly constant over time, individual water molecules can come and go in a hurry, but there is always the same amount of water on the surface of the earth.

  • Water Cycle

  • Description

    The water cycle has no starting or ending point. The sun, which drives the water cycle, heats water in the oceans. Some of it evaporates as vapor into the air. Ice and snow can sublimate directly into water vapor. Rising air currents take the vapor up into the atmosphere, along with water from evapotranspiration, which is water transpired from plants and evaporated from the soil. The vapor rises into the air where cooler temperatures cause it to condense into clouds. Air currents move clouds around the globe, cloud particles collide, grow, and fall out of the sky as precipitation. Some precipitation falls as snow and can accumulate as ice caps and glaciers, which can store frozen water for thousands of years.

  • Snowpacks in warmer climates often thaw and melt when spring arrives, and the melted water flows overland as snowmelt. Most precipitation falls back into the oceans or onto land, where, due to gravity, the precipitation flows over the ground as surface runoff. A portion of runoff enters rivers in valleys in the landscape, with streamflow moving water towards the oceans. Runoff, and ground-water seepage, accumulate and are stored as freshwater in lakes. Not all runoff flows into rivers. Much of it soaks into the ground as infiltration. Some water infiltrates deep into the ground and replenishes aquifers (saturated subsurface rock), which store huge amounts of freshwater for long periods of time. Some infiltration stays close to the land surface and can seep back into surface-water bodies (and the ocean) as ground-water discharge, and some ground water finds openings in the land surface and emerges as freshwater springs. Over time, the water continues flowing, some to reenter the ocean, where the water cycle renews itself.

  • Processes in water cyclePrecipitation is condensed water vapor that falls to the Earth's surface. Most precipitation occurs as rain, but also includes snow, hail, fog drip, graupel, and sleet.Approximately 505,000 km of water fall as precipitation each year, 398,000 km of it over the oceans.Canopy interception is the precipitation that is intercepted by plant foliage and eventually evaporates back to the atmosphere rather than falling to the ground. Snowmelt refers to the runoff produced by melting snow. Runoff includes the variety of ways by which water moves across the land. This includes both surface runoff and channel runoff. As it flows, the water may infiltrate into the ground, evaporate into the air, become stored in lakes or reservoirs, or be extracted for agricultural or other human us

  • Infiltration is the flow of water from the ground surface into the ground. Once infiltrated, the water becomes soil moisture or groundwater.[3] Subsurface Flow is the flow of water underground, in the vadose zone and aquifers. Subsurface water may return to the surface (eg. as a spring or by being pumped) or eventually seep into the oceans. Water returns to the land surface at lower elevation than where it infiltrated, under the force of gravity or gravity induced pressures. Groundwater tends to move slowly, and is replenished slowly, so it can remain in aquifers for thousands of years.

  • Evaporation is the transformation of water from liquid to gas phases as it moves from the ground or bodies of water into the overlying atmosphere. The source of energy for evaporation is primarily solar radiation. Evaporation often implicitly includes transpiration from plants, though together they are specifically referred to as evapotranspiration. Total annual evapotranspiration amounts to approximately 505,000 km of water, 434,000 km of which evaporates from the oceans. Sublimation is the state change directly from solid water (snow or ice) to water vapor.Advection is the movement of water in solid, liquid, or vapour states through the atmosphere. Without advection, water that evaporated over the oceans could not precipitate over land.Condensation is the transformation of water vapour to liquid water droplets in the air, producing clouds and fog.

  • Reservoirs

    In the context of the water cycle, a reservoir represents the water contained in different steps within the cycle. The largest reservoir is the collection of oceans, accounting for 97% of the Earth's water. The next largest quantity (2%) is stored in solid form in the ice caps and glaciers. This small amount accounts for approximately 75% of all fresh water reserves on the planet. The water contained within all living organisms represents the smallest reservoir.The volume of water in the fresh water reservoirs, particularly those that are available for human use, are important water resources.

  • Volume of water stored in the water cycle's reservoirsReservoirVolume of water (106 km)Percent of totalOceans137097.25Ice caps & glaciers292.05Groundwater9.50.68Lakes0.1250.01Soil moisture0.0650.005Atmosphere0.0130.001Streams & rivers0.00170.0001Biosphere0.00060.00004

  • Effects on climate

    The water cycle is powered from solar energy. 86% of the global evaporation occurs from the oceans, reducing their temperature by evaporative cooling. Without the cooling effect of evaporation the greenhouse effect would lead to a much higher surface temperature of 67 C, and a warmer planet.

  • Effects on biogeochemical cyclingWhile the water cycle is itself a biogeochemical cycle, flow of water over and beneath the Earth is a key component of the cycling of other biogeochemicals. Runoff is responsible for almost all of the transport of eroded sediment and phosphorus from land to waterbodies. The salinity of the oceans is derived from erosion and transport of dissolved salts from the land. Cultural eutrophication of lakes is primarily due to phosphorus, applied in excess to agricultural fields in fertilizers, and then transported overland and down rivers. Both runoff and groundwater flow play significant roles in transporting nitrogen from the land to waterbodies. The dead zone at the outlet of the Mississippi River is a consequence of nitrates from fertilizer being carried off agricultural fields and funnelled down the river system to the Gulf of Mexico. Runoff also plays a part in the carbon cycle, again through the transport of eroded rock and soil.