wateqf - a fortran iv version of wateq, a … · wateqf - a fortran iv version of wateq, a computer...

73
WATEQF - A FORTRAN IV VERSION OF WATEQ, A COMPUTER PROGRAM FOR CALCULATING CHEMICAL EQUILIBRIUM OF NATURAL WATERS U. S. GEOLOGICAL SURVEY Water-Resources Investigations 76-13

Upload: truongmien

Post on 06-Sep-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

WATEQF - A FORTRAN IV VERSION OF WATEQ,A COMPUTER PROGRAM FOR CALCULATING CHEMICALEQUILIBRIUM OF NATURAL WATERS

U. S. GEOLOGICAL SURVEY

Water-Resources Investigations 76-13

BIBLIOGRAPHIC DATA SHEET

1. Report No. 2-

4. Title and SubtitleWATEQF: A FORTRAN IV Version of WATEQ, a Computer Program for Calculating Chemical Equilibrium of Natural Waters

7. Author(s)L. Niel Plummer, Blair F. Jones, and Alfred H. Truesdell

9. Performing Organization Name and Address

U.S. Geological Survey Water Resources Division 12201 Sunrise Valley Drive Reston, VA. 22092

12. Sponsoring Organization Name and Address

U.S. Geological Survey Water Resources Division 12201 Sunrise Valley Drive Reston, VA. 22092

3. Recipient's Accession No.

5. Report Date

September. 19766.

8. Performing Organization Reot.No- USGS/WRD/WRI-

10. Project/Task/Work Unit No.

11. Contract/Grant No.

13. Type of Report & Period Covered

Final14.

15. Supplementary Notes

16. Abstracts

WATEQF is a FORTRAN IV computer program that models the thermodynamic speciation of inorganic ions and complex species in solution for a given water analysis. The original version (WATEQ) was written in 1973 by A. H. Truesdell and B. F. Jones in Programming Language/one (PL/1). With but a few exceptions, the thermochemical data, speciation, activity coefficients, and general calculation procedure of WATEQF is identical to the PL/1 version. This report notes the differences between WATEQF and WATEQ, demonstrates how to set up the input data to execute WATEQF, provides a test case for comparison, and makes available a listing of WATEQF.

17. Key Words and Document Analysis. 17a. Descriptors

* * * *Computer models, Equilibrium, Aqueous solutions, Stability, water chemistry, saturation

I7b. Identifiers /Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement

No Restriction on Distribution

19.. Security Class (This Report)

UNCLASSIFIED20. Security Class (This

PageUNCLASSIFIED

21. No. of Pages

22. Price

FORM NTis-35 (REV. 1O-73) ENDORSED BY ANSI AND UNESCO. THIS FORM MAY BE REPRODUCED USCOMM-DC B265-P74

WATEQF - A FORTRAN IV VERSION OF WATEQ,A COMPUTER PROGRAM FOR CALCULATING CHEMICALEQUILIBRIUM OF NATURAL WATERS

By L. Niel Plummer, Blair F. Jones, and Alfred H. Truesdell

U. S. GEOLOGICAL SURVEY

Water-Resources Investigations 76-13

September 1976

UNITED STATES DEPARTMENT OF THE INTERIOR Thomas S. Kleppe, Secretary

GEOLOGICAL SURVEY V. E. McKelvey, Director

For additional information write to:

U.S. Geological SurveyNational CenterOffice of Regional Hydrologist, MS 432Reston, Virginia 22092

Requests, at cost, for the card deck listed in Attachment B should be directed to: Ralph N. Eicher, Chief, Office of Teleprocessing, MS 805, National Center, U.S. Geological Survey, Reston, Virginia 22092.

CONTENTS

Page

Abstract——————————————————————————————————— 1

Introduction————————————————————————————————— 2

Differences between WATEQF and WATEQ—————————————— 2

Input—————————————————————————————————————— 3

Description of Input Variables—————————————————— 4

Description of Optional Input —————————————————— 7Type 1 Optional Input ————————————————————— 7Type 2 Optional Input ————————————————————— 7

Oxidation - Reduction Options —————————————————— 9

Output ————————————————————————————————————— 10

References—————————————————————————————————— 11

ii

TABLES and ATTACHMENTS

Page

Table 1. Revised Thermochemical Data——————————————————— 12 Data Sources for Table 1 ———————————————————— 14 Footnotes to Table 1 ——————————————————————— 14

Attachment A. Test Case, Data, and Computed Results——————— 16 List of Data Cards for Test Case—————————— 16 Data———————————————————————————————— 17 Computed Results of Test Case————————————— 21

Attachment B. Program Listing———————————————————————— 27

Attachment C. Equilibrium Reactions Considered by WATEQF——— 51

iii

ABSTRACT

WATEQF is a FORTRAN IV computer program that models the thermodynamic speciation of inorganic ions and complex species in solution for a given water analysis. The original version (WATEQ) was written in 1973 by A. H. Truesdell and B. F. Jones in Programming Language/one (PL/1). With but a few exceptions, the thermochemical data, speciation, activity coefficients, and general calculation procedure of WATEQF is identical to the PL/1 version. This report notes the differences between WATEQF and WATEQ, demonstrates how to set up the input data to execute WATEQF, provides a test case for comparison, and makes available a listing of WATEQF.

-1-

INTRODUCTION

WATEQF is a FORTRAN IV computer program that models the thermodynamic speciation of inorganic ions and complex species in solution for a given water analysis. The original version (WATEQ) was written by Truesdell and Jones (1973) in Programming Language/one (PL/1). With but a few exceptions, the thermochemical data, speciation, activity coefficients, and general calculation procedure of WATEQF is identical to the PL/1 version. For discussion of the program theory and original source of most of the thermo- chemical data, see Truesdell and Jones (1974). It is the purpose of this report to note the differences between WATEQF and WATEQ, demonstrate how to set up the input data to execute WATEQF, provide a test case for com­ parison (Attachment A), and make available a listing of WATEQF (Attachment B). This report also provides a list of all equilibrium reactions that are considered (Attachment C).

DIFFERENCES BETWEEN WATEQF AND WATEQ

1. In addition to the 100 aqueous species used in the WATEQ aqueous model, WATEQF includes 14 species of manganese and computes saturation data for 21 manganese minerals. See Table 1 for the thermochemical data used.

2. All reference to maximum and minimum estimates of log K used by WATEQ have been omitted in WATEQF.

3. In addition to calculating pe from dissolved oxygen and Eh, pe can also be set by the dissolved oxygen relation of Sato (1960) and by the S0= / S= ratio.

4. The carbon-bearing species are computed from either titration alkalinity, carbonate alkalinity, or total carbon in solution.

5. An option has been added that allows calculation of activity coefficients of charged ion pairs from either the Debye-Hlickle equation or the Davies equation.

6. Thermodynamic data used in the program can be changed through the use of optional input cards.

7. Various print options are provided to limit the amount of printed output.

8. WATEQF now consists of a main program and 5 subroutines, PREP, SET, MODEL, PRINT, and SAT. PREP reads the water data, converts the units of concentration to molality, and calculates all temperature dependent data at the temperature of the water

-2-

sample. SET initalizes values of individual species for the iterative Mass Action - Mass Balance loop. MODEL ealculates activity coefficients and solves Mass Action and Mass Balance equations for the species considered. PRINT prints the results calculated from the aqueous model, and SAT calculates and prints the thermodynamic saturation state of the water with respect to the various minerals considered by the program.

9. The method of convergence on Mass Balance for anions has beenchanged to a more accurate and rapid convergence method, essentially identical to the method used by Truesdell and Jones (1974) for Mass Balance on cations.

10. The aqueous model will not be solved on analyses if pH is outside the interval 3.0 - 11.0, or if there is greater than 30 percent error in charge balance. This procedure is useful in screening data for punching and/or errors in the analysis. The procedure can be ignored, however, with the appropriate option specified in the input.

11. There are several changes in the aqueous model over those of Truesdell and Jones (1973) as shown in Table 1 and Attachment B, although none results in major differences between the calculations of WATEQ and WATEQF for most natural waters. The choice of speciation, thermodynamic data, and activity coefficients used by WATEQF are in a continuous process of revision, as better data become available. The responsibility for final selection of constants used in WATEQF rests with the user.

INPUT

The data matrix of species considered and thermochemical constants is read initially, either from disk or cards. The format of the data matrix is summarized as follows:

Variables Format

(NSPEC(I), Z(I), GFW(I), DHA(I), 1=1,115) (5X, A8, 2X, 12, 3X,F10.4, IX, F4.1)

(NREACT(I), DH(I), LOGKTO(I), 1=1,193) (5X, A8, 2X, 2F10.4)

Following input of the data matrix, data cards for one or more water analyses are read. Each water analysis requires 5 cards (4 data cards followed by a blank card). WATEQF can receive additional data on option cards that fit into the data stream between card 4 and the blank card (5),

-3-

The required input for each water analysis is summarized as follows;

Card

1

2

Variables

TITL

Format

20A4

TEMP, PH, EHM, EHMC, (5(F6.0,1X), EMFZ, DENS, DOX, FLAG, 2F5.0, IX, 911, CORALK, PECALC, IGO, 213) (PRT(I), 1=1,4) IDAVES, ISPEC, IMIN

CUNITS(I) (1=1,2,3,4, (6E12.5,8X) 5,6)

CUNITS(I) (1=7,35,8,45, (6E12.5,8X) 88,62)

•—————Optional input appears here-

Blank card

Comments

Title

See description below

Ca,Mg,Na,K,Cl,SO^ (in order)

HCO~,SiO? ,Fe,P04 ,

SR, F (in order)

Required to note end of data for a particular analysis

DESCRIPTION OF INPUT VARIABLES

NSPEC(I) Names of the species

Z(I) Charge of the species

GFW(I) Gram formula wt. of ith species

DHA(I) Debye-Huckel a parameter for ith species

NREACT(I) Name of ith reaction

DH(I) AH° for ith reaction (Kcal/mole)

LOGKTO(I) Log K for the ith reaction at 25°C

TITL General description, identifying information, etc

TEMP Temperature in degrees C.

pH Negative log of the activity of hydrogen ion.

EHM "True" Eh of solution to which no temperature correction will be made (volts)

-4-

EHMC Electical potential (volts) of the Eh cell with a calomel reference electrode.

EMFZ Electrical potential (volts) of the Eh cell with calomel reference in Zobell's solution.

3 DENS Solution density (g/cm ). If not known, read 1.0.

DOX Dissolved oxygen content (mg/1).

FLAG Signal for units of input concentrations (CUNITS). l=meq/l, 2=mg/l, 3=ppm, 4=molality.

CORALK Carbon signal. Set to zero (or blank) if the alkalinity has not been corrected for silica, boron, etc. CORALK=1 if this correction has been made. Normally, one would report alkalinity as HCO- (and CO- if detected) and set CORALK to zero. To input total carbon rather than alkalinity, set CORALK to 2. Total C02 can then be input as HCO~, or, * if desired, as the individual species of HCO~, CO* and H2C03 . H2CO* and CO^ are read on an optional "CONC" card.

(H 0CO~ denotes H0CO° + C00 ). £• j £. j Zaq

PECALC Signal for pe calculation. If PECALC =0, pe is set to 100 and oxidation-reduction is ignored. =1 computes pe from Eh, =2 computes pe from dissolved oxygen, =3 computes pe from dissolved oxygen using the Sato (1960) relation, =4 computes pe from SO^ / S= .

IGO =0 or blank, if desired to have the data checked for possible input error or analytical error. pH must be greater than 3 and less than 11 and the analysis must have less than 30% error in charge balance. =1 if this check is not desired.

PRT(I),1=1,4 Signals which when set to some non-zero value (say 1) omit

print of: 1=1, thermochemical data table; 1=2, mass balance convergence iterations; 1=3, ion ratios; 1=4, mineral saturation calculations. To obtain the above printout, leave the appropriate value of PRT(I) blank or zero.

IDAVES Signal used to indicate desired method of calculation of activity coefficients, y., of charged ion pairs. If 1, the Davies equation,

-A Z. x/I~ log y.= ———-————— - 0.31

+

is used. If zero, or blank, the Debye-Hiickel equation,

—5—

logi + •t VT

is used. A and B are constants that depend on the dielectric constant, density and temperature of the solvent, Z. is the charge on the ion, I is ionic strength (1= 1/2 £. m. Z^, where

. is the molality of the ith ion) , and a . is the "ion size" parameter. As a general rule, the Davies equation is probably accurate to ionic strengths less than 0.5 and the Debye-Hiickel equation is more accurate at ionic strength less than 0.1 (Stumm and Morgan, 1970) . Activity coefficients of Ca+ , Mg , Na+, K+ , Cl~, S0= C0«, and HCO" are always calculated from the extended Debye- Huckel equations of Truesdell and Jones (1974).

ISPEC Number, of species desired in output (if less than totalnumber possible for the given water analysis) . Leave ISPEC blank or zero to obtain output for all possible species for the defined system. If ISPEC is greater than zero, ISPEC values of KSPEC (species index numbers) must be read (Type 1 optional input; see below).

IMIN Number of minerals for which saturation data are required (if less than the total possible) . Leave IMIN blank (or zero) to obtain saturation data on all possible minerals for the defined system. If IMIN is greater than zero, IMIN values of KMIN (mineral reaction index numbers) must be read (Type 1 optional input; see below).

Total concentration (units of FLAG) of Calcium (1), Magnesium (2) , Sodium (3) , Potassium (4) , Chloride (5) , Sulfate (6) , Carbon, as HCO~ (7), Silica, as Si09 , (35) Iron (8), Phosphate,

3- as PO, (45) , Strontium (88) , and Fluoride (62) , where thenumbers in parentheses are the appropriate species index numbers in the program. To enter other species, use Type 2 optional input cards (see below) .

-6-

DESCRIPTION OF OPTIONAL INPUT

Additional input is optional and must appear between cards 4 and 5. Two types of optional input cards are used, Type 1 and Type 2. If used, Type 1 optional input cards must precede Type 2 optional input cards. »

Type 1 Optional Input

These cards are used to limit the number of species or minerals in the output. Omit these cards to obtain the complete calculated results for the given water analysis. To specify individual species for which output is desired, read ISPEC values of KSPEC(I),

Variable Format

(KSPEC(I), 1=1, ISPEC) (1615)

where KSPEC(I) is the index number of the ith species for which output is desired. Species index numbers are listed in the data tables of Attachment A. To specify individual minerals for which saturation data is desired, read IMIN values of KMIN(I),

Variable Format

(KMIN(I), 1=1, IMIN) (1615)

where KMIN(I) is the index number of the ith mineral reaction for which saturation output is desired. Mineral index numbers are listed in the data tables of Attachment A. If values of both KSPEC(I) and KMIN(I) are entered, KSPEC(I) must be read before KMIN(I).

Type 2 Optional Input

Type 2 optional input cards are used to (1) enter the total concen­ trations of species not included on cards 3 and 4 ("CONC" card(s)); (2) change the convergence tests on mass balance for anion species ("EROR" card); (3) change AH° ("DELH" card(s)); (4) change log K at 25°C ("TABL" card(s)); or, (5) change existing analytical expressions for logK(T), or enter new analytical expressions for reactions previously defined by the Van't Hoff equation ("LOCK" card(s)). It is possible to use none, 1,2,3,4. or all 5 cases of type 2 optional input in a single data set, providing the sequencing is 1., "CONC", 2., "EROR", 3., "DELH", 4., "TABL",5.. "LOCK". The form of type 2 optional input cards is

Variable Format

(WORD,(INT(I),VAL(I), 1=1,5)) (A4,1X,5(I3,E12.5))

-7-

where WORD is "CONC", "EROR", "DELH", "TABL", or "LOCK". The meaning of INT(I) and VAL(I) is described below for each value of WORD.

"CONC" enters concentration (units of FLAG) of constituents not on card 3 and 4. INT(I) = 17 (H2S), 18 (CO.), 39 (NH4), 51 <A1), 81(Li), 85 (N03), 86 (H2C03), 87 (B), 90 (Ba), 98 (Br), and 101 (Mh). VAL (I) is the concentration of the INT(I) constituent.

"EROR" overrides pre-set mass balance convergence constraints on anions. Pre-set values of EROR1-EROR5 are 0.001 (0.1 percent error in mass balance). EROR1-EROR5 are entered on the "EROR" card as VAL (1) - VAL (5). In the order l=carbon, 2=sulfate, 3=fluoride, 4=phosphate, 5=chloride. Values of INT(I) are not used.

"DELH" overrides values of the standard delta enthalpy of reaction(25 degrees C) used in computing the temperature dependence of equilibriumconstants from the Van't Hoff equation. INT(I) is the index numberof the ith reaction (see Attachment A) for which DH(I) is to be changedand VAL(I) is the appropriate new value of DH(INT(I)).

"TABL" overrides values of LOGKTO(INT(I)) (log K of reaction at 25 degrees C used in computing the temperature dependence of equilibrium constants from the Van't Hoff equation). INT(I) is the index number of the ith reaction (see Attachment B) for which LOGKTO is to be changed and VAL(I) is the appropriate new value of LOGKTO(I).

"LOCK" overrides existing analytical expressions for log K as a function of T (degree K), or enters as many as 35 new, previously undefined analytical expressions for log K (T degrees K).The form of the analytical expression must be

Log KT(INT(I)) = A + BT + C/T + DT2 + E/T2 }

where T is temperature in degree K and A,B,C,D, and E are fit parameters (may be zero or blank). INT(l) is the index number of reaction (see Attachment A) and INT(2)-INT(5) are ignored. VAL(1)=A, VAL(2)=B, VAL(3)=C, VAL(4)=D, VAL(5)=E.

Values of A,B,C,D, and E for analytical expressions pre-set in the program are listed in the data tables of Attachment A. Note that the analytical expression for reaction (26) is further modified in the program (see card B1600 of Attachment B). If any of the cards, "EROR", "DELH", "TABL", "LOCK", are used in a particular water data set, calculations for that data set and all subsequent data sets will use the new input values. The last card in each water analysis data set must be blank, whether option cards are used or not.

-8-

OXIDATION-REDUCTION OPTIONS

There are several possible options that result from choosing appro­ priate values of EHM, EHMC, DOX, EMFZ, and PECALC. To specify Eh directly, the desired value should be read as EHM (in volts). This value of Eh will not be corrected for temperature. If the redox potential with Calomel reference was measured in the field and it is desired to correct that measurement for temperature, the measured value should be read as EHMC (in volts). EHM must then be greater than 9.0. Any value of EHMC less than 9.0 is then considered real and a temperature-corrected Eh (EHM) is computed. If no Eh was measured, EHMC and EHM should be greater than 9.0. If the Eh-Calomel of a standard Zobell's solution was measured in the field, read the value as EMFZ (in volts) and EHMC will be corrected. If EMFZ is greater than 9.0, EHMC will be corrected for temperature only (provided EHMC is less than 9.0).

Oxidation-reduction equations used in calculating the distribution of species are written in terms of pe. pe can be computed from Eh, dis^- solved oxygen, or SO? / S=. If PECALC =1, pe is calculated from Eh. If PECALC =2, pe is computed from dissolved oxygen. If PECALC = 3, pe is computed from dissolved oxygen using the relation of Sato (1960). If PECALC = 4, pe is computed from SO" / S= (provided SO^ and total H2S are entered). If PECALC = 0, redox relations are ignored. If pe is to be computed from dissolved oxygen, a real value of DOX must be read, and to calculate pe from Eh requires either a real value of EHM or EHMC to be read.

Six possible examples of redox options are tabulated and discussed below:

EHM EHMC EMFZ DOX PECALC

1)2)

3)

4)

5)

6)

< 9

< 9

> 9

> 9

> 9

blank

> 9

> 9

< 9

< 9

< 9

blank

> 9

> 9

> 9

> 9k

< 9

blank

blank

> 0.0

blank

> 0.0

blank

blank

1

2

1

2

1

0or >9 or >9 or >9

-9-

1) Eh is to be used without correction and pe is to be computed from Eh.

2) Same as 1) but pe is computed from dissolved oxygen.

3) Eh was measured in the field and it is desired to correct that measurement for temperature. The Eh of standard Zobell's solution was not measured, pe is to be computed from Eh.

4) Same as 3) but pe is to be computed from dissolved oxygen.

5) Eh was measured in the field as well as the Eh of standard Zobell's solution, pe is to be computed from Eh.

6) No information on oxidation-reduction is available, and redox relations are to be ignored, (pe is set to 100)

Other possible options should be obvious from these examples.

OUTPUT

The output of WATEQF consists of a table of data constants used in the calculations (printed once). The output for each water analysis lists the title card and tabulates most of the input data. At the end of each iteration through the equilibria equations, the difference between the computed and analytical anion species is tabulated so that convergence progress can be followed. When convergence on the aqueous model has been obtained, various parameters that describe the solution are printed. Some of these are ionic strength, activity of water, comparison of com­ puted and analytical charge balance, pH, pe, temperature, P n , Pn , totalLU2 2 dissolved solids, and others. The concentration of each aqueous species(value greater than zero) is printed as ppm, molality, and activity, and log values, as well as ionic activity coefficients and their logs. Mole ratios and log activity ratios are computed and tabulated. The activity product of 101 minerals and their saturation index, AG and logK are printed. Saturation output for minerals in which the activity of an ith species in the reaction is zero are omitted from the tabulation. Parts of the output can be deleted with appropriate values of PRT(I), as des­ cribed above, and by use of the ISPEC and IMIN options.

-10-

REFERENCES CITED

Garrels, R. M., and Christ, C. L., 1965, Solutions, Minerals, andEquilibria. Harper and Row, 450 p.

Earned, H. S., and Davis, R., Jr., 1943, The ionization constant ofcarbonic acid in water and the solubility of carbon dioxide inwater and aqueous salt solutions from 0 to 50°: Am. Chem. Soc.Jour., v. 65, p. 2030-2037.

Earned, H. S., and Scholes, S. R., Jr., 1941, The ionization constantof HCO~ from 0 to 50°: Am. Chem. Soc. Jour., v. 63, p. 1706-1709.

Hem, J. D., 1963, Chemical Equilibria and Rates of Manganese Oxidation.U.S. Geological Survey Water-Supply Paper 1667-A.

Jacobson, R. L., and Langmuir, D., 1974, Dissociation constants ofcalcite and CaHCO* from 0 to 50°C: Geochim. et Cosmochim. Acta,v. 38, p. 301-3187

Langmuir, D., 1969, The Gibbs free energies of substances in the systemFe-02-H20-C02 at 25°C: U.S. Geol. Survey Prof. Paper 650-B, p.

B180-B184. Latimer, W. M., 1952, The oxidation states of the elements and their

potentials in aqueous solutions. Prentice-Hall, Incl., 392 p. McGee, K. A., and Hostetler, P. B., 1975, Studies in the system MgO-

Si02-C02-H20 (IV): The stability of MgOH+ from 10° to 90°C.

Amer. Jour. Science, v. 275, p. 304-317. Nordstorn, D. K., and Jenne, E. A., 1976, Fluorite Solubility equilibria

in selected geothermal waters. Geochim. Cosmochim. Acta (in press), Reardon, E. J., and Langmuir, D., 1974, Thermodynamic properties of

the ions pairs MgCO? and CaCO° from 10 to 50°C: Amer. Jour. Sci.,v. 274, p. 599-612.

Robie, R. A., and Waldbaum, D. R., 1968, Thermodynamic Properties ofMinerals and Related Substances at 298.15°K(25.0°C) and oneatmosphere (1.013 Bars) Pressure and at higher temperatures. U.S.Geological Survey Bulletin 1259, 256 p.

Sato, Motaki, 1960, Oxidation of sulfide ore bodies. Econ. Geology,v. 55, p. 928-961, 1202-1231.

Siebert. R. M., 1974, The Stability of MgHC03 and MgCO° from 10°C to90 C. Ph.D. dissertation, Univ. of Missouri.

Stumm, Werner, and Morgan, J. J., 1970, Aquatic Chemistry. Wiley-Inter- science. 583 p.

Truesdell, A. H., and B. F. Jones, 1973. WATEQ, a computer program forcalculating chemical equilibria on natural waters. Nat. Tech. Info.Serv. P.B. 220464.

Truesdell, A. H., and Jones, B. F., 1974, WATEQ, a computer program forcalculating chemical equilibria on natural waters. U.S. Geol.Survey Jour. Research, v. 2, p. 233-248.

Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M.,and Schumm, R. H., 1969, NBS Tech. Note 270-4. Selected Values ofChemical Thermodynamic Properties, Tables for elements 35 through53 in the standard order of arrangement. 152 p.

-11-

Table 1: Revised Thermochemical Data

I

10

13

25

31

33

36

63

69

74

75

78

79

80

149

158

159

160

161

162

163

164

165

166

167

NREACT

SIDERITE

CALCITE

KMGOH

KNAHPO

KKHPO

KH2C03

FLUOR

KHC03

KMGC03

KMGHC03

KCAHC03

KCAC03

KCAF+

BLANK

KMN 3+

KMNCL+

KMNCL2

KMNCL3-

KMNOH+

KMN(OH) 3

KMNF+

KMNS04

KMNN03,2

KMNHC03+

Source

1

23/

3

4

4

54/

6

74/

8

9

2

10

11

12

13

14

14

14

14

14

14

15

14

16

AH LogK 25 Cr

-10.55

0.0 0.23

0.0 0.29

-10.50

4.12 0.94

25.760 -25.507

0.0 0/607

0.0 0.041

0.0 -0.305

0.0 3.449

0.0 7.782

0.0 0.850

3.700 1.708

-0.396 0.059

0.0 1.716

-12-

Analytical Expression for log K(T K)

13.543 - 0.0401T - 3000./T

0.684 + 0.0051T

-14.8435 + 0.032786T + 3404.71/T

-6.4980 + 0.02379T +2902.39/T

0.991 + 0.00667T

2.319 -.011056T + 2.29812xlO~5T2

-2.95 + .0133T

-27.393 + 4114/T + .05617T

OPTIONAL FORM NO. toMAY issa EDITIONGSA F?MR («i CFH) loi-it.e

UNITED STATES GOVERNMENT

MemorandumTO The Record DATE: April 21, 1977

FROM L. Niel Plummer

SUBJECT: Summary of Errors, changes and revision of WATEQF

1. Reaction 91 log K25 = +40.64 , AH° = -65.44. write up. Program is correct, however.

is wrong in

2. Table errors on AH£ and log K25 for reaction 90. Correct AH£ = 4.9104. Correct log K25 = 1.9869. Analytical expression which is currently used in the program is correct.

3. Summation of mass balance on anions now preceeds anion loop. Listing shows summation within anion loop. Printed mass balance in sea water test case in WRI 76-13 are eroneous owing to improper loca­ tion of summation.

4. CaF was enormously summed into COpTOT* See card E320.

5. If Fe or Mn are specified without redox information, the program will now set PE to zero, print a message stating that such has occurred, and continue calculation. Previously, the program would fail on iteration. With this change, the program will not fail but, of course, one should always supply desired redox information whenever iron and/or manganese are specified.

6. A new option for units of input concentration has been added. Millimoles per liter (1000 x M) may be input. For this case, FLAG is set to zero.

7. In correcting titratlon alkalinity for non-carbonate alkalinity, a new option (CORALK = 3) has been added which considers all possible non-carbonate alkalinity species. This is similar to CORALK = 0 which considers only the major non-carbonate alkalinity species.

8. The values of EPM are now correctly calculated from PPM rather than molality.

&SOIO-IOt)

Buy U.S. Savings Bonds JUcgtlarly on the Payroll Savings Plan

9. Prints have been added to show:

a) FLAG, CORALK, PECALC, IDAVES options

b) charge balance in Meq/kg HpO

c) total alkalinity in Meq/kg H20

d) carbonate alkalinity in Meq/kg H«0

10. It is now possible to override an existing analytical expression with a Van't Hoff relation for the temperature dependence of equilibrium constants. This is done internally whenever an optional DELH or TABL card is used for a pre-existing analytical expression.

11. The minimum number of iterations required to solve the aqueous model within the mass balance limits has been changed from 5 to 2.

12. Corrections to WRI 76-13

a) Page 54, line 69 should read: CO^" + H+ = HCO^

b) Page 57, line 127 should read: Li + + S0^"= LiSO~

13. Other changes have been made to improve the efficiency of the program which may be found by comparison of a current listing with that in WRI 76-13.

V

L. Niel Plummer Hydro!ogist

OPTIONAL FORM NO. 10MAY 1»82 EDITIONGSA FPMR (41 CFR) IOI-M.C

UNITED STATES GOVERNMENT

TO

FROM

Users of WATEQF - A FORTRAN IV version of WATEQ: DATE: A Computer Program for Calculating Chemical Equilibria of Natural Waters

May 17, 1977

L. Niel Plummer, WRN, NR

SUBJECT: change of resident disk for WATEQF and TABLES, and program revision.

Due to a recent upgrading of on-line disk facilities in the Northeastern Region, it has been necessary to move the-program WATEQF and data TABLES , from the on-line disk CCD907 to CCDS08. To use WATEQF off a Reston disk after May 17, 1977, your control language should be changed to indicate the new location of the program and data file (CCD808).

The following control cards will now execute the program:

/*RELAY PUNCH RE2//...(JOB CARD).../*ROUTE PRINT REMOTEXX/ / EXEC PGM=WATEQF, REGION= 11 OK//STEPLIB DD UNIT=3330,VOL=SER=CCD808,DISP=SHR,DSN=BFJONES.PGMLIB//FT05F001 DD DDNAME=SYSIN//FT06F001 DD SYSOUT=A//FT07F001 DD SYSOUT=B//FT09F001 DD UNIT=3330,VOL=SER=CCD808,DISP=SHR,// DSN=BFJONES.TABLES.WATEQF//SYSIN DD *

Insert Water Analyses Here // $$$

In addition a revision of WATEQF has recently been completed. The more important changes are summarized on the attached memo dated April 21, 1977. You may obtain current listings or card decks of WATEQF by using one of the attached utility routines.

If you have any questions or problems, feel free to contact me.

L. Niel Plummer Hydro!ogist

Attachment

i i Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

NREACT Source AH° LogK 25°C Analytical Expression for log K(T K)

168 KMN04-

169 KMN04—

170 BLANK

171 KHMN02--

172 MANGANO

173 PYROLUST

174 BIRNSITE

175 NUSTITE

176 BIXBYITE

177 HAUSMITE

178 MNOH2

179 MNOH3

180 MANGANIT

181 RHODOCHR

182 BLANK

183 MNCL2

184 MNCL2,1W

185 MNCL2,2W

186 MNCL2,4W

187 TEPHRITE

188 RHODONIT

189 MNS CRN

190 MNS04

191 MN2S04,3

192 MN3P04,2

193 MNHP04

14

14

12

17

18

18

19

19

18

18

19

17

19

18

12

18

14

14

14

18

18

17

14

17

17

14

r

176.620

150.020

0.0

-24.025

-29.180

0.0

0.0

-15.245

-80.140

4.100

20.090

0.0

-2.079

-17.622

-7.175

1.710

17.380

-40.060

-21.885

-5.790

-15.480

-39.060

2.120

0.0

-127.824

-118.440

-34.440

17.938

15.861

18.091

17.504

-0.611

61.540

-12.912

-35.644

-0.238

-10.539

8.760

5.522

3.974

2.710

23.122

9.522

3.800

2.669

-5.711

-23.827

-12.947

-13-

Data sources for Table 1

1. Langmuir (1969).2. Jacobson and Langmuir (1974).3. McGee and Hostetler (1975).4. Estimated using the pH and composition of NBS buffers

(6.86 and 7.41), and charge balance.5. Earned and Davis (1943).6. E. A. Jenne (1975), oral communication to B. F. Jones.7. Earned and Scholes (1941).8. Siebert (1974).9. Fit to the data of Siebert (1974).

10. Reardon and Langmuir (1974).11. Nordstrom and Jenne (1976).12. Not presently used „13. AG°, AH° Mn , Wagman, £t. al, (1969). AG°, AH° Mn , Latimer (1952)

14. Wagman, et. al. (1969).15. AG°, Hem (1963), AH° Wagman, ^t. al, (1969).

16. Hem (1963).17. Latimer (1952).18. Robie and Waldbaum (1968).19. Garrels and Christ (1965).

Footnotes to Table 1

No attempt has been made for internal consistency of thermodynamic data in WATEQF. Responsibility for selection of thermodynamic data rests with the user. The revised thermodynamic data o£ Table 1 do not reflect the forth coming revision of U.S. Geological Survey Bulletin 1259 which may have profound effects on the thermodynamic data for Aluminium.

'The ion pairs Na2CO° and Na2SO° are no longer used in WATEQF. The

CaF ion pair has been added to the model.

3/This analytical expression for the calcite equilibrium constantassumes that the ion pair CaHCOJT is present in the aqueous model.

i -^ If CaHCO is deleted from the model via an optional LOCK card (by

setting log KCaHCQ+ to, for example, to -30.), log Kcalcite should

by changed to 13.8/0 - 0.04035T - 305.9./T, as recommended by Jacobson and Langmuir (1974).

-14-

4/Reactions 36 and 63 have been changed from dissociation (in WATEQ)to association in WATEQF. For the most part, all ion pair reactions are written as association in WATEQF, that is, most ion pair equilibria show the pair as a product. All mineral equilibria are written with the solid as reactant. See Attachment C for details of all reactions in WATEQF.

-15-

Attachment A: Test case, data, and computed results

(VJoo

o n ^ •CM rH

~* oin <a-f- <*rH * *~ r-t •

O

x n o CD^L. (^ ** 2^°°

CO **•

O O (VI

•«-» « (VIW UJ O O O ^ O • (VI O

o o 0*0J-l • O* O •o _j m o r-< o^ <[ O GO •M o • ro o in •-«-rt »-« ~+ 00 O

co 2: ••o t? o ui o

oc r- o GOit ^^ C> i""*

O" O • • ••P cr • r^ o o r-CO UJ O* vC

>H jp

^ UJ --H CO nr OQ C^ CD• O

JC O

Q. • o r»-

LL (VI • (VIO •-• ^ o

(VI Ocr o o • oJ rvi o o >— • •< ccJK r-« O

•^ IT! 0s« o nUJ » • • VI U> IV O O O

CVi ^ ^ ^ Z.*• •-* o o v

O O X

-16-

< oiftoooo-*ooooo-*oooo-*ir»inooooo-*inoooooooooinoin-*-*-*o«o.*o«o o «

to ooo oo H-o(*> (M < « « <« « O « •*~ -* O x «•>•*•*•* m t~ o of) x o « •* ro o •* o o o c\i o <*) •* f> -* ro ro < -* a •*> o -*

<*> xxoa. o _i _i x o «j o ««-• «-i _ixooo_iO(MOO oruouo -* o oo

_IOUbJUlUIUJUlUiniUJUIZOO(9OOO-«l*>(MX

I »- II < Ii a i

IOOOOOOOOO

omowm-<«-«nj't>

o —• "• <* «M inX ^ -» r O • •

i (MI x <\j o iru.rrvjrooj — ~<o in •«•

-17-

I M

00 I

50 51 52 53

54 55 56 57 58

59

60 61 62 63 64 65

66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 61 82 63 84 85 86 87 68 89 90 91

92 93 94 95 96 97 98 99 100

101

102

103

104

105

106

107

108

109

110

CHLC

PAL

CMT

GI8CRS

BOEHM

PYRCPH

PHILIP

ERICN

CLINOP

HORCEN

NAhCOL

TRONA

NATRON

THRNAT

FLLCR

PONTCA

HALITE

THEKAR

PIRABI

WACKIT

KHCC3

KNAC03

KNAHC03

KNAS04

KKSC4

KH6C03

KMGHC03

KPGS04

KCACH

KCAHC03

KCAC03

KCAF*

KALCH

KALCH2

KALCH4

KALF

KALF2

KALF3

KALF4

KALS04

KASC42

KHSC4

KH2SC

KH2S

KHS

KOXV

KCH4

HYXAPT

FLOAPT

CHAL

CMAGAOI

CRISTO

SILGEL

QUARTZ

KFECH2

KFECH3

KFECH4

KFECH2

VIVIAN

MAGNET

HENA

TIMAGhEM

54,7600

29.8200

14,4700

11.9050

0.0

0.0

0.0

0.0

0.0

3.7200

-18,0000

15.7450

•2.8020

1.5300

58,3730

0.9180

-0,5720

18,9870

0,0

-3.6040

8.9110

0.0

1.1000

3.0820

2.7100

1.0770

1.2700

1.1900

5.4100

4.0230

4.1200

1.9900

0.0

-9.3200

0.0

20.0000

2.5000

0.0

2.2900

3.0700

H-

' '

* a * Qft

^ V'V A" ' V

-S'

•»G,*400

5.2990

12.1000

34.1570

-57.4350

17,2250

19.6950

4.6150

0.0

5.5000

4.4400

6.2200

0.0

0.0

0.0

28,5650

0.0

•40.6600

-30.8450

0.0

-90.6100

-85.3200

-32.7700

-33.4100

-42.4300

-19.8600

0.0

0.0

0.0

-0.5480

-0.7950

-1.3110

0.1250

•10.5000

•45.0000

1.5620

-0.1790

-1.1130

-4,6310

10,3300*

1,2680

-0,2500

0,7200

0.8470*

2.9600*

1.0660*

2.2380

1.4000

1.0150*

3.1530*

0.9400

8.9980

18,2350

33.9380

7.0100

12.7500

17.0200

19.7200

3.2000

5.1000

-2-^45*0*

/.""?

40.6440

-6,9420*

-12.9180

-20.7600

30^7410

-59.3500

-66.7900

-3.5230

-14.3000

-3.5860

-3.0170

-4.0050

-20.1730

-26,5710

-34.8940

-20.5700

-36.0000

-9.5650

-4,0070

6.3700

50 51 52 53 54 55

56 57 5fl

59 60 61 62

63 64 65 66 67 6fl

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 ea 89 90 91 92 93 94 95 9f 97 9* 99 100

101

102

103

104

105

106

107

108

109

110

NAHP04

AL ALOH

AL(OH)2

AL(OH)4

ALF

ALF2

ALF3

ALF4

ALSO*

AL(S04)2

KHP04

F HS04

H FEH2P04

H2S CALC

HS S BLANK

P02

PCH4

AH20

PGHP04

CAHP04

CAP04

CAM2P04

FE(OH)2

FE(OH)3

FE(OM)4

FE(OH)2

LI LIOM

LIS04

NH4CALC

N03

H2C03

B TOT

SR SHOH

BA BAOH

NH4S04

HCL

NACL

KCL

H2S04

BLANK

BRFEH2P04

FEHP04

PNPN CNCL

HNCL2

PNCL3

MNOH

HN(OM)3

HNF

HNS04

MN(N03)2

-13 2 1

-12 1 0

-11

• • • •

0 -1 -2 0 0 0 0 0 0 -1 1 1 0 -1 0 1 0 -1 1 -I 0 0 2 1 2 1-10 0 0 0 0 -1 2 0 2 3 1 0

-11

-11 0 0

5.4

9.0

5.4

5.4

4.5

5.4

5.4

0.0

4.5

4.5

4.5

5.4

3.5

4.5

9.0

5.4

0.0

3.5

5.0

0.0

0.0

0.0

0.0

0.0

0.0

5.4

5.4

5.4

0.0

5.4

0.0

6.0

0.0

5.0

2.5

3.0

0.0

0.0

5.0

5.0

5.0

5.0

5.0

0.0

0.0

0.0

0.0

0.0

4.0

5.4

0.0

6.0

9.0

5.0

0.0

5.0

5.0

5.0

5.0

0.0

0*0

118.9692

26.9815

43.9889

60.9962

95.0110

45.9799

64,9783

83.9767

102.9751

123.0431

219.1047

135.0814

18.9984

97.0696

1.0080

152.8340

34.0799

33.0720

32.0640

1.0000

31.9988

16.0430

18.0153

120.2914

136.0594

135.0514

137.0673

89.8616

106.8689

123.8762

89.8616

6.9390

23.9464

103.0006

18.0386

62.0049

62.0253

10.8100

87,6200

104.6274

137.3400

154,3474

114.1002

36.4610

58.4428

74.5550

98.0775

1.0000

79,9090

152.8340

151.8200

54,9400

54,9400

90,3970

125*8540

161.3110

71.8480

105.9640

73.9400

151.0060

178*9560

Ill

112

113

11

4115

11

6117

118

119

120

121

12

21

23

124

125

12

6127

128

12

91

30

131

13

21

33

134

135

13

61

37

138

139

140

141

14

2143

144

145

14

6'

147

14

81

49

150

151

152

153

154

15

5156

15

71

58

159

160

161

16

2163

164

165

166

167

168

16

9170

171

GO

ET

HG

RE

EN

AF

EO

3A

AN

MT

EP

YR

ITE

MO

MBF

MONT

ABH

UN

TIT

EG

HE

GIT

EFE

SFPT

KF

EH

2P

KC

AP

04

KC

AJ-

2PK

VG

P04

KM

GH

2PKL

ICH

KLIS

04

KN

H4R

LA U

K O

NK

SR

CH

KB

AC

HK

NH

4SO

KH

CL

KK

AC

LK

KC

LK

H2

S0

4K

02

S

AT

OK

C02

KF

EH

PO

KF

EH

P*

ALO

3A

PR

EH

NT

ST

RC

NT

CE

LES

TB

AR

ITE

tuIT

t-E

RIT

ST

RE

NG

ITLE

ON

BLA

NK

NE

SG

UE

AH

TIN

K 0

2A

QKM S

EP

P

TD

IAS

PM

AIR

KT

KF

E»-

P2

KC

N

3*

KV

KC

L*

KM

NC

L2K

HN

CL3-

KM

KO

*K

HN

(O

H)3

KM

NF

*K

MN

S04

KM

NK

03»2

KM

NK

T03*

KM

NC

4-

KM

NC

4--

8LA

KK

KM

HK

O?

--

25

.55

50

o.o

•*0

.06

2.4

80

01

1.3

00

00

.00

.0-2

5.7

60

00

.00

.00.0

3.1

000

3.4

000

3.1

00

03.4

000

4.8

320

0.0

•187.0

550

39

.61

00

1.1

500

1.7

50

00

.01

8.6

30

00

.00

.00

.00

.0•5

.00

00

0.0

0.0

12

.99

00

10

.39

00

2.3

610

•1.0

54

06

.14

10

6.9

50

0•2

.03

00

90

.07

00

0.0

•4.5

51

00.4

980

33

.45

70

13

.34

50

0.0

•15

.40

50

26

.14

00

0.0

25

.76

00

0.0

0.0

0.0

0.0

0.0

0.0

3.7

00

0•0

.39

60

0.0

17

6.6

20

01

50

.02

00

0.0

0.0

•41

.20

00

•63.1

900

4.8

65

0•8

4.2

400

•lfl.4

600

•34

.97

00

-29

.78

00

-30

.51

00

-17

.97

00

•3.9

15

02.7

000

6.4

59

01

.40

80

6.5

69

01

.51

30

0.2

00

00

.64

00

11

9.0

77

0•3

1.9

60

00

.82

00

0.6

400

1.1

10

0•6

.10

00

•1.6

02

0-1

.58

50

•1.0

00

0•1

1.3

850

•1.4

52

03

.60

00

-7.6

13

0-3

1.6

100

•11.5

200

•11

.41

00

-5.9

740

•9.7

56

0•1

3.3

200

•26.4

000

•69

.57

00

0.0

•5.2

11

0•1

8.4

00

0-2

1.4

95

0-1

3.9

98

0-3

7.2

120

-35

.06

00

-26

.62

00

-7.5

83

0-2

5.5

07

00.6

070

0.0

41

0-0

.30

50

3.4

49

07

.78

PO

0.8

50

01.7

080

0.0

590

1.7

160

-12

7.8

24

0-1

18

.44

00

0.0

-34

.44

00

lu 112

PN04

113

VN04

114

BLANK

115

HMN02

1 S.O

•1

3.0

•2

5.0

0 0.0

•1

S.O

115.9590

116.9400

118.9400

1.0000

87.9480

172

K-ANGAMO

173

PYRCLUST

17*

HIRf^SITE

175

NUSTITE

176

8IXEVITE

177

HAUSflTE

178

MNOH2

179

MNOH3

180

MANGANIT

181

RHOCOCHR

182

BLANK

183

HNCL2

184

HNCL2.1W

185

MNCL2.2*

186

MNCL2t4*

187

TEPHRITE

188

RHOCONIT

189

MNS GRN

190

MNSC4

191

fN2S04»3

192

MM3P04»2

193

*NHP04

-24.0250

-29,1800

0.0

0.0

-15.2450

-80.1400

4.1000

20.0900

0.0

-2.0790

0.0

-17.6220

-7.1750

1.7100

17.3800

-40*0600

-21.8B50

-5.7900

-15.4800

-39.0600

2.1200

0.0

17.9380

15.8610

18.0910

17.5040

-0.6110

61.5400

-12.9120

-35.6440

-0.2380

-10.5390

0.0

8.7600

5.5220

3.9740

2*7100

23.1220

9.5220

3.8000

2*6690

-5.7110

-23.8270

-12*9470

••••

• DENOTES TH

AT AN ANALYTICAL EXPRESSION FOR KT

HAS BEEN USED

SUMMARY OF

ANALYTICAL EXPRESSIONS OF TH

E FORM

LOG K

* A*B«T*C/T*0»T»«2*E/T««2

O

II

NREACT

13

CALCITE

14

KH3SI04

15

KH2SI04

25

KPGOH

26

KH3B03

27

KNH3

36

KH2C03

69

KHCC3

73

KKSC4

74

KPGC03

75

KMGHC03

78

KCAK03

79

KCAC03

90

KHSC4

92

KH2S

13.5430

6.3680

39.4780

0.6840

28.6059

0.6322

-14.8435

-6.4980

3.1060

0.9910

2.3190

-2*9500

-27.3930

-5.3505

11.1700

•0.0

40

1>

0.0

16

3•0

.06

59

0.0

05

10

.01

21

-0.0

01

20.0

328

0.0

238

0.0

0.0

067

•0.0

11

10.0

133

0.0

562

0.0

183

•0.0

23

9

-3000.0

000

-3405.8

999

-12355.0

977

0.0

1573.2

100

-2835.7

598

34

04

.71

00

29

02

.38

99

-673.5

999

0.0

0.0

0.0

4114.0

000

55

7.2

46

1-3

279.0

000

0.0 o.o

0.0

0.0

0.0

0.0 o.o

0.0

0.0

0.0

2.2

961E

-05

0.0 o.o

0.0 o.o

0.0

0.0

0.0

0*0

0.0

0.0

0.0

0*0

0.0

0.0

0.0

0.0

0*0

0.0

0.0

SEA WATER OF P.K.RREtaER

FROM CHEMICAL OCEANOGRAPHY (1975)

INITIAL SOLUTION

TEMPERATURE *

25.00 DEGREES C

PH *

6.200

••••• OXIDATION -

REDUCTION •••••

ANALYTICAL EP^CAT »

608.205

ANALYTICAL EPMAN

606.626

DISSOLVED OXYGEN *

0.0

MG/L

EH MEASURED talTH

CALOMEL *

9.9000 VOLTS

MEASURED EH OF

ZOBELL SOLUTION *

9.9000 VOLTS

CORRECTED EH •

0.4000 VOLTS

PE COMPUTED FROM CORRECTED EH «

6.761

••• TOTAL CONCENTRATIONS OF

INPUT SPECIES ••

I N3SPECIES

TOTAL

MOLALITY

LOG TOTAL

MOLALITY

TOTAL

MG/LITRE

CA MG NA K CL SO*

HC03

SI02 TOT

FE P04

SR F AL LI N03

B TOT

BA BR MN

2 2 1 1-1 -2 -1

0 2-32

-13 1

-1 0 2

-1 2

1.033261E-02

5.333470E-02

4.708921E-01

9.768441E-03

5.489001E-01

2.834IS54E-02

2.311902E-03

7.143362E-05

3.599738E-08

2.010951E-06

9.177571E-05

6.878075E-05

7.*50825E-08

2.607451E-05

3.2*2?36E-06

4.126553E-04

1.463773E-08

8.427915E-04

3.659167E-09

•1.9

85

8•1

.27

30

•0.3

271

•2.0

102

•0.2

605

•1.5

475

•2.6

360

•4.1

461

•7.4

437

•5.6

966

•4.0

37

3•4

.16

25

•7.1

278

•4.5

A3

6•5

.4B

92

•3.3

842

•7.8

345

•3.0

743

•8.4

36

6

4.119998E 02

1.290000E 03

1.077000E 04

3.799998E 02

1.936000E 04

2.709000E 03

1.403400E 02

4.269999E 00

2.000000E-03

1.899999E-01

7.S99999E 00

1.299998E 00

2.000000E-03

1.799999E-01

1.999999E-01

4.439999E 00

2.000000E-03

6.699998E 01

2.000000E-04

-zz-

» » » G> o Q o G> X M O it (1 T f/l Oooz onozO *• U» O •»>

zroonorO Ul O *•o ui

mmmmmninimmTmmmmmmmmmmm i i i i i i

•-• 11 TI TI n» ni n>

» O » oor-» a x

o n o •*•O Otfl O

•••!«) O O O O O O N O O O O O Oo o o o o o o>ro r»i m« -^O O O O

m «• w ro i- M

*- «-fU Ul *>

a OB ui >v » » » ro m ui ro ru OB *> » » » u> » o> *• *• o ro i— ui ui » « ui m m m m m i i t i i o o o o «» <o <o <o <o o

+*••+•& ui •*+~ <o r~

<o ni m o » o *• ni

O> O -4

v a o -Hmm mei z e ao ei m »• -< o

-i o r» it it r- it » omonoonn

» iw-4 » » ui rv m u «> ui «> w u* iw o

ui »- w w *• w *• ui w w w *• rw O1 *• » w » •«• iw iw > • •••••••••••••••••••• n»* ~4 -^»< -^»- -^ -^ .g -j »< o ^4 a rw -•< ru o o> ui -4

M *• ro MN M-< N -e <

•H o N n N M -< -« 0-4

• Ul IW •< (*l N N O • Ul Ul • »• N • X»- o o » ro*• IW -^ » O»*•• ui i o• • O -^ U>~ N<o o o -^ • *•X ui » m » «o o ui i»moNO*- root*r- o *> <o o <o

m *• at fO M W

»W U) <flM l\»in o o -^ ui ro u«»- m i\> « a M a « o *• o> -j o m m m m m < i f i i o o o o o •o <c OB a <o

o uiUl i—o» « ui ro

i » i i i rv u» IM — M • • • • •-4 » -^ 0> -iiuuiniM> PO• -* a • OB»«»«.»a -<< a a CB*•<*>» <o «• m m m m m i i • i iro ro ro ro ro

O -t-* m

a

tn w ui uiu» ui ui ui ui ui ui w o> IB ui *• ui *- o o » no

Oll)0«M«MM<OIMiO<M<OIMOIMOIM<O<OOiniMIVIIM««IM<O<M<M<MOMlAO«M<MOIM<OIM<MIMino(VI(V|iO<O<V<M«<M4><M«<M<O<O<O«MO

II I I i

(vi«niNifOfOfO<^

iiiiiiiiiil|l m lal lal lai ||J |£j lal ||J ^ ^ ^ |^ ||J lal lal lal lal ^J

i i i i i i i i cv >^

la i ^ la i |£j |^J ^J l» I |^ |^ (tf la I

la I ia t la I 4^ ||J |^ ||J la I {^ la I la I ||J |^J ^J ||J ** * ** * IftJ klj 't 1 U laj kljl«l tjl la I ^J Itf tft |^J la I la I la I la I |^ la I |^ la I la I la I lal ia i la. ia t ^ l|l |^ la I la I ^ |^ ^J la I {^ la I

IIXIIOOQ.Q.-* *M o •»MMM xxoooooaa«v.vo ouoz_i_i_i •» •» o xoo

— x«/>—ouuu.oo.£xxxx«/ic»uo«/i

^^ — in IT' intn if. u.

-23-

i «M f-t M "••o e o o

!•• ^fl !•• Ijf !•• ^ ̂ ̂ *l ^ ^*l ^ ^«l !•• ^fl la I frf

Ifcl UM* 1 M Ifcl If 1 Ifcf H 1 '•'

n w r^ o cr

II II

* mo> m^ « o * «<v o» M •*«•»••*•

ttt*+t»~*t it

M IM >« <n ni o

00000000

(9 "• io i »4|l>^l IIII II

1C m rt^J * «x CM « c» ^ ina. r^ e m r- <c

^J IftJ '*' ^J I&J I4J i&J '•' 1^ 1*1 Ijl Ijl 1^1

>->i-« <« CD n •»

ro in <o « »< ni M -* »* m oo •» -* M -^

oco— •in nj«nco iiii

o> in »^ lit

CDIM f*)in O^^O^CM^iO 1^ (V^O*^i ^^ TO ^^ o f\j o *^ ^* ^) ^^ o o o in ^* o oii ii i i i i i i i i i ii i

UIUI UIUI bjujiaJUIUlUJtAlliJUl kllUJUIUJo ^ ^} <• ^) *f f\j ^ ^ in ^) ^ (vt o o o cwo •* m*^ r*'in'^rrieoo>**o> in<^o<f------ «D«00>

in <n o in(VI M (VI ——I

m **« r»« <o«n(vi«-«-aD«in o>a>o>inivitvif) — o cvtoM^fn — ooo *«*(v>o.

Ul Ul Ul Ul Ul UIUJUIUIUJUIUIUIUI UJ Ul Ul Ula <vi ••* r> «*» «vi mfvi(vir^etn(vio4> cvt o> ^ «1-1 «er^ •* oo •««or^«4<D<*>4in «*> .^ n tn

o> in M « in **•-• h- CM <vi w ~~

UUUUUUUUU2

-24-

« ~. -i « c 2 -« -H » z i- -« jj -ioi-'-«i-isii-« •of*izr~»-izai'*i»-44/>zi-> z

i i < i i

I II 8111 III! Illllllll I«UIMOJIMUI«»MO>IXII i i i rv> nj ui •»• i i*-ru<j>u)iru>*'U'<»i'\)'— w«

»- »- OB ••• -^ « * ro t— *• •— •-• <o i\> » «— t— w •»! »- « * nt -^ W»-M MM nt ro M i\i nt -«4 »- »- »- w in * »- ro

t i t i « i i i « i i i i i i i titooooooooooor\)ooooooooooooooo*-ooo

ui «o -^ » in *- » fu OD o *- » 01 »- w lu o« ••• <*i -«i ix» IM ui *• *- *• <o i— <*j w t>> bt *- <*i »- in -^ w »-

ro i i i i i i

I I I Ii iW I M I I I I lU

-92-

<zzzz:o-«zz z z x z z

ui rv> <c rwa> O

fl ft ft ft ft fl C'l C11 fl ft fl fl ftl ftI I I I IIIu»<~>r\>ooorvoooo»->ow

ooooooooooooo

i i i i i i i i i i i u»iuia>WM*-*-«-rorwi <•» uiuia>oor\>a»a><oruocn *• w

Attachment B: Program Listing

•««« PROGRAM WATECF «««« A FORTRAN IV VERSION OF WATEQ

REVISED FROM PL1 VERSION OF TRUESDELL AND JONES. NIEL PLUMMER, SUMMER 1972. LATEST REVISION ALGUSTt 1976.

«««« DESCRIPTION CF INPUT - 5 CARDS ARE REQUIRED •*••CARD 1 TITLEt JCB DESCRIPTION. (20A4)CARD 2 TEMP,PH,EHM,EHMCtEHMZ,DENS,DOX,FLAG,CORALK,PECALC,IGO,

(PRTU) ,1 = 1,4) , IDA VES, I SPEC, IMIN(5(F6.0,IX),2F5.0,IX,911*213)

TEMP....TEMPERATURE IN DEGREES CPH......NEGATIVE LOG ACTIVITY H*EHM... .PREFERRED EH ...SEE OPTIONSEHMC. .MEASURED EH ... SEE OPTIONSFMFZ. .MEASURED EH OF ZOBELL SOLUTIONDENS. .DENSITY OF SOLUTION (G/CC)DOX.. .DISSOLVED OXYGEN (MG/L)FLAG. .SIGNAL FOR UMTS OF INPUT CONCENTRATION.

l=MEQ/Lt 2»MG/L, 3=PPM, 4=MOLALITY, 0 - *"" '••>'"-,'/.'-•/ ,^~3«)CORALK..=0 IF ALKALINITY HAS NOT BEEN CORRECTED FOR BORON CETC.

=1 IF THE CORRECTION HAS BEEN MADE. =2 IF TOTAL C02 IS INPUT RATHER THAN ALKALINITY, -3 cor-tv^ ».v: A^ r*w.< ^-ov^^c ̂ :CAU«.T v

PECALC..=0 WILL SET PE TO 100, =1 COMPUTES PE FROM FH» ' *2 COMPUTES PE FROM DOX(THEORETICAL). = 3 COMPUTES PE FROM THE SATO RELATION, = 4 COMPUTES PE FROM S— - SO*—.

IGO..=0,OR BLANK, IF DESIRED TO HAVE DATA CHECKED FOR INPUT ERROR. PH MUST BE GREATER THAN 3 AND LESS THAN lit AND THE ANALYSIS MUST HAVE LESS THAN 30% ERROR IN CHARGE BALANCE. =1 IF THIS CHECK IS NOT TO BE MADE.

(PRT(I),1=1,4), CAN BE SET TO 1 TO DELETE PRINT OFTHERMOCHEMICAL DATA,MASS BALANCE CONVERGENCE ITERATIONS,

RATIOS OF IONS. AND MINERAL SATURATION, RESPECTIVELY. PRTU) SHOULD BE SET.TO ZERO OR BLANK TO OBTAIN THE RESPECTIVE PRINT.

IDAVES..=1, ACTIVITY COEFFICIENTS OF CHARGED ION PAIRS ARECALCULATED FRCM THE DAVIES EQUATION. =0 (OR BLANK), ACTIVITY COEFFICIENTS CF CHARGED ION PAIRS ARE CALCULATED FROM THF DEBYE-HUCKEL EQUATION, IDAVES HAS NO EFFECT ON GAMMA(l)- GAMMA(7), AND GAMMAU8).

ISPEC.. = NUMBER OF SPECIES DESIRED IN OUTPUTUF LESS THAN TOTAL POSSIBLE), TO OBTAIN OUTPUT OF MOLALITY, ACTIVITY, ETC, OF ALL POSSIBLE SPECIES FOR THE DEFINED SYSTEM, LEAVE ISPEC BLANK (OR ZERO, IF ISPEC GT. ZERO, ISPEC VALUES OF KSPEC (SPECIES INDEX NUMBER) MUST BE READ (SEE BELOW). IF ISPEC = BLANK (ZERO), OMIT KSPEC CARD(S).

IMIN.. = NUMBER OF MINERALS FOR WHICH SATURATION OUTPUT IS DESIRED (IF LESS THAN TOTAL POSSIBLE). TO OBTAIN SATURATION DATA ON ALL POSSIBLE MINERALS FOR THE DEFINED SYSTEM, LEAVE IMIN BLANK (OR ZERO), IF IMIN GT. ZERO, IMIN VALUES OF KMIN (MINERAL INDEX NUMBER) MUST BE READ (SEE BELOW). IF IMIN a BLANK (OR ZERO, OMIT KMIN CARDS(S).

CARD 3 CA MG NA K CL S04 (6 <E 12'.5 ) ,8X ) CARD 4 HC03 SIC2 FE P04 SR F (6(E12.5),8X)

... OPTIONAL CARDS OF TYPE 1 APPEAR HERE ...

... OPTIONAL CARDS OF TYPE 2 APPEAR HERE .. CARD 5 BLANK CARD (DENOTES END OF DATA FOR A PARTICULAR

WATER ANALYSIS.)

....DESCRIPTION OF OPTIONAL INPUT....ALL OPTIONAL INPUT MUST APPEAR BETWEEN CARDS 4 AND 5.

AAAAAAAAAA

AA

AAAAAAAAAAAAAAAAAAAA

1020304050607080SO100110120130140150160170160ISOPOO?102202302402502602702602SO3003103203303403503603703603SO4004104204304404504604704604SO~

5005105205305405505605705805SO600610

-27-

c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c

TYPE 1 CARDS MUST PRECEEO TYPE 2 CARDS.

*•*•*«***•«***•*«•****»****TYPE 1 OPTIONAL INPUT CARDS***************************(KSPEC(I)»Isl,ISPEC) (1615) KSPEC(I) IS THE INDEX NUMBER OF THE

ITH SELECTED SPECIES FOR WHICH OUTPUT IS DESIRED. OMIT CARDIF ISPEC * BLANK (OR ZERO).

(KMIN(I)»I=1»IMIN) (1615) KMIN(I) IS THE INDEX NUMBER OF THEITH SELECTED MNERAL FOR WHICH SATURATION OUTPUT IS DESIRED.OMIT CARD IF IMIN * BLANK (OR ZERO).

NCTE THAT IF BOTH KSPEC AND KMIN ARE READt KSPEC (I) MUST BE READ PEFORE KMIN(I).

***************************TYPE 2 OPTIONAL INPUT CARDS***************************WCRCt(INT(I)tVAL(I),I=ltS) (A4,1X»5(I3»E12.5)) WORD a »CONC»» »EROR»t »DELH»» »TABL»» OR'LCGK*.

•CONC'..ENTERS CONCENTRATION (UNITS OF FLAG) OF CONSTITUENTS NOT ON CARDS 3 AND 4. INT(I) = 17(H2S)»16(C03)t39(NH4)»5l(AL)t 81(LI)*85(NC3)t66(H2CC3)f87(B)t90(BA)t98(BR)tAND 101 (MN). VALd) IS THE CONCENTRATION OF THE INT(I) CONSTITUENT.

»EROR»..OVERRIDES PRE-SET MASS BALANCE CONVERGENCE CONSTRAINTS ON ANIONS. PER-SET VALUES OF EROR1-EROR5 ARE 0.001(0.1% ERROR IN MASS BALANCE). EROR1-EROR5 ARE ENTERED ON THE »EROR» CARD AS VALd)-VAL(S) . IN THE ORDER 1=CARBON, 2«SULFATEt 3»FLUORIDEt 4*PHOSPHATE» 5=CHLORIOE. VALUES OF INT(I) ARE NOT USED.

»DELH»..OVERRIDES VALUES OF THE STANDARD DELTA ENTHALPY OF REACTION (2b DEG. C) LSED IN COMPUTING THE TEMPERATURE DEPENDENCE OF ECUILIBRIUM CONSTANTS FROM THE VANT HOFF EQUATION. IMT(I) IS THE INDEX NUMBER OF THE ITH REACTION FOR WHICH OH(I) IS TO BE CHANGED AND VAL(I) IS THE APPPRIATE NEW VALUE OF DH(INT(D).

•TABL'..OVERRIDES VALLES OF LOGKTO(INT(I)) (LOG K OF REACTION AT 25 DEG. C USED IN COMPUTING THE TEMPERATURE DEPENDENCE OF EQUILIBRIUM CONSTANTS FROM THE VANT HOFF EQUATION). INT(I) ISTHE INDEX NUMBER OF THE ITH REACTION FOR WHICH LOGKTO is TO BECHANGED AND VAL(I) IS THE APPROPRIATE NEW VALUE OF. LOGKTO(I).

»LOGK»..OVERRIDES EXISTING ANALYTICAL EXPRESSIONS FOR LOG K AS A FUNCTION OF T(DEG.K), OR ENTERS NEWt PREVIOUSLY UNDEFINED ANALYTICAL EXPRESSIONS FOR LOG K(T DEG.K). THE FORM OF THE ANALYTICAL EXPRESSION MUST BE

LOG KT(INTd) )=A*B«T*C/T*D*T»»2*E/T«»2WHERE T IS TEMPERATURE IN DEG. K» AND AtB.C»D« AND E ARE FIT PARAMETERS (MAY BE ZERO OR BLANK). INT(1) IS THE INDEX NUMBER OF REACTION AND INT (2)-INT (5) ARE IGNORED. VAL(1)=A»VAL(2)=B» VAL(3)=C»VAL(4)=D»VAL(5)=E.

IF ANY OF THE CAROSt »EROR»•»DELH«,»TABL»t»LOGK» • ARE USED IN A PARTICULAR WATER DATA SETi CALCULATIONS FOR THAT DATA SET AND ALL SLBSEQUENT DATA SETS WILL USE THE NEW INPUT VALUES. TH^E ORDER CF TYPE 2 OPTIONAL INPUT CARDS IS »CONC»•»EROR»•»DELH»t»TABL»tAND •LOGK»» IF ALL 5 ARE USED. THE LAST CARD IN EACH WATER ANALYSIS DATA SET MUST BE BLANK* WHETHER OPTION CARDS ARE USED OR NOT.

620630640660660670660690700710720730740750760770780790SCO610820830640850860670860890900910920930940950960970960990

10001010102010301040105010601070106010901100111011201130114011501160117011601190120012101220

-28-

INTEGER DtEtDCtRBIT,CORALKtZ(120)tPRT(4)INTEGER PECALCtPECKREAL HI (120) tKT(200) *LOGKT (200) tLOGKTO (200) tMNTOTtLH20tMU*NATOT tKT 10TtMGTOTtLITOT*NH4TOTtK*REAL »8NSPEC(120) tNHEACT(200)CCMMON MI»KT»LOGKT«LOGKTOtKW»D«EtDD«CtRtT*F*TEMp»A»B«PEtPEStPEDCtP lESATOtPECKfPECALCtPH.TENMPEfTENPHt ALFA (120) tGAMMA ( 120) t AP (200) *XLA 2LFA(120)*ZtCUMTS(120) *ANALMI ( 120) *NSPEC.NREACT *GFW ( 120) »OHA ( 120 ) • 3DM200) *AH20»LH20»ERORltF-ROR2tERO«3tEROR4»EROR5*EHMtDENS*OOXtXLM( 4120) *ITER*RBIT*ClSAVEtCCRALK»MU*LCHEK(200) *C02TIT • ANALCO tSITOT tCAT 50T f MGTOT»KTOTtNATCT,S04TOTtFETOTtPTOT»ALTCT*FTOT*BTOTtLITOT,NH4TOT 6.SRTOTtBATOTtCLTOT«MNTOT*ICK»PRT.TITL(20)*EPMCAT*EPMAN,NEQU.ISPEC* 7K SPEC (120) tlMlN»KM!N(200) tTOSt IDAVESt IPRTDM15EM93IPRTsONEGU«15READ (9*50)READ (9*60)

10 CONTINUEREAD (5*70*ENCs40) TITL

20

(NSPEC(I)tZ(I>tGFU(I)tDHA(I)tI*ltD) (NREACT(I)•DH(I)»LOGKTO(I)«I*1«E)

30

40

50607060

CALL PREPIF (ICK.EQ.l) GO TO 10CALL SETCCNTINUECALL MODELIF (ITER.EQ.25) GC TO 30IF (HBIT.EQ.l) GO TO 20IF (ITER.LT.5) GO TO 20CALL PRINTIF (PRTU).NE.O) GO TO 10CALL SATGC TO 10

8010

PRINT GC TO STOP

FCRPAT (5XtAa«2X«I2«3X«F10.4«lX,F4.1)FORMAT (5X«A8«2Xt2F10«4)FCRKAT (20A4)FCRMAT (10X,'CONVERGENCE DID NOT OCCUR WITHIN 200 ITERATIONS* CALC1ULATION TEHMINATEC»t///) END SUBROUTINE PREPINTEGER D»E»DD»ReiT,coRALK.z(i20),WORD,CARD(6)tFLAG»pRT(4)»siGN(2)INTEGER PECALC.PECKDIMENSION INT(5)» VAL(S)« INPT(22)» GRAMSU20). IEQU(50), COEF(5*2100)* V(120)REAL MI(120).KT(200)»LOGKT(200)»LOGKTO(200)*MNTOTtLH20»MU*NATOT*KT 10T»MGTOT»LITOTtNH4TOT»K*PEAL *8NSPEC(120),NREACT(200)COMMON MI»KT.LOGKT»LOGKTOtKhi»DfEtDD,C*RfT»F*TEMP.A,B»PEtPESfPEDC«P 1FSATO*PECK»PECALC*PHtTENMPEtTENPH*ALFA(120)tGAMMA(120)*AP(200)*XLA 2LFA(120)tZtCUMTS(120)tANALMl(120).NSPEC.NREACT»GFW(120)«DHA(120)• 30H(200)•AH20«LH20«ERORl«EROR2«EROR3tEROR4«EROR5tEHMtDENStDOX«XLM ( 4120)*ITERtRBIT»ClSAVE*CCRALK»MU.LCHEK(200)*C02TIT,ANALCO.SI TOT.CAT 50T»MGTOT,KTOT»NATCT,S04TOT.FETOT»PTOT,ALTOT»FTOT.BTOTfLITOT,NH4TOT 6tSRTOT»BATOTtCLTOT»MNTOT»ICK.PRT»TITL(20)»EPMCATtEPMAN,NEQU,I SPECf 7KSPEC(120)fIMIN»KMIN(200)*TDS*IDAVES*IPRT

BRBBBBR

BBRBBBRBB

1?301240125012601?70L28012901300131013201330134013501360137013601390140014101420143014401450146014701460145015001510152015301540155015601570156015SO16001610162016301640165016601670

102030405060708090100110120130140150160

-29-

DATA CARD/»CONC»«»EROR«»»DELH»»»TABL«»»LOGK«»» «/»SlGN/» •»•«•/ R 170DAT* IEQU/13*14,15»25»26»27t36,69,73»74*'75»78*79»90»92*35*0/ R 180DATA COEF/60*0«0»13.543»-0.0401*-3000.«2«0.0*6.368*-0.016346*-3405 R 19 °1.9»2«0.0 *39.478»-0.065927*-l2355.1*47*0.0*0.684,0.0051295.3*0.0*28 R 2002.6059*0.012078•1573.21*2*0.0*0.6322»-0.001225»-2835.76»42*0.»-14.8 R ?1034351+ 0.032786•*3404.71 * 162*0.»-6.498»*0.02379,*2902.39*17*0.0*3.10 8 22046*0.0•-673.6*2*0.0*0.991*0.00667*3*0.0*2.319*-.Oil056*0.0*2.29812E P 2305-05* 11*0.0»-2.95.0.0133*3*0.0.-27.393»0.05617*4114.0*52*0.0.-5.350 R ?4065*0.0183412*557.2461,7*0.0.11.l7»-0.02386»-3279.0*542*0.O/ R 250DATA INPT/1*2»3,4,5»6»7»35»8*45,88*62*17,18*39*51*81»85,87*90*98,1 p ?60101/ H 270O2.302585092 B ?60F*23.0603 B 290PM.98719E-03 B 300ERORl'.OOl R 310EROR2=.001 R 320EROR3=.001 R 330EROR4=.001 R 340ERORbs.OOl R 350ICKrQ B 360PEDOslOO.O R 370PESATO&100. R 360PES*100.0 R 3SODC 10 I=1»D R 400CtNlTS(I)=0.0 B 410ALFA(I)sO.O R 420MI(I)=0.0 R 430XLMI(I)=0.0 R 440IF (Z(I).EQ.O) V(I)sl.O R 450IF (Z(I).EQ.O) 60 TO 10 R 460IF (Z(I).LT.O) V(I)r-1.0*Z(I) R 470IF (Z(I).GT.O) V(I)sl.O*Z(I) R 460

10 CONTINUE R 490PECKsO R 500PRINT 560 R 510READ 570, TEMP*PH,EHW,EHMC*EMFZ«DENS»DOX,FLAG*CORALK,PECALCfIGO,(P R 5201RT(I)»I=1.4)*IDAVES*ISPEC.I*IN R 530IF (IPRT.EQ.l) PRTUJsl B 540IF (PRT(l).NE.O) GO TO 70 B 550PRINT 580 R 5.60DC 30 1=1*0 B 570ISIG=SIGN(1) B 560DC 20 J=1»NEQL R 5SOIF (I.EO.IEQU(J)) ISIG=SIGN(2) B 600

20 CONTINUE B 610PRINT 590* I»NREACT(I)*DH(I),LOGKTO(I)*ISIG»I*NSPEC(I)»Z(I),DHA(I) B 620

l*GFta(I) B 63030 CONTINUE B 640

DC=D*1 B 650DC 50 I=DD.E B 660ISIG=SIGN(1) B 670DC 40 J=1»NEOL R 660IF (I.EQ.IEQU(J)) ISIG=SIGN(3) B 690

40 CONTINUE B 700PRINT 600. I*KREACT(I)»DH(I),LOGKTO(I)*ISIG R 710

50 CONTINUE B 720PRINT 510 B 730DC 60 I=1»NEQL R 740PRINT 520. lEQUm.NREACTJlEQUd) ) tCOEF (ItlEOU (I) ) ,COEF (2. IEOU (I) ) R 7501*COEF(3*IEQU(I)),COEF(4»IEOU(I))*COEF(5*1EOU(I)) R 760

€0 CONTINUE B 770

-30-

70

eo

so

100

no

120

130

140

150

160170

ieo

ISO

CONTINUEIPRT»1PRIM 610» TITLREAD 620* (CUMTSdNPT(I) ) .1 = 1.13)IF USPEC.GT.O) READ 530* (KSPEC(I).1=1.ISPEC)IF (I^IN.GT.O) READ 530. (KHIN (I) , 1 = 1,READ 630* WORD.(INT(I).VAL(I).1=1.5)IF (WORD.NE.CAROUM GO TO 100OC 90 1=1.5IF (IMU).EQ.O) GO TO 90CLNlTSdNT(I) )=VAL(I)CONTINUE<?C TO 80CONTINUEIF (WORO.NE.CARDC2)) GO TO 110EROR1=VAL(1)Efif)R2=VAL<2>EROR3-VALC3)FROR4*VAL<4)FROR5=VAL<5)READ 630* WOPC. (IM(I) ,VAL(I) .1 = 1.5)IF (*ORD.NE.CARO<3)) GO TO 130DC 120 1=1.5IF UNT(I).EG.O) GO TO 120Dh(lNT(I))=VAL(I)PRINT 640. IM(I) ,NRF.ACT(INT(I) ) ,VAL(I)CONTINUEREAD 630. WORD. (IM(I) »VAL(I) .1 = 1.5)GC TO 110IF (WORD.NE.CARDU)) GO TO 150OC 140 1=1.5IF (IMd).EQ.O) GO TO 140LCGKTO(INT(I))=VAL(I)PRINT 650* INT(I) .NREACT(INTd) ) .VALd)CONTINUEREAD 630, WORD, (INTd) ,VALd) .1 = 1.5)GO TO 130CONTINUE

VANT HOFF EQUATION FOR EFFECT OF T ON K

TsTEMP*273.16C1=(298.16-T)/<296.16«T«C«R)DC 170 I»ltELCGKT <I)=LOGKTO(I)-DH{I)«C1LCHEMI)=0IF (LOGKTd).LT.-77.0.OR.LOGKTCD.GT.75.0) LCHEK(I)=1IF (LCHEK(I).EO.l) GO TO 160KT(I)=10.««LOGKT(I)CONTINUECONTINUE

T ON KANALYTICAL EXPRESSIONS FOR EFFECT OFIF (WORD.KE.CARDC5)) GO TO 220IF (INT(I).EQ.O) GO TO 210OC 190 1=1.5CCEFd.lNT(l) )=VALd)CONTINUE

780 7SO 800 810 820 830 840 850 860 870 860 890 900 910 920 930 940 950 960 970 980 990

R 1000 R 1010 R 1020 R 1030 B 1040 R 1050 R 1060 R 1070 R 1080 8 1090 R 1100 R 1110 R 1120 B 1130 R 1140 B 1150 B 1160 B 1170 R 1180 B 1190 B 1200 B 1?10 B 1?20 B 1230 B 1240 B 1?50 B 1260 B 1270 B 1260 B 1290 B 1300 B 1310 B 1320 B 1330 B 1340 B 1350 B 1360 B 1370 B 1360

-31-

I£Q*0DC 200 I*1*NEGUIF (lEQU(I).EC.IKT(l)) IEQ=1

200 CONTINUEIF (IEQ.EO.O) N£QL«NEQU*1IF (IEQ.EO.O) IEQL<NEQU)«INT(nPRIM 660. INT(l)fNREACT(INT(l)>tCOEFUtIKT(l>)tCOEF(2tINT(l))

lF(3tINT(l)>fCCEF(4tINTU))tCOEF(5tINT(l» 210 CONTINUE

READ 630* WORCt(INT(I)fVAL(I)tI*lt5)GC TO 180

220 CONTINUEIF (WORD.EQ.CA«D<6)) GO TO 230PMNT 540READ 630* WORC. (INT(I) ,VAI_(I) »I = 1»5)GC TO 220

230 CONTINUEDC 240 I«1»NECULCGKT <IEQU(I))=COEF(11IEOU <I))*COEF(2• IEQU(I))«T*COEF(3,IEQU(I 1*COEF<4,1EQU(I))«T«T*CCEF(5,IEQU(I))/(T«T)

2*0 CONTINUELCGKT<26)=LOGKT(26)*ALOG10<KW)-13.2258«ALCG10(T)DC 250 I=1.NECUKT(IEOUd) >»1E1«<»(LOGKT(IEQU(I) ) )

250 CONTINUE

ANALYZED MOLALITY GO TO 270

CALCULATION OFIF (FLAG.NE.l)DC 260 I = 1»DCLNlTS(I)sCUNlTS(I)«GFW(I)/VU>

260 CONTINUEFLAG=2

270 CONTINUEIF (FLAG.NE.2) GO TO 290DC 280 I=1»DCLNITS(I)=CUNITS(I)/DEN5

280 CONTINUEFLAG=3

290 CONTINUEIF (FLAG.NE.3) GO TO 320ClsO.ODC 300 I=1»DCUC1+CUNITSJI)

300 CONTINUEDC 310 1=1.0C1SAVE=C1Hl(I)s(CUMITS(I)/(1.0E*03*GFW(I)))«(1.O/(1.0-1.OE-06«C1) )IF (MI(I).GT.0.0) XLMI(I)=ALOG10(MI(I))GRAMS(I)aCUNITS(I)«DENS

310 CONTINUEGC TO 350

320 CONTINUEClsO.OIF (FLAG.NE.4) GO TO 480DC 330 1=1.DWI(I)=CUNITS(I)ClsCl*Ml(I)«GFW(I)«1000./DENSIF (MI(I).GT.0.0) XLMI(I)=ALOG10(MI (I))

330 CONTINUEC1SAVE*C1

R B R R R R

• COE R R R R R P R R R R R R

M/T R R R B R R R R B R R R R R R R B R B RR R R R B B B B R R R B B B B R B R R B B R B

13SO 1400 1410 1420 1430 1440 1450 1460 1470

1490150015101520153015401550156015701580155016001610162016301640165016601670166016901700171017201730174017501760177017601790IflOO1810182018301840185018601870I860189019001910192019301940195019601970I9601990

-32-

340350

360

370380

350400

410420

DC 340 1*1,0GPANS(I)aNl (I)«1000,»GFKI)»DENS»< 1.0-1,OE-06«C1 SAVE)CONTINUECONTINUETCSsO.ODC 36U I«1.DANALMI(I)«MI(I)TCS»TOS*GRAMS(I)CONTINUEEPMCAT=0.0EPMAN«0*0

CALCULATION OF CATION-AMON BALANCEDO 380 1=1,0IF (Z(I).GT.O) GO TO 370EFM/»N=EPMAN-Z (I) »M (I)GC TO 380EFMCAT»EPNCAT*Z(I)»MI(I)CCNTINUEEPMCATsEPPCATMOOO.EPMAN=EPMAN«1000.

CALCULATION OF EH FROM FIELD DATAIF (EHM.LT.9.0) GC TO 420IF (EMFZ.GT.9.0) GO TO 390Cl=0.429*2.4E-03«(25.OrTEMP)-EMFZGC TO 400Cl=0.244*8.6E-04«(25.0-TEMP)CCNTINUEIF (EHMC.LT.9.0) GO TO 410GC TO 420

lOO. PEEH=100.

TEPPtPHtEPMCATfEPMAN

FEsPEEh

430

440

4SO

CCNTINUEPEEH=EHM/(C*R«T/F)IF (PECALC.EQ.O) PEIF (EHM.GE.9.0)PRINT 560PRINT 670PRINT 680tPRINT 690»IF (PECALC.EQ.l)PRINT 560PRINT 700DC 430 I=lt22IF (MI(INFT(I)).LE.0.0) GO TO 430PRINT 710, NSPEC(INPT(I))»Z(INPT(I)) IMS(INPTd))CCNTINUEPRINT 560PRINT 560IF (PRT(2).NE.O)PRINT 560PRINT 720CCNTINUE

(IGO.EQ.l) GO TO<PH.LT.3.0.0R.PH.GT.11«0) GO TO 490 s<(EPMCAT-EPMAN)/(l.*EPMCAT+£PHAN)

IF (ABS(DUM),GT,30.) 60 TO 490CCNTINUE

(IKPT (I) ) tXLHI (INPT (I) ) t€RA

IF IF

GO TO 440

450

R 2000 R 2010 R 2020 B 2030 B 2040 R 2050 R 2060 R 2070 R 2080 R 2090 R 2100 R 2110 R 2120 P 2130 B 2140 B 2150 B 2160 B 2170 R 2180 R 2190 R 2200 R 2210 B 2220 R 2230 R 2240 R 2250 B 2260 R 2270 R 2280 R 2250 B 2300 R 2310 R 2320 R 2330 B 2340 R 2350 R 2360 R 2370 B 2380 R 2390 R 2400 B 2410 B 2420 B 2430 B 2440 R 2450 B 2460 B 2470 B 2480 B 2450 B 2500 B 2510 B 2520 B 2530 B 2540 B 2550 B 2560 B 2570 B 2580 B 2550 B 2600

-33-

TEMPERATURE EFFECTS ON CEBYE-HUCKEL SOLVENT CONSTANTSS1*374.11-TEMPS2sSl«*0.333333S3aSURT((1.0*0.1342489*52-3.946263E-03«S1)/<3.1975EO-.3151548EO«S2 1-1.203374E-3«S1*7.48908E-13«S1«*4))IF (T.LT.373.16) GO TO 460Cls5321EO/T*233.76EO-T«(T<M8.292E-7«T-1.417E-3)*.9297EO)GC TO 470

460 Cls87.74EO-TEMP«(TEMP»<1.4lE-6*TEMP-9.398E-4)*.4008EO) 470 CONTINUE

CUSQRT(C1«T)A»18246.0E02«S3/C1*«3P»50.29«S3/C1GC TO 500

480 PRINT 730TCKMGC TO 500

490 PRINT 550ICK*1

500 CONTINUEPETLRN

510 FORMAT <//,15X»•••«» DENOTES THAT AN ANALYTICAL EXPRESSION FOR KT H 1AS BEEN USED»»////,20X,»SUMMARY OF ANALYTICAL EXPRESSIONS OF THE F 20RM LOG K = A*B«T*C/T*D«T*«2*E/T«»2 l ///f23Xf»I NREACT A 3 B CD E»/)

520 FORMAT (22XtI3t2XtA8<3(IXtFl1,4),2(1X<1PE11.4))530 FORMAT (1615)540 FORMAT (/»10X,«MARKING—- INPUT ERROR. SEARCHING FOR BLANK CARD')550 FCPMAT {/, 10X t «EARNING——CHECK INPUT PH AND/OR CATION-AMON BALANC

IE ...CALCULATION TERMINATED')560 FORMAT (//)570 FORMAT (5(F6.0*IX)*2F5.0t1X*9I1t2I3)580 FORMAT (//,60X * ««-- « ,/,60Xt «DATA • f /,60X « «——— • t//t 18X t • I' t2Xt'NRE

UCT»»9Xf»DH»»8X,«LOGKTO»f37Xt«I»»2Xt«NSPEC»»6X,«Z».2Xi»CHA»,6X,»GF

590 FORMAT (1H *15X* 13t2X*A8t2(2XtF10,4)•Al*33Xt13»2XtA8«2XtI2*2X*F3.1

600

620630640

FORMAT FORMAT FORMAT FORMAT FORMAT

(1H tlSXtX3t2XtA8t2(2XtF10.4)»A1) (1H1*(5Xt20A4)*//) (6(E12.5)t8X) (A4tlX«5(I3«E12.5)) (5X»«NE* DATA

••« LOGKTO FOR REACTION »,I3flXtA8»» HAS BEE

••• LOGKT FOR REACTION

»,/,57Xt'INITIAL

•tI3t!XtA8«* = 'tlPE•iE11.4,»«T*«2') SCLUTXON«t/t57Xt» ——

••• DELTA H FOR REACTION i 9 I3tlXtA8t* HAS BEEIN CHANGED TO «»F9.4)

650 FORMAT <5X,«NE* DATAIN CHANGED TO »tF9.4)

660 FORMAT <5X.«NE* DATAlll,4t*••tE11.4t»«T*»

670 FORMAT (57X»»——-——1 ———————— ...i,///)

680 FORMAT (15X,•TEMPERATURE = «iF6.2t» DEGREES C PH = 'tF6,3<* 1ANALYTICAL EPMCAT s ».F8.3t» ANALYTICAL EPMAN = ».F8.3>//)

690 FORMAT (5X.•««••• OXIDATION - REDUCTION «••«•«.///.1IXt'DISSOLVED 10XYGEN s ».F6.3t» MG/L•»/»1IX.«EH MEASURED WITH CALOMEL = •tF7.4t«2 VOLTS'*/,11X,»MEASURED EH OF Z08ELL SOLUTION s »,F7.4,« VOLTS',/t 311X,'CORRECTED EH a «,F7.4,» VOLTS',/,1IX,»PE COMPUTED FROM COPREC 4TED L » »,F7,3,/)

700 FCRMAT f 40X,»»»» TOTAL CONCENTRATIONS OF INPUT SPECIES ««•«,//,50X

R 2610 B 2620 R 2630 R 2640 B 2650 B 2660 R 2670 B 2680 R 2690 R 2700 R 2710 R 2720 R 2730 R 2740 R 2750 R 2760 B 2770 B 2780 R 2790 R 2800 R 2810 R 2820 B 2830 R 2840 R 2850 fl 2860 R 2870 R 2860 R 2890 R 2900 R 2910 P 2920 R 2930 B 2940 8 2950 R 2960 R 2970 R 2980 B 2990 R 3000 R 3010 R 3020 R 3030 R 3040 R 3050 R 3060 R 3070 B 3080 B 3090 8 3100 R 3110 B 3120 B 3130 B 3140 R 3150 B 3160 B 3170 R 3180 B 3190 R 3200 R 3210

-34-

1.'TOTAL••13X»«LOG TOTAL*»12X«'TOTAL*»/»33X,•SPECIES'»8X,«MOLALITY» 2»12X*»MOLALITY»tllXt»MG/LITRE»»/»33X»»-fc——— ••8X«»—————— ••12X«» 3——.——— ••1IX t • —————— • •/)

710 FORMAT UH t32X,A6»I3»3X»1PE13.6,8X,OPF9.4t8X,1PE13.6) 720 FCRHAT (50X«»««« CONVERGENCE ITERATIONS ••••«//t16Xt•ITERATION*t4X

lt»Sl-ANALC03»«6X»»S2-S04TOT»t8XttS3-FTOT»t9Xt»S4-PTOT»»9X,»S5-CLTO 2T»,X)

730 FORMAT <10Xt»INPUT ERROR——UNITS OF CONCENTRATION ARE NOT KNOfcNi't/ I//)ENDSUBROUTINE SETINTEGER DtEtDC»RBITtCORALKtZ<120)t*ORO»CARD<6)»FLAG«PHT(4) V SIGN(2)INTEGER PECALC»PECKDIMENSION INT(5)» VAL(5)» INPT(22)« GRAMS(120)t IEQU(50)t COEF(5.2 100)REAL MK120) tKT(200) tLOGKT(200) tLOGKTO(200) »MNTOTtLH20,KU.NATOT,KT 10T»*GTOTtLITOTtNH4TOTtKhREAL «8NSPEC(120)tNREACT(200)COMMON MItKTtLOGKTtLOGKTOtKMtDtEtOD«CtRtTtFtTEMPtAtB«PEtPEStPEDCtP lESATOtPECKtPECALCtPHtTENMPEtTENPHtALFA(120)tGAHMA(120)tAP(200).XLA 2LFAC120) t2tCUMTS(120) .ANALHK120) .NSPEC.NRfcACT.GFW (120) .DMA (120 ) » 3DM200)•AH?OtLH20*ERORl*EROR2tEROR3«EROR4*EROR5tEHM,OENSfDOXtXL^I( 4120)tITERtRBITfClSAVEtCGRALKt^UtLCHEK(200)tC02TITtANALCOtSITOTtCAT 5pTtKGTOTtKTOTtNATCTtS04TOTtFETOTtPTOTtALTOTtFTOTtBTOTtLITOTtNH4TOT 6iSRTOTtBATOTtCLTOTtMNTOTtICKtPRTtTITL(^0)»EPMCATtEPWAN,NEQUtISPECt 7KSPEC(120)tIHIN«KHIN(200)tTOStIDAVES.IPRT

INITIALIZE STARTING VALLES FOR ITERATIVE LOOP AH2C*1.0 DC 10 1 = 1.D GAMKA(I)=1.0

10 CONTINUECC2TIT*HI(7)*2.0»M(18)ANALCO=C02TITIF (CORALK.EQ.2) C02TIT=MI(7)*MI(18)+H(86)SITOT*MI(35)CATOT*MI(1)fGTOTsMI(2)NATOT=MI(3)KTOT=M(4)SC4TOT*PI(6)FETOTsMKS)PTOTsKI(45)PlOMCsPTOTALTOTsMKBl)FTOT*H1(62)BTOT=M1(87)LITCT*MI(81)Nh4TOT«MI(39)SRTOT*MI(88)BATOT=MI(90)CLTOT=MI(5)KNTOT=MI(101)Ml (35)=0.0MI(87)«0.0TENPH«10.«»PHALFA(64)slO.««(-PH)

CALCULATION OF ANION ACTIVITIES EXCEPT C02 AND P04 SPECIES

RBRBRRBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

3?203?303?403250326032703?8032SO33003310

10203040506070eo90

100110120130140150160170ieo190200210220230240250260270280290300310320330340350360370380390400410420430440450460470480490500510

-35-

ALFA(5)«MI(5)«GAHHA(5) C 520ALFA(6)=MI(6)«GAMPA(6) C 530ALFA(62)=M (62)«GAHMA<62) C 540ALFA(85)sH(85)»GAMMA<85) C 550ALFA(98)*HI(98)«GANMA(98) C 560ALFA(27)»AH20«K*»7ENPH C 570MI(27)sALFA(27)/GAMMA(27) C 560KI(64)«UO/(7ENPH«GAMMA(64) ) C 590ALFA(63)=ALFA(6)«K7(90)/TENPH C 600HI(63)*ALFA(63)/GAMMA(63) C 610

C C 620C C 630C CC? SPECIES C 640

IF (CORALK.EQ.2) GO 70 20 C 650C1«2.0»TENPH/(GAM»A(18)«»KT<69) ) C 660.H(7)=C027I7/(1.+GAHMA(7)«C1) C 670C2=K7(36)/(TENPH«GAMMA(86)) C 680ALFA(7)=MI(7)«GAM»A(7) C 690MI(18)*Cl«ALFA(7)/2. C 700f-I(86)aC2«ALFA(7) C 710ALFAdS)^! (18)«GAMMA(18) C 720ALFA(86)=FI(86)«GAMMA(86) C 730GC 70 30 C 740

20 CCN7INUE C 750*I(7)=C02TIT/(1.0+GAMfA(7)»( (KT (36) / (TENPMGAPMA (86) ) ) *TENPH/(K7(6 C 76019)«GAMMA(18)))) C 770

(7)«GAM^A(7)«7ENPH/(GAMMA(18)«K7(69) ) C 780(7)«GAMNA(7)«KT(36)/(TENPH«GAMMA(86)) C 790

ALFA(7)=MI (7)«GAMM (7) C POOALFA(18)=H(ie)»GAMMA(18) C 810ALFA(86)sPI(86)«GAH»A(86) C ^20

30 CCN7INUE C 830C C 840C C 850C PHOSPHATE SPECIES C 860

*I(45)*PT07/(1.+ (K7(17)«GAMNA(45)/(GAMMA(48)«»TENPH«*2) )*<K7(16)«GA C 870l**A(45)/(TENPh«GA^A(47) ) ) ) C 880ALFA(45)=MI(45)«GAMMA(45) C 890ALFA(47)=K7(16)«ALFA(45)/7ENPH C 900MI(47)«ALFA(47)/GAMMA(47) C 910ALFA(48)=K7(17)«ALFA(45)/(TENPH««2) C 920f<I(48)*ALFA(4e)/GAMPA(48) C 930I7ER=0 C 940PE7URM C 950END C 960-SL6ROU7INE WODEL 0 10IN7EGER D«E»DD»RBI7«CORALK,Z(120)»LIS7(8),LIS71(5)fLIS72(18)«LIS73 0 20

1 (6)«PRT(4)«PECALC«PECK D 30PEAL ^1(120)«K7(200)«LOGK7(200)fLOGK70(200)«MN707fLH20V^UtNA7C7«K7 0 40107,PGTOT,LITOT»NH4T07tKW,MUHALF 0 50PEAL «8NSPEC(120)«NREAC7(200) 0 60DIMENSION NPAIR(5)t LlM(9)t L1K(9), L1C(9)« LlA(9)t L1ALK{9)« L2M( D 70

113)i L2K(13)» L2C(13)» L3M(7), L3K(7)t L3C(7)t L4W(14)t L4K(14) t L D 6024C(14)» L4A(14)» L5H(9)« L5K(9)t L5C(9) D 90

COMMON MItK7»LOGK7»LOGK70.KW»DtE»OD»C»R»7«F»7EMPtA»B»PE«PES«PEDC«P D 1001ESA70»PECKtPECALC»PH«7ENMPEt7ENPH,ALFA(120)»GAM*A(120)«AP(200),XLA D 1102LFAU20) t2«CUMTS(l20) «ANALHI (120) tNSPEC»NREAC7«GFW (120) «OHA(120) « D 1203DfM200)«AH20«LH20,ERORl«EROR2tEROR3»EROR4tEROR5«EHM,DENS,DOX«XLM < D 1304120)«IT£R«RBI7«ClSAVE«CORALKfHU«LCHEK(200),C02TI7«ANALCOtSI707«CA7 D 14050T,f6TOT»KTQT,NATCT»S0470T«FE70T,PTOT,AL70TtFTOT»BT07tLITOT,NH4T07 D 1506«S«T07,BATQT«CLTC7,WN70TtICKtPRT«TITL(20)tEPMCA7tEPMAN,NEQU»ISPEC» D 160

-36-

7KSPEC(120).IMIN,KMIN(200)»TDStIDAVES.IPRT 0 170DATA LIST/17,35,66.70,71,72,8A.87/ D 160DATA LISTl/42t43t44t50t94/ D 190DATA LIST2/8,9,10,11,12*13,15,16,28,33,34,65,77,78,79,80,100,99/ 0 ?00DATA LIST3/82,83,88,89,90,917 D, 210DATA L1M/7,21,22,30,31,42,43,86,111/,L1K/69,74,75,78,79,70,71,36,1 D 220167/,L1C/64,2,2»1,1,3,3,64,101/,L1A/18,18,7,7,18,18,7,7,7/,L1ALK/1. 0 23020,?.0,1.0,1.0,2.0,2.0,1,0,0,0,1.0/,L2H/15,23,32,34,44,46,59,60,63, 0 ?403e3,92,96,109/,L2K/5,76,24,9,72,73,88,89,90,127,l32»136,165/,L2C/8, n 25042,1»8,3,4,51,51,64,81,39,64,10l/,L3H/20,55,56,57,58,108,49/,L3K/?3 0 2605,e4,85,86,87,164,eO/»L3C/2,51,51,51,51,101,l/,L4M/13,40,41,47,46,5 0 27060,61,65,73,74,75,76,99,100/,L4K/140,124,125,16,17,31,33,121,34,35, n ?607122«l23,157,139/,L4C/8,2,2,64,64,3,4,8,2,l,l,l,8,8/»L4A/47,45,48,4 n 29085,45,47»47,48,47,47,45,48,48,47/,L5M/l6,?6,33,93,94,95,103,104,105 n 3009/,L5K/6,7,8,133,134,135,159,160,161/,L5C/e,8,8,64,3,4,101,101,101/ D 310S,NPAIR/9,13,7,14,S/ 0 320ITERalTER*! 0 330

C 0 340C D 350C CALCULATION OF TOTAL MOLALITY AND AH20 0 360

J«l 0 370Cl*0,0 0 380DC 20 1=1,D D 390IF (I.EQ.LIST(J)) 60 TO 10 D 400C1=C1*MI(I) D 410RC TO 20 D 420

10 J=J*1 0 43020 CONTINUE 0 440

AH2Csl.O-0.017«Cl 0 450L>2C«ALOG10<Ah20) 0 460IF (DOX.GT.0.0) PEDO=-<ALOG10(KT(152))*PH+0.5«LH20-0.25«ALOG1Q(DOX 0 470

1/32E3)) 0 480IF (OCX.GT.0.0) PESATO=-(ALOG10(KT(137))*PH*0.5»LH20-0.25«ALOG10CO 0 490

IOX/32E3)) D 500IF (PECALC.EQ.2) PE=PEOC 0 510IF CPECALC.EQ.3) PE=PESATO D 520

C D 530C 0 540C CALCULATION OF ACTIVITY COEFFICIENTS 0 550

ML»0.0 D 5600*1 0 570DC 40 1=1,0 D 580IF (I.EO.LIST(d)) GO TO 30 D 590Ml»HU*0.5«MI(I)«ZCI)«Z(I) D 600GC TO 40 D 610

30 J=J+1 D 62040 CCNTIKUE D 630

WIHALF=SQRT(MU D 640C1=-A«4EO«MUHALF D 650GAM*A(1)=1E1««(C1/(1EO + B«5EO»MUHALF)+0.165<»*U> D 660GAMVAC2)=1E1««(C1/(1EO*8«5.5«MUHALF)*0.2*KU) D 670GAMKAC3)=1E1««(-A«MUHALF/(1EO*B«4EO»MUHALF)+0.075«MU) D 680GAMyA<4)slEl»«(-A«MUHALF/(lEO+B«3.5«MUHALF)*0.015«MU) 0 690GAMPA(5)=GAMMA(4) D 700GAMVAC6)slEl»«(Cl/(lEO*B«5EO»MUHALF)-0.04«MU) 0 710DC 60 1=8,0 D 720IF (Z(I).EQ.O) GO TO 50 D 730IF (IDAVES.EO.l) GAMMA(I)»1E1«»C(-A»Z(I)»«2«MUHALF)/(1.0*MUHALF)-0 D 740

1.3«*U) D 750IF (IOAVES.EQ.1) GO TO 60 D 760GAMHA(I)»1E1»«<-A«MUHALF«Z(I)»»2/(1EO*DHA(I)»B»MUHALF)) D 770

-37-

GC TO 605060 CONTINUE

GAMI*Am*lEl««<-A«MUHALF«Zm**2/a£0<»OWA (7 )*8«WUHALF) ) GAMP AU8)*lEl««(-A«MUHALF«Z(18)**2/UEO*0*A(18)«e«WUHALF) ) GAMfA<86)*lEl««(fL«U70.01/T-.8798-*.0013935«T)**U<»MU«(28«ei/T-«210

18*,0003641*T))

SILFUR SPECIES ANC PF. CALCULATION F«0* SClaKT(92)*TENFH/GAMMA<67)C2*KT(92)«KT(93)«TENPH««2/GAM*A(68)MIU4)*HIU7)/<1EO*GAMMA<14)«MC1+C2))ALFA(14)s»I(14)*GAPHA(14)

WI(67)aALFA(14)«ClMl(68)*ALFA(14)«C2ALFA(67)*H(67)«GAMHA(67)ALFA(68)«*I (66)*GAMMA(66)C1«ALFA(6)«ALFA(14)IF (Cl.GT.0.0) GO TO 70GC TO 80

70 PES*0.125«ALOG10(KT(91) ) *0. 125«AL061Q (ALFA (6) )- 10(ALFA(14) )-0.5«LH20IF (PECALC.EQ.4) FEaPES

60 CONTINUEIF (PECALC.EQ.O.O.OR.PE.GE.100.) 60 TO 90TENKPEslO.»«(-PE)GC TO 100

90 TENKPEslO.««( 100 CCNTINUE

SILICA SPECIES C1*KT(14)«TENPH/GAMMA(25) C2=KT (15)«TENPH««2/GAf«MA (26) M(24)=SITOT/(1.0*GAMHA(24)«(C1*C2)

.25«PH-0«125*ALCG1

*I(25)=ALFA<24)«C1 VI (26)=ALFA(24)»C2 ALFA(25)=^I(25)*GAMMA(25)

M (26 ) «GAM|MA (26 )

PCRON SPECIESC1=GA*MA(36)«KT(26)«TENPH/GAMMA(37)VI(36)=BTOT/(1.0*C1)WI(37)=C1«MI(36)ALFA(36)=HI(36)«GAHHA(36)ALFA(37)=^I(37)«GAMHA(37)

NITROGEN SPECIESCUTENPH»KT(27)/GAMMA(38)C2=ALFA(6)*KT(132)/GAKMA(92)f«I(39)*NH4TOT/(lEO*GAVMA(39)«(Cl*C2)ALFA(39)«VI(39)«GAMMA(39)VI(3£)=ALFA(39)«C1ALFA(38)=MI(36)«GAMMA(36)

D00DD0DDDDnDD00D0000000Dn00000D0DD0000D0nD0DDD000D000000D00D0

780790800P10820830840850860870860H90900910920930940950960970960990100010101020103010401050106010701060109011001110112011301140115011601170116011901?0012101?201230124012501260127012601290130013101320133013401350136013701360

-38-

MAGNESIUM SPECIESMI(19)3ALFA(27)*KT(25)/GAMMA<19)MI(20)aALFA(62)«KT(23)/GAMMA(20)Ml(21)aALFA(18)«KT(74)/GAMMA(21)Ml(22)sALFA(7)»KT(75)/GAMMA(22)MI(23)*ALFA(6)«KT(76)/GAMMA(23)Ml(40)aALFA(45)«KT(124)/GAMMA(40)MI (41)«ALFA(48)*KT ( 125) /GAMMA (41 )MK73)*ALFA(47)«KT(34)/GAMMA(73)MI(2)=MGTOT/(1,0*GAMMA(2)»(MI(19)*MI(20)*>'I(21)*MI (22) (4

ALFA(2)sMI(2)«GAMMA(2)CUALFA(2)DC 110 1=19,23

ALFA(I)sMI(I)«GAMKA(I) 110 CONTINUE

MI(40)*C1«MI (40) ALFA(40)sMI(40)«GAMMA(40) MI(41)*C1«MI(41) ALFA(41)sMl (41)«GAMMA(41) MI (73)sCl«MI(73) ALFA(73)*MI(73)«GAMMA(73)

CALCIUM SPECIESMI(29)«ALFA(27)«KT(77)/GAMMA(29)MI(30)sAlFA(7)«KT(78)/GAMMA(30)MI(31)=ALFA(18)«KT(79)/GAMMA(31)MI (32)«ALFA(6)*KT(24)/GAMMA(32)MI (74)*ALFA(47)«KT(35)/GAMMA(74)Ml(76)sALFA(48)«KT(123)/GAMMA(76)Ml(75)sALFA(45)«KT(122)/GAMMA(75)Ml(49)sAlFA(62)«KT (80 ) /GAMMA (49)Ml(l)sCATOT/(1.0*GAMMA(l)«(FI(29)*Ml(30)*Ml(31)*Ml(32)*Ml(74)+MI(75)*NI (76)«MI(49M)C1=MI(1)«GAMMA(1)ALFA(1)=C1DC 120 1=29,32

120ALFA(I)=MI (CONTINUEMI (74)*C1«MI (74)ALFA(74)sMI(74)«GAMMA(74)Ml(75)sCl«MI (75)ALFA(75)=MI(75)«GAMMA(75)Ml(76)aCl«MI(76)ALFA(76)»MI(76)«GAMMA(76)MI (49)sCl«MI(49)ALFA(49)sMI (49)«GAMMA(49)

SODIUM SPECIESMl(42)sALFA(18)«KT(70)/GAMMA(42)MI(43)=ALFA(7)*KT(7l)/GAMMA(43)Ml (44)=ALFA(6)«KT (72)/GAMHA(44)MI(50)«ALFA(47)«KT(31)/GAMMA(50)MI(9*)sALFA(5)*KTU34)/GAMMA(94)MI(3)=NATOT/(1.0*GAMMA(3)*(MI (42)*MI (44)*MI(50)*MI(94)

0D00n000DnD00DDnDD00n0DDDn00Dn00DnD0DnnD00DD0n00D0D00000n00DD

13SO1400141014?01430144014501460147014PO14901500151015201530154015501560157015801590160016101620163016401650166016701680169017001710172017301740175017601770178017SO180018101*2018301P40185018601*701P80189019001910192019301940195019601970I9601990

-39-

130

140

150

ALFA<3)*MH3)«GAMMA<3)CUALFAO)DC 130 I«lt5Ml<tISTl<I))sCl«MI<LlSTKI))ALFA(LIST1 (I))=MI(LIST1 (I) )«GAMMA(LIST1 (I) )CONTINUE

POTASSIUM SPECIESMI<46)»ALFA(6)»KT(73)/GAMMA<46)MI<61)*ALFA(47)»KT<33)/GAMMA(61)MI<95)*ALFA(5)«KT(135)/GAMMA<95)Ml(4)sKTOT/(1.0 + GAMMA(4)»(MH46)+MI<61)*MI(95))ALFA(4)sMl(4)"GAMMA(4)C1»ALFA<4)MI(46)sCl<»MI(46)ALFA(46)=MI(46)»GAMMA(46)MI(61)*C1«MJ(61)ALFA(61)=MI (61)"GAMMA(61)MI(95)sCl«MI<95)ALFA(95)=MI(95>»GAMMA(95)

ALUMINIUM SPECIESMI(52)»ALFA(27)»KT(fll)/GAMMA(52)Ml<53)sALFA(27)«n»2«KT(82)/GAMMA(53)MI(54)aALFA(27)««4«KT(83)/6AMMA(54)MI(55)«ALFA(62)«KT(84)/GAMMA(55)^I(56)=ALFA(62)««2»KT(85)/GAMHA(56)Ml(57)=ALFA(62)««3«KT(e6)/GAMMA(57)FI (58)=ALFA(62)«*4*KT(87)/GAMHA (58)MI (S9)=ALFA(6)»KT(88)/GAMMA(59)Ml(60)sALFA(6)»»2«KT(89)/GAMMA(60)

(54 (55)

ALFA (51)=* I (5D«GAMHA(51)C1=ALFA(51)DC 140 1=52*60

ALFA(I)=MI CONTINUE

IRON SPECIESIF (ABS(PE).LT. 20.0. AND. FETOT.GT. 0.0)GO TO 170

GO TO 150

MI (10)sKT(2)«AH20«TENPH/(TENMPE»GAMMA(10) ) MI (11)=KT(3)«AH20«TENPH/GAMMA(11)MI<12)eKT(4)«AH20««3«TENPH««3/GAMMA<12)MI (13)=KT(140)«ALFA(47)/(GAMMA(13)«TENMPE)MJ(15)=KT(5)«ALFA(6)/(TENMPE«GAMMA(15) >MI (16)eKT(6)»ALFA(5)/(TENMPE*GAMMA (16) )MI (28)=KT(7)*ALFA (5) »*2/ (TENMPE*GAMMA (28) )MI (33)e«T(8)»ALFA(5)«n»3/ (TENMPE*GAMMA (33) )MI (34)sKT(9)»ALFA(6)/GAMMA(34)MI(65)=KT(121)«ALFA(48)/GAMMA(65)MI (77)=KT(103)«(AH20«TENPH)««2/(TENMPE«GAMMA(77) )MI (78)=KT(104)»(AH20*TENPH)««3/(TENMPE*GA>'MA(78) )MI<79)=KT(105)«(AH20»TENPH)««4/(TENMPE<»GAMMA<79) )MI(80)=KT(106)«(AK20«TENPH)»»2/GAMMA(80)

0 0 0 0 D 0 0 0 0 0n o n n D o o DD00n D0 D 0nD D Dn0D

(56)*MI oD D D D D D 0 DnD D D 0 D 0 D 0 0 D D D D D D D D D

2000 2010 2020 2030 2040 2050 2060 2070 2060 2090 2100 2110 2120 2130 2140 2150 2)60 2170 2180 2190 2200 2210 2?20 2230 2240 2?50 2260 2270 ??80 2?90 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440 2450 2460 2470 2460 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600

-40-

160

170

180

190

200

MI(99)«KT(157)«ALFA(48)/(TENMPE«GAMM.A(99MMI(100)«KT(139)«ALFA(47)/GAMMA(100)Ml(8)»FETOT/(1.0*<:AMMA(e)«(Ml(9)*MI(10)*MI(ll)*Ml(l2)*MI(13)*MI(15 1)*MI(16>*MI(28)*MI(33)*MI(34)*MI(65)*MI(77>*MI(78)*MI(79>*MI(80)*M 2I(100)*MI(99»)ALFA(8)sMK8)«GAMMA(8>C1*ACFA(8)DC 160 I=2tl8MI(LIST2(I»*C1«MI(LIST2(I)>ALFA (L IST2 ( I M =MI (LIST2 ( I >> -GAMMA (LIST2 ( I ) )CONTINUEGO TO 190CONTINUEDC 180 I=2»18MI(LIST2(I))=0.0CONTINUEALFA(8)sMl(8)«GAMMA(8)CONTINUE

MANGANESE SPECIES

IF (ABS(PE).LT.20.0.AND.MNTOT.GT.O.O) GO TO 200GO TO 240Ml(102>sKT(156)/(GAMMA(102)»TENMPE)MI (103>=KT(159)*MI (5) 'GAMMA (5) /GAMMA (103)MI (104)=KT(160)»MI(5)«»2«GAMMA(5)»*2/GAMMA<104)MI{1Q5)=KT(161)»MI(5)»»3*GAMMA(5)**3/GAMMA<105)MI (106)sKT(162)»MI (27)*GAMMA(27)/GAMMA (106)Ml(l07)sKT(163>«Ml(27)««3«GAMMA(27)«*3/G.AMMA(107)MI (108)sKT(164)«Ml (62)»GAMMA(62)/GAMMA(108)MI(109)=KT(165)*MI(6)«GAMMA(6)/GAMMA(109)MI(110)sKT(166)»MI(85)»«2*GAMMA(85)»*2/GAMMA(110)Ml(lll)sKT(l67)»MI(7)»GAM.MA(7)/GAMMA(lll)XMI112sLOGKT (168) *4»LH20- ( ALOG10 (GAMMA (112) )-8»PH-5«PE)IF (XMI112.LT.-50.) MI(H2)«0.0IF (XMIH2.LT.-50.) GO TO 210

210 CONTINUEXMI113=LOGKT(169)*4«LH2C-(ALOG10(GAMMA(113) )-8»PH-4»PE>IF (XMI113.LT.-50.) MK113)sO.OIF (XMI113.LT.-50.) GO TO 220MI(113)=10.»»XMI113

220 CONTINUEM I ( 1 15 > «KT ( 171 ) •Ah20»»2/ (GAMMA ( 1 15) * ALFA (64 ) «»3 )Ml(101)sMNTOT/(1.0*GAMMA(101)»(MI(102)*MI ( 1 03) *M I( 1 04 ) *M I ( 1 05 ) *M I ( 1106)*MI(107)*MI(108)*MI(109)+MI (110)*MI (111)*MI (H2)*MI(113)*MI (11 25)))ALFA(101)sM!(l01)«GAMMAUOl)C1=ALFA(101)DC 230 1=102.113Ml(I)sCl*MI(I)ALFA(I)sHI(I)«GAMMA(I)

230 CONTINUE

240

250

260

ALFA(115)sMI(115)«GAMMA(115)GO TO 26000 250 1=101.113MI(I)*0.0CONTINUEMI(115)«0.0CONTINUE

000DD000000000000DDn00D00DnD0D0000D0D00000nnnDD00D00D00000000

26102620263026402650266026702680269027002710272027302740.27502760277027602790280028102820283028402850286028702860289029002910292029302940295029602970296029903000301030203030304030503060307030603090310031103120313031403150316031703180319032003210

-41-

?70

260

290

300

310

320

330

340

CALCULATION OF P02 AND PCH4 IF UBS(PE).LT.19.0) GO TO 270 GC TO 260

ALFA(70)alO.<M»<4.0*Cl)CONTINUEIF (ABS(PE).LT. 19.0. AND. ALFAC7J.GT. 0.0) GC TO 290GC TO 300XLALFA(71)s<ALOG10<KT(95))-8.0*PE-9.0<»PH-3.0<»LH20*ALOG10<ALFA<7)IF (XLALFAC7D.LT.-78.) GO TO 300ALFA(71)=10.««XLALFA(71)CONTINUE

LITHIUM. STRONTIUM. BARIUP SPECIESC1«KT(126)*ALFA(27)/GAMMA(82)C2«KT(127)»ALFA<6)/GAWM.A<83)Ml(8l)sLITOT/<1.0*GAMMA<81)«<Cl+C2))ALFA(81)=PI (8I)«GAM.MA(81)Ml(82)sCl<»ALFA<ei)Ml(83)«C2«ALFA<enC1=KT(130)»ALFA(27)/GAMPA(89)MI <88)»SRTOT/(1.0+GAMMA(88)*C1)MI (89)sGAMMA(88)»Pl (88)«C1Ci«KTU31)«ALFA(27)/GAMM A (91)MI(90)«BATOT/<1.0*GAMMA<90)»C1)MI (91)sGAMMA(90)«M(90)«ClDC 310 I=l»6ALFA(LIST3(I))=MI(LIST3(I))»GAMMA(LIST3(I»CONTINUESl=0.052=0.053=0.0S«=0.055=0.0ANALCOsCOZTITMASS BALANCE CN CARBONIF (C02TIT.LE.O.O) GO TO 370ACT=KT (69) «ALFA (64)StMsQ.OSLM1=0.0N=NPAIR(1)DC 320 1 = 1. NMI(L1M(I))=KT(L1K(I))«ALFA(L1C(I) ) /GAHMA (L1K ( I ) )IF (LlA(l) .E0.7) M(L1M(I) )=MI (LIMd) )«ACTSIM,*SUM*MI (Ll^(I) )SIM.1 = SUM*L1ALK(1)«MI(L1M(IMCONTINUEIF (CORALK.NE.2) GO TO 340Ml (18)=ANALCO/ (1.0*GAHHA (18)«SUM)

DC 330 Isl.NMKLIH(I) )=MI(Llf(I))«ALFA(18)ALFA(L1M(I))=MI(L1M(I) ) «GAMMA (L1M ( I) )S1=S1*MI(L1M(I) )CONTINUESUS1+MK18)GC TO 370CONTINUE

0 3220 0 3?30 D 3240 0 3250 0 3260 D 3270 D 3260 n 3250 0 3300 0 3310 0 33?0 0 3330 0 3340 0 3350 0 3360 0 3370 0 3360 0 3350 0 3400 0 3410 0 3420 D 3430 0 3440 0 3450 0 3460 0 3470 0 3460 0 3490 0 3500 D 3510 0 3520 D 3530 0 3540 0 3550 0 3560 D 3570 0 3580 0 3590 0 3600 0 3610 D 3620 D 3630 0 3640 0 3650 D 3660 D 3670 D 3660 0 3690 D 3700 0 3710 0 3720 D 3730 0 3740 0 3750 D 3760 0 3770 D 3760 0 3790 D 3800 0 3610 D 3820

-42-

IF (CORALK.EQ.l) GO TO 350ANALCOsC02TIT-MI(25)-2.0*Ml(26)-MI(27)-MI<37)-2.0»MI<45) 1<54)-MI<67)-2.0»MI(68)-MI<82)

350 CONTINUEMl(l8)sANALCO/(2.0*GAMMA(18)»SUMl)ALFA(18)=M I (18)"GAMMA(18)DC 360 I=1«NMI(L1M(I))=MI(L1M<I))»ALFA(18)ALFA(L1M(I))=MI(L1M(I))«GAMMA(L1M(I))SlsSl*LlALK(I)»MHLlM<I))

360 CONTINUESlsSl*2.0»MIU8)

370 CONTINUEMASS BALANCE ON SLLFATEIF (S04TOT.LE.O.O) 60 TO 410N*NPAIR(2)DC 380 I = ltNMKL2M<I))sKT(L2K(I))»ALFA(L2C(I))/GAMMAa2M(I) )

380 CONTINUEMI(15)*MI (15)/TENMPEMI(60)=MI(60)«4LFA(6)MI(96)=MI(96)«ALFA(64)9LMSMH60)DC 390 I=ltNSLM=SUM*MI(L2MI))

390 CONTINUEMI(6)sS04TOT/(1.0*GAMMA(6)«SUM)ALFA (6)sMI(6)«GAMPA(6)DC 400 I = ltNMI(L2M(I))sMI(L2MI))«ALFA(6)ALFA(L2M(I))=NI(L2M(I))«GAMMA (L2M (I))S2=S2*MI (L2M(I))

400 CONTINUES2=S2*MI(6)*MI(60)

410 CCNTIN'UE^ASS BALANCE ON FLUORIDETF (FTOT.LE.0.0) GO TO 450NsNPAlR(3)DC 420 I=ltNMI(L3M(I))=KT(L3K(I))»ALFA(L3C(I))/GAMMA«L3M (I))

420 CONTINUEMI(56)=MI(56)«ALFA(62)MI(57)sMI(57)«ALFA(6?)«ALFA{62)MI(58)=MI(58)«ALFA(62)*ALFA(62)*ALFA(62)SIM=MI(56)*2.0*MI(57)*3.0«MI(58)DC 430 IsltNStM=SUM*MI(L3M(I))

430 CONTINUEMI(62)=FTOT/(1,0*GAMMA(62)»SUM)ALFA(62)*MI(62)«GAMMA(62)DC 440 I=1»NMI (L3M(I))=MI(L3M(I))«ALFA(62)ALFA(L3M(I))=MI(L3M(I))«GAMMA(L3M(I))S3=S3*MI(L3M(I))

440 CONTINUES3=S3*MI(62)*MI(56)*2.0«MI(57)*3.0»MI(58)

450 CONTINUEMASS BALANCE ON PHOSPHATEIF (PTOT.LE.0.0) GO TO 490N*NPAIR(4>C1=KT(16)»ALFA(64)

0 3fl30•MI(47)-MI n 3840

D 3850 D 3860 n 3«70 D 3880 D 3890 0 3900 D 3910 D 3920 D 3930 D 3940 D 3950 D 3960 0 3970 D 3980 D 3990 D 4000 D 4010 D 4020 D 4030 D 4040 D 4050 D 4060 0 4070 D 4060 D 4090 H 4100n 41100 4120 D 4130 D 4140 D 4150 D 4160 D 4170 D 41PO 0 4190 D 4?00n 4?ioD 4220 D 4?30 D 4?40 D 4250 D 4260 D 4270 D 4280 D 4?90 D 4300 D 4310 D 4320 D 4330 D 4340 D 4350 0 4360 D 4370 D 4360 D 4390 D 4400 D 4410 D 4420 D 4430

-43-

460

470

480

490

500

510

520

530

C2aKTU7)«ALFA(64)«ALFA(64)DC 460 I«ltNMI (L4* ( I ) ) «KT (L4K ( I ) ) «ALFA (L4C ( I ) ) /GAMMA (L4P ( I ) )IF <L4A(I).EQ.47) M I (L4M ( I ) ) =MI (L4M ( I ) ) «C1IF (L4A(I).EQ.48) MI (L4M ( I ) ) *MI (L4M ( I ) ) «C2CONTINUE

540

MI (48)«HI (48)«ALFA (64)*I (99) *MI (99) /TENURESLM*0.0DC 470 I»1*NSCM»SUM*MI(L4M(I))CONTINUEMI(45)»PTOT/(1.0*GAMMA(45)»SUM)ALFA(45)»MI(45)*GAMMA(45)DC 480 I»1«NMI(L4M(I))sMI(L4M(I))«ALFA(45)ALFA (L4M ( I ) ) =M I (L4M ( I ) ) «GAMMA (L4M ( I ) )S4*S4+MI(L4M(I))CONTINUES4*S4+MI(45)CONTINUEMASS BALANCE ON CHLORIDEIF (CLTOT.LE.0.0) GO TO 530N»NPAIR(5)DC 500 1 = 1. NMI (L5M ( I ) ) =KT (L5K ( I ) ) «ALFA (L5C ( I ) ) /GAMMA (L5M ( I ) )CONTINUEMK16)»M.I(16)/TEM'PEMI (28)=MI (28)«»ALFA (5) /TENMPEMI(33)*MI(33)«ALFA(5)«ALFA(5)/TENMPEMK104)sHI(104)«ALFA(5)Ml(l05)aMK105)«ALFA(5)«ALFA(5)SCM=MI (28)*2.0«HI (33)*MI (104)*2.0«MI (105)00 510 1=1. N9LM=SUM+MHL5MI))CONTINUEMI(5)=CLTOT/<1.0*6AMMA(5)«SUM)ALFA(5)=MI(5)«GAMMA(5)DC 520 1=1. NMI(L5M(I))=MI(L5M(I))«ALFA(S)ALFA(L5M(I))sMKL5M(I))«GAMMA(L5M(I))S5=S5+MI(L5M(I))CONTINUES5=S5 + MI(5)+MI(28)+2.0*MI(33)*MI (104) *2.0«MI ( 105)CONTINUEALFA(85)*MI(85)*GAMMA(85)ALFA (98)=MI (98)«GAMMA (98)ALFA (27)=AH20«K!iK«TENPHMI(27)=ALFA(27)/GAMMA(27)MI(64)slEO/(TENPH«GAMMA(64) )TESTlsSl-ANALCOTEST2=S2-S04TCTTEST3=S3-FTOTTEST4=S4-PTOTTEST5=S5-CLTOTR6IT*0IF (S1.EQ.O.O«OR.ANALCO.LE.O.O) GO TO 540IF <ABS(TEST1).GT.EROR1«ANALCQ)GO TO 550ANAlCO=0.0

0 4440 0 4450 0 4460 0 4470 0 4480 0 4490 0 4500 0 4510 0 4520 n 4530 0 4540 0 4S50 0 4560 n 4570 0 4580 D 4590 0 4600 0 4610 0 4620 0 4630 0 4640 0 4650 0 4660 0 4670 D 4680 0 4690 0 4700 0 4710 0 4720 0 4730 0 4740 0 4750 0 4760 D 4770 0 4780 D 4790 0 4800 0 4810 0 4820 0 4830 H 4840 0 4850 0 4860 D 4870 0 4880 D 4890 D 4900 0 4910 n 4920 0 4930 0 4940 0 4950 0 4960 D 4970 0 4980 0 4990 0 5000 0 5010 0 5020 D 5030 D 5040

-44-

550 CONTINUEIF (S2.EQ.O.O) 60 TO 560IF <ABSUEST2).GT.EROR2«S04TOT) RBIT»1

560 CONTINUEIF (S3.EQ.O.OL) 60 TO 570IF <A8S<TEST3).6T.EROR3«FTOT) RBIT»1

570 CONTINUEIF (S4.EQ.O.O) 60 TO 580IF <ABSUEST4).6T.EROR4«PTOT) RBIT«1

5*0 CONTINUEIF (S5.EQ.O.O) 60 TO 590IF <ABS(TEST5).6T.EROR5«CLTOT) RBIT«1

590 CONTINUEIF (PRT(2) .NE.O) 60 TO 600PRINT 610t ITERfTESTltTEST2tTEST3tTEST4tTEST5

600 CONTINUERETURN

610 FORMAT (1H 1 19X v I3t5Xt5 <lPE13.6t3X) )FNDSUBROUTINE PRINTINTEGER DtEtDCtR8lTtCORALKtZ<120)tLIST4U04)»LIST5(8)tPRT<4)INTEGER PECALCtPECKREAL MIU20)tKT(200) tL06KT<200) tL06KTC<200) tMNTOTtLH20fMUtNATOTtKT 10TtMGTOTtLITOTtNH4TOTtKbtRATIOl<10) tRATI02<10)»RATIC3<8) tXLGAM(!20 2)REAL «8NSPEC<120) tNREACT<200)COMMON MItKTtLOGKTtLpGKTOtKVltOtEtDDtCtRtTtFtTEMPtAfBtPEtPESfPEDCtP IFSATOtPECKtPECALCtPHiTENMPEtTENPHtALFAUSO) tGAMMA(120) tAP(200) tXLA 2LFA<120)fZtCUMTS(120)fANALMl<120)»NSPECrtNREACTtGFW(120) tDHA(120)* 3DM200) tAH20»LH20*ERORltEROR2tEROR3tEROR^EROR5tEHMfOENS*DOXtXLMl( 4120 ) t ITERtRBITtCl SAVE tCCRALKtMUtLCHEK (200 )tC02TITtANALCCt SI TOT tCAT 50TfMGTOTtKTOTtNATCTtS04TOTtFETOTtPTOTtALTCTtFTOTt8TOTtLITOTtNH4TOT 6tSPTOTtBATOTtCLTOTtMNTOTtICKtPRTtTITL(20) tEPMCATtEPMANtNEQUt ISPECt 7KSPECU20) tIMINtKMlN(200) tTOSt IDAVESt IPRTDATA LIST4/lt2t3t4t64t5t6t7tl8t86t27t62t98tl9t23t22t21*20t29t32t30 It31»49t44t43t42t94t46t95t63t96t93t24t25t26tl4t67t68t8t9tl0tlltl2t7 27t78t79t80tl3tlOOt65t99tl5tl6t28t33t34tl01tl02tl06tl07tllltl09«110 3tl03tl04tl05«108tll?tll3tll5t51t52*53t54t55t56t57«58t59t60t45t47t4 4Bt40t73t4lt75t74t76t6lt50t36t37t85»38t39t92t81t82t83t88t89t90t91/DATA LIST5/lt2t3t4t51t8t6t7/CEPMANsO.OCEPMCTaO.O00 20 1*1.0IF (Z(I).GT.O) GO TO 10CEPMANaCEPMAN-Z ( I ) «MI { I )GO TO 20CEPMCTsCEPMCT*Z(I)«MI(I)CONTINUECEPMAN=CEPMAN«1000.CEPMCT«CEPMCT«1000.

1020

PC02»0.0IF (ALFA(86).6T.O«0) GO TO 30GO TO 40

30 PC02slO.»«(AL0610(ALFA(86) ) -2385. 73/T-1.5264E-?«T*14. 0184)XLPC02*ALOG10(PC02)

40 CONTINUEE»-PE*PE»C*R»T/FPRINT 110

0 5050 0 5060 0 5070 0 5060 0 5090 0 £100 0 5110 0 5120 0 5130 D 5140 D 5150 0 5160 D 5170 D 5160 D 5190 0 5?00 0 5?10 0 5220 0 5230 0 5240-

10203040506070eo90 100 110 120 130 HO 150 160 170ieoISO 200 210 220 ?30 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410

-45-

PRIM 110PRINT 120, AH20*EPMCAT.CEPMCT.PHtPCOH«£P«AN«CEP*AN.XLPCC2*ALFA(70)

l*EHl**PE*TEMP t ALFA(71),PES»Sl*PEDO*DENS*PESATO«MU*TDS PRIM 130t PEtEHPE PRINT 140 DLM=10.»«(-70) OC 50 1*1*0 CLNITS(I)*0.0IF (MI(I).LT.OUH) GO TO 50CLNITS(I)»MI(I)«1000.<»GFW(I)«(1.0-1«OE-06«C1SAVE) XLMI(I)=ALOG10(HI (I))XLALFA(I)=ALOG10(ALFA(I))XLGAM(I)=ALOG10(GAHMA(I))

50 CONTINUEOC 60 1-1*104IF (MI(LIST4(I)).LT.DU*) GO TO 80IF (ISPEC.EO.O) GC TO 7000 60 J=ltISPECTF (LIST4(I).EQ.KSPEC(J)) GO TO 70

60 CONTINUEGC TO 80

70 CONTINUEPRINT 150* LIST4(I)*NSPEC(LIST4(I))*2(LIST4(I)),CUNITS(LIST4 (I))*M IT(LIST4(I))tXLHI(LIST4(I))*ALFA(LIST4(I))«XLALFA(LIST*(I))«GA*WA (L 2ISTA(I)),XLGAN (LIST4(I) )

80 CONTINUEIF (PRT(3).NE.O) GO TO 100

CALCULATION OF HOLAR RATIOS AND LOG ACTIVITY PATIOS. DC 90 1=1*8IF (ANALMI(LIST5(I)).LT.IE-30) ANALMI(LISTS(I))=1E-30 IF (MI(LIST5(I))«LT.IE-30) Ml(LISTS(I))»1E-30 IF (MI(LIST5(I)).LT.IE-30) XLALFA(LISTS(I))=-30. RATI01(I)=ANAL»I(5)/ANALMI(LISTS(I)) RATI02(I)=MI(5)/"I(LISTS(I) )

50 CONTINUERAT 101 (9)=ANAL*I (D/ANAL^I (2) RATI01(10)=ANALKI(3)/ANALMI(4) RATI02(9)=MI(1)/*I(2) RATI02(10)*MI(3)/^I(4) RATI03(1)*XLALFA(1)*PH«2. RATI03(2)=XLALFA(2)*PH«2. RATI03(3)=XLALFA(3)*PH RATI03(4)=XLALFA(4)*PH RATI03(5)=XLALFA(51)*PH«3. RATI03(6)=XLALFA(8)*PH»2. PATI03(7)=XLALFA(1)-XLALFA(2) RATI03(8)=XLALFA(3)-XLALFA(4) PRINT 110PRINT 160, (RATI01(I),RATI02(I),RATI03(I)*I=1,6)«(«ATI01(I),PATI02 1(I)*I = 9,10).

100 CCNTINUE RETtKN

110 FORMAT (//)120 FCRPAT (//*46X*»*«««OESCRIPTION OF SOLUTION »«»•«,//*27Xi'ANALYTIC

1AL COMPUTED»*13X,»PH»,16X,'ACTIVITY H20 = •*F7.4»/*20X*'EPMCAT •» 2F5.3*3X,F9.3*10X,F6.3*14X*«PC02 a <•1PE13.6*/»20X*'EPMAN «,OPF9.3 3«3X*F9.3,30X*«LOG PC02 a •«F8.4,/»56X,»TEMPERATURE'•1IX*»P02 = ••!

FFEFFFFEFFFFFFEFEEFFEFEFFEFEEFEFEFEEEFFFFEFEFEEEFFEEEEEEEEFEF

4204304404504604704604 SO500510520530540,550560570580550600610620630640650660670650650700710720730740750760770780750POO610820P30840850860870880850900910920930940950960970980990100010101020

-46-

4PEl3.6./.20X,»Eh a « .OPF6.4.2X. »PE * • ,F.7.3» 11X.F6.2. • DEC C»*10X.5IPCH4 « »tlPEl3.6t/t20Xt»PE CALC S a • .E13.6.33X. «C02 TOT » ».E13.66./.20X.»PE CALC COXat ,£13.6. 10X. • IONIC STRENGTH* «9X« 'DENSITY = ».70FF8.4,/.20X.»PE SATO DCX*» • 1PE13.6, 10X.E13.6. 10X, »TOS a I OPF9.1,»8Me/L»»/)

130 FCRMAT (11X.MN COMPUTING THE DISTRIBUTION OF SPECIES* PE = ».F7.31.5X. 'EQUIVALENT Eh »• .F7.3. • VOLTS' »//)

140 FORMAT (X//.52X , »- — —— - —— ...... —— . —— i ,/,52X . 'DISTRlBUT ION OF S1PECIES»,/»52X,» ——————————————————— ».//,7X,»I».2X, 'SPECIES' ,10X2.»PPM»,11X.»MCLALITY»,8X,»LOG MQL» .6X, • ACTIVITYl ,8X, »LOG ACT».5X,»3ACT. COEFF.»,5X,»LOG A COF»,/)

150 FORMAT (1H ,5X.I3,1X,A8.I3.2X,1PE12.5.4X,E12.5,4X.OPF9.4,4X,1PE12.15.4X,OPF9.4,4X,1PE12.5,4X,OPF9.M

160 FCRMAT (//• 18X • »MOLE RATIOS FROM ANALYTICAL MCLALITY MOLE RATIOS1 FROM COMPUTED MOLALITY LOG ACTIVITY RATIOS' ,/• 18X» • ——————————

»CL/CA s »»!PE11.4»17Xf »CL/CA s 4.4,9X»»LOG CA/H2 s » , OPF9.4 , / ,25X » » CL/MG s • • 1PE1 1 «4« 17Xt *CL/MG 5 » •»E11.4t9X»»LCG MG/H2 = • »OPF9.4t/»25X, 'CL/NA » •»1PE11«4»17 6X»»CL/NA s »»E11.4f9X»»LOG NA/H1 a • , OPF9.4,/f 25Xf »CL/K a ».l 7PEll.4,17X»»CL/K s •»E11.4,9X,»LOG K/H1 s • ,OPF9.4t/ ,25X t »CL/A 81 « •»lPE11.4fl7X,«CL/AL » • ,E11 .4 ,9X t »LOG AL/H3 * »»OPF9,4,/» 925Xi»CL/FE « • 1 1PE11 .4 t!7Xt 'CL/FE = • ,E1 1.4,9X, 'LOG FE/H2 = •• SOFF9.4,/»25X»»CL/S04 a • . 1PE11.4, 17X, 'CL/SC4 s » ,E1 1 ,4,9X f »LOG C SA/MG « »tOPF9.4,/,25Xt»CL/HC03 a i , IPEll .4 • 17Xt 'CL/HC03 a i,E11.4, S9X,*LOG NA/K a * ,OPF9,4 •/•25X« *CA/MG a * • 1PE1 1 «4« 17X« *CA/MG a S '»E11.4,/,25X»'M/K a »,E11.4»17X, «NA/K : »,E11.4)FNDSLBROUTINE SATINTEGER D«EtDCtRBITfCORALKfZ(120) »LIST6(24) «PRT(4)INTEGER PECALCfPECKDIMENSION LIST7U01), LIST8(15)PEAL MK120) tKT(200) »LOGKT(200) »LOGKTO(200) »MNTOT»LH20tMU»NATOT»KT 10TfMGTOTiLITOTtNH4TOTtKViPEAL «8NSPEC(120) tNREACT(200)COMMON MIfKTtLOGKTtLOGKTOfKwtOtE»DDfC»RiT»FtTEMPf AfB»PF»PES»PEDCtP !ESATO»PECKtPECALC.PH»TENMPE»TENPH»ALFA(120) »GAMMA(120) tAP(200) »XLA 2LFA(120) »Z»CUMTS (120) tANALMl (120) »NSPF.C »KRF ACT .GFW ( 120 ) ,DHA(120) t 3DM200) *AH20«LH20tERORltEROR2*EROR3fEROR4«EROR5fEHM«OENStDOX*XLM ( 4120) »ITER»RBIT»ClSAVE.COHALK t MUtLCHEK(200) . C02TITt ANALCOtSITOT tCAT 50T,MGTOT,KTOTfNATCTfS04TOTiFETOTfPTOT»ALTOTtFTOT»BTOTtLITOT,NH4TOT 6tSRTOT,BATOT»CLTOT»MNTOT.ICKtPRTfTITL(20) .EPMCATtEPMANtNEQU. ISPECt 7KSPEC(120) tIM IN, KM IN (200) »TOS, IDAVES. IPRTDATA LIST6/lt 2»3 »4»5.6, 7 ,8,9,11, 18 .24,27,40 t 45 ,47,51 f 54,62*67 tflfi»9 10.101.102/DATA LIST7/4 0,4 1,1 4 1,5 1,43. 18, 11 4, 42, 22. 15 1.1 45, 49, 53. 20. 13, 144,98 1.50,21,30,57,100,29,12,56,113,120,97,63,28,52,111,112,119,19,65,48 2,109,118,39,96,46,47,44,129,148,68,99,110,11,108,64,116,117,58,67, 359,61,150,55,45,142,115,54,102,37,10,101,147,143,38,66,62,32,60,10 47»146,154f 155.156, 17?, 173*174 • 175, 176, 177 ,178, 179, 180 »18 It 183, 184 1 5 1 85. 186 • 1 87 » 188. 189, 190*191, 192 »193/DATA LIST8/ 107. 108. 109, 11 0.1 11. 11 2. 11 3. 114. 115. 119, 120. 173. 174. 175 1.177/

CALCULATION OF ION ACTIVITY PRODUCTS DC 20 1=1,24IF (ALFA(LIST6(I) ULT.l.E-40) GO TO ALFA(LIST6(I) )=ALCG10(ALFA(LIST6(I) ) GO TO 20

10 ALFA(LIST6(I))a.2E4

10

EF.FFEF.FFFEEEFFFEFEFFFEFFEFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

103010401050106010701080109011001110112011301140115011601170118011901?001?101220123012401?5012601?7012801?901300

102030405060708090100110120130140150160170160190200?10220230240250260270280290300310320330

-47-

OG

GO

GO

GO

GO

CO

OG

O.O

OG

OG

GG

OO

OO

GO

OG

CO

OG

OG

GO

OC

OO

GG

OO

OG

OG

OO

OG

GG

OG

OO

O

U.

U.

OJ

X

O

*X

-J

•-«

O

J O

_J

9

I O

J

L

UJ

*

-.

OJ

_J

O

JO

U

J <

* X

9

i~4U

J •-«

O

J _

J

—<

IO

J I—

9

U

J O

X

**•

OJ

«

4

O

>-i O

J Q

. O

JI

r^ u.

uj i

x

* vo

O

~

OJ

-I

(VI

_J

O

041

s-

"4

•-«*••»

UJ

4X

O

J O

O

4

*

<~

I

O*

O

OJ

U.

J

OJ

OJ

U.

O

«

X

—•

UJ

I -I

O

*

4

X O

O

X

_J

UJ

(L

4

l«- —

4

oj o

u.

_i oj oj _j 4

in

n

9 u. ~>

i •*

*X

U

J -I

* I I

9

9

0_

J^

3

-* O

J ~

^J

^

p

^X

^3

^J

«

J

O

^3

fl

^t

lAJ

^t

^*

^f

^^

^

^

^^

*

I »

UJ

* *

UJ

UJ

•» X

O

J 9 4

O

OJ

4

OJ O

J

UJ

—. f«-

UJ

• UJ U

. O

•-•*•*

4

~ U

j _J

X4O

O

O

-J

44

IP o

oj •*

•-• ro oj

i ->

in o

•* cc 4

_j u. oj

oj oj 4

u. u.

IO

J

— O

-«ll*O

IO

I--~

*

OJ**

*

-J X

X

X

*

-J -I

oj|_jj^

ojo

jo

j_jo

_jo

«-_it)—

u. oj oj

oj o

o

o o

j.

r- o

o»*

«-« 4 9 OJ

«-«—•—»

UJ 9 UJ 4

4

OJ

/-< _J*-*

>-* UJ UJ

UJ UJ

_l

^

UJ UJ

4

^* 9 G *^

4 4 4 G

^0 O OJ

U. 9

X

2- 4 4 '•^

I CO

*O in 0

9

* ^ ̂

)U,OJGUJ4U.U.U.UJlUJl-JG_|-»

9 U.

f*- 1*1

| O

m

* *

O^

J

^^

i^j)

C*7 1^

«

J

vJi "—

J C

D

^^

|/1

^

^

^X

LlJ 4t

^^

C

^ _

J

(VJ IX

^*"

^*

CQ

^

^

^U

^

^

^

*"^ (^

4!

^t

^" 9

«J ^X

^X 4C

9 -*^

I ^^

^

C*7 ^3

C^

*i ̂ ^X

^^ '0'

*^ ^F

I "^

C^

^^ ^3 C

3 ^C

9

1^ ^

*••*

4

4( 4(

9

*••* "^

-*^ ^

***

• 1^1

*»^ r**

4( 4

O

IX)

f\J ^

* (\|

+

^

CVJ (\j «J

o

^j -^* r*- ^ o

o o

^

(v ^ cxj (v

(V) ^**

<t ^c o

t* IAJ *••* ^**

^

*•* **•*

i/^ QC DC

^ i

liJ

4 ^

(\J

O

1^1

111 U

J (M

^

^

C\|

^^

*"*

^92.

*

UJ

-i fVJ

4

<i

**•* (\j

4

Ct)

*~* -J

J

C>

Q

Q

(D

C\j

^

^J 4

C\J

(\J CXJ r^

<X

-•-* +

4

+

*—*

i<jU <*^

*^

l/l l/^

^

"*•* ^^ O

3E"

4

O

^

«J ^

^^

*^

OLv*

**-^ ^

49

^^

*™

'^-'^^

'^rr>—

^^t-^^ff «j

^

rv -^- *—

•*-- ^

^-* <t«»^ 1^ j 2. ^^

9 UJ

^

^ o

<

t<

t^

**•*" *-*

^-

**•» $

O

<

^

^^

O*-*^

O^

O

4

(VI

^^

*"<

44^

^^

ijjW

^

LO

<

CVJ

Ol/l

•«

•«

^

^ liJ

l^

t^

*^

<

r^ u. "* o

uj u.

U-u

.u.u

j<ir»

ujin

uJ

* ^

»-4 o

u.u

.*-«(v

j -j -^

• <u u

uj

• ^ CD

rvin

-*

x J

-J -4-

^ ^

< ^.

< «

< •

^ «

*^»-*<

u.^

ufc

in

«i

^*-4

* «

< u.

o^j^

^r-*

^

-* —.

<<

<

cv <

-* *

« ru <

%-r<**»-<

*^*-'X

^(v

i ^*—

*-'iii p

i^r>

»—

^'»

^*—

*—**

4 —»

<_

j(Vj(T?

(\j<£

4^***a

L-j(v

*-'*

^'^

i<<

x<

»^

»—

<x*-'rr)cTi0

<

l^ Ik

*~*

It It

9

O

^"»

•••^ It

It

'•*

^^

*"^

*^* it

4

O

it

O

i^

, ^

C

J IX

) jf

|| If

«•-% O

LfcJ

CJ

^

**" >f

*•* It

II l^

, it

iL

*"*

*™11

9

C?

^

*^* 9

it

*"*

^^

1AJ

C>

_j _j QU «j ^j o uj (\j

ixj «j ^j ^*< cvj (vi (v/ ^j IL til* ---* uj «j

^^ oj ^^ ^

*^ »•* iv (vi LU c*i (v ifi *s. «j ci CM »"^ «j «j «j ro ro o uj it

..j fi ••* «j ••^ *^ (V i^j<t ^

^ 4( ^

4^j (vj *^ ^^ 4X 4

*~* *~* *~* *"" 4

-n-f cvj <t rn 4

<t x

<t co u

u

^ *™* v7)

^ x ^^ ti- 4

^^ o u

<t *4 *t **** *™* tij CM «j

4 **^ \i/ 4

*~* **** i

^

** ^^ ^^ *** *^

-"•* ijjU

LL. ^

* ^

it IA»

It It

*^* I

*•* *••* *••*

*^* «J

9

--* ***

^^ -*^ C

J tA

«^ r-<

| {±

4i

^^ jfc

^%

««« ivi (^

^* *j>

k^ ^

*^>

9

*••* it

+

**^ It

(t ^

*™

* ^

*C

D

CV

^

^ ^*^

*™^

^^

(VJ

«J

^

^

«J ^

^ (^

^

J

^J

<«J

«J

*^

^^

^

^

1^) *^

^^

^X

^^

^

t ^

^

*•*' ^D

^

3 9

«J

"^

l/l ^

^

^J **

1^) 9£

^^

^

5 ^

) ^._J

(T)

^j

^

^^

»-^

^3

f|

^j

^^

Q

p ^

j ^

j j^

^^

^j

*^

^

^

v^

^

^

^^

^

Q

^^

^

2

pf)

4^

^

^

«^

^

J

^{

^J

1^

^

^ (^

^

^

%^

^

^

^*»

J0{

^|J

%

i^ f^

^

^

^

^

^J

^

J

^^

%

^

f^i

^J

*

%^

^

J

^

A

^

^^

*t

*<t

(^

**^

(jjV

j ^

^

^t

^O

^

^

^t

^t

^^

*"

^ (^

ltltltttlt^

~ltO

MO

ltltO

O

OO

it^

'itltU

.lt

UJ

• O

*—

i.

• •r*lO

ltlt*

H'O

LU

lt9

• •U

JU

JltO

O^

'it^

U

.O

^'itO

OU

.itC

t

O

II II

II N

U

II

II II

U

H

II II

U

U

N

U

U

U

U

II U

II

II I

N

N

Ct

• •

II II

H

II II

II II

II «~

• •

II II

II II

II II

ft II

U

II II

II II

II II

N ~

oaaau

.au

uaaaa.a

cL

a.

u.a

aaaaaaat;au

jaa^

ttu

*aau

.aaaau

.c\j

itit

flL

aaaaau

.aa.a

.aaaaaa.a

a

AP(101)*AP(98)AP(102)sAP(98)IF (ABS(PE).LT.20.0) 60 TO 30GC TO 40

30 CONTINUEAP(107)«3EO*ALFA(8)*2EO«ALFA(45)*8EO»LH20AP(1G8)=3EO*ALFA(9)-2EO«PE*4EO«LH20+8EO*PHAP(109)«2EO*ALFA(9)*3EO«LH20*6EO«PHAP(110)=AP(109)AP(111)«ALFA(9)*3EO*ALFA(27)-LH20AP(112)«3EO*ALFA(8)+2EO«ALFA(24)+6EO«ALFA(27)-5EO«LH20AP (113)*ALFA(9)*3EO*(LH20*PH)AP (114)sAP(45)*3EO«(ALFA(8)-ALFA(2))AP(115)=ALFA(8)+2EO*(ALFA(67)*PE*PH)AP(119)=3EO*ALFA(8)+4EO*ALFA(67)+2EO*PE+4EO»PHAF(120)=AP(68)AP(173)«ALFA(102)*2«LH2C*4*PH+PEAP(174)sAP(173)AP(175)sAP(173)AP(177)s3*ALFA(101)+4«LH20*8*PH+2*PE60 TO 60

40 CONTINUEDC 50 I=lfl5JK«LIST8(I)AP (JK)=-6000.

50 CONTINUEPECK=1

6.0 CONTINUEAP(116)«.29«ALFA(2)*.23«ALFA(9)*1.58*ALFA(54)*3.93*ALFA(24)

120AP(117)=.45«ALFA(2)*.34«ALFA(9)+1.47*ALFA(54)*3.82«ALFA(24) 12C*.76»PHAP(118)=3EO«ALFA(2)*ALFA(1)*4EO*ALFA(18)AP(129)sALFA(l)*2EO«ALFA(54)*4EO»ALFA(24)-8EO*LH20AP (141)=AP(52)AP(142)s2EO*(ALFA(l)*ALFA(54)+PH)*3EO*ALFA(24)-8EO»LH20AF (143)=ALFA(88)*ALFA(18)AP (144)-ALFA(88)«ALFA(6)AP(145)=ALFA(90)*ALFA(6)AP (146)=ALFA (90)+ALFA(18)AP(147)=ALFA (9)*ALFA(45)*2EO»LH20AP (l48)s2EO«ALFA(l)+4EO«ALFA(54)*8EO»ALFA(24)-17EO*LH20AP(150)sALFA(2)*ALFA(18)*3EO*LH20AP(151)«2EO*ALFA(1)*ALFA(18)*2EO*ALFA(27)*3EO»LH20AP(172)sALFA(lOl)*LH20*2*PHAP(176)=2*ALFA(102)*3«LH20*6»PHAP(178)=ALFA(101)*2*ALFA(27)AP(179)=ALFA(102)*3»ALFA(27)AP(180)«ALFA(102)*2«LH2C*3«PHAP(181)sALFA(101)+ALFA(18)AP(183)=ALFA(101)*2*ALFA(b)AP(184)sAP(183)*LH20AP(185)SAP(183)«2«LH20AP(186)aAP(183)*4«LH20AP(187)«2«ALFA(101)*ALFA(24)+4*PHAP(188)s2*ALFA(101)*ALFA(24)*2*PH-LH20AP(189)sALFA(101)*ALFA(67)*PHAP(190)=ALFA(101)*ALFA(6)AP(191)s2*ALfA(102)*3«ALFA(6)AP(192)*3*ALFA(101)+2»ALFA(45)AP(193)«ALFA(101)*ALFA(47)

FFFFFFFFFFFFFFFFFFFFFFFFFFFF

10.«LH FF

9.2«LH FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

95096097098099010001010102010301040105010601070108010901100111011201130114011501160117011801190120012101?2012301?401?5012601?701280129013001310132013301340135013601370138013901400141014201430144014501460147014801490150015101520153015401550

-49-

AP(154)sAP<37)AP(155)»AP(52)-LH20AP(156)*AP(129)-2«LH20PRIM 140PRIM 150DC 100 I«l,102IF (IMIN.EQ.O) 60 TO 60

DC 70 JMIF (LIST7(I) .EQ.KHIN(J) ) K*l

70 CONTINUEIF (K.EQ.l) GO TO 80GO TO 100

80 CONTINUEIF (AP(LIST7(I)).LT. -77.0. OR. AP(LIST7(I)).GT. 75.0) GO TO 90IF <LCHEK(LIST7(I)).EQ.1) GO TO 90OLMsAP(LIST7(I))-ALOG10(KT(LIST7(I)))IF (OUM.GT.75.) GC TO 90XlAPslO.**AP(LIST7(I) )RATsXlAP/KT<LIST7(I) )XLRAT»ALOG10(P'AT)DELGR=C«R«T*XL«ATPRINT 160 1 LIST7(I),NREACT(LIST7(I))»XIAP«KT(LIST7(I) ) , AP (LIST 7 ( I )

1) »LOGM(LIST7(I)),RAT»XLRAT,DELGRGC TO 100

90 IF (AP(LIST7(I) ).LT. -5000.0. OR. AP(LIST7(I)).GT. 5000.0) GO TO 100XLRAT*AP(LIST7(I))-LOGKT(LIST7(IMDELGR=C»R«T«XL«ATPRINT 170t LIST7(I) tNREACT(LIST7(IM tAP(LlST7(I))»LOGKT(LlST7(I) ) .

1XLRAT.DELGR 100 CONTINUE

IF (PECK. EQ.l. AND. PECALC.NE.O) GO TO 110GC TO 130

110 PRINT 180DC 120 1-1*15PRINT 190« NHEACT(LIST8(I) )

120 CONTINUE 130 CONTINUE

RETLHN

140 FCRKAT (//)150 FCRKAT (//«22X.«PHASE»t9X,«lAP»,10X«»KT»,8Xt»LOG lAP»t4X»»LOG KT»»

16X,»IAP/KT»«6X«»LCG IAP/KT » «5X » »DELGR» «/) 160 FORMAT (1H ,17X,I3«lXtA8,2(2X,lPE11.4) »2(2X,OPF9.4),2XtlPE11.4,2(2

1X,OPF10.5M170 FORMAT (1H » 1 7X , 13 « IX, A8 «28X«2 (F9.4«2X ) » 1 IX t2 (2X «F1 0 .5 ) ) ISO FCRKAT (///«20X,«FE IS GREATER THAN 20 OR LESS THAN -20 • ,/»20X » » AN

ID THE FOLLOWING MINERAL REACTIONS HAVE BEEN DISREGARDED',/) 190 FORMAT (1H ,20X,A6)

END

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

1560157015801550160016101620163016401650166016701680169017001710172017301740175017601770178017901ROO1810182018301840185018601870I860189019001910192019301940195019601970I9601990200020102020203020402050

-50-

Attachment C: Equilibrium reactions considered by WATEQF

§CMi coo

EH

§

0 «, <

<C COP5 fi]M M

M W2 PM

CO

CO

<!adpHwM2

+XHM

,(U

+CM

1 0 <U (U

Pn

IICO+ 0

<U CMp^ aH +

CM CM

<U (U

CO CM-j- _f_

aw wS S

i ii ii i i ii i

+a

+

0 <U

PHIIo

CMa+

CM

<U PH

+aow

111 11

CO | |<U <U

1 a + <r CMo o +O CO rH (U (U U

PH PH (U

II IIII

O CMCM i <r ia o in

CM CO U

+ + +

CM CM CM

(U (U (U PH PH PH

a <ro o ^o co u[V] [V] [V]

&4 !^ S

1 1 11 1 11 1 1 1 1 11 1 1

, ,(U (U

+ +

+ CM o CO o <frH rH OO U CO (U (U (U

PH PH PH

II II II

1 1 CMrH rH I <JU 0 OCM CO CO

,+ + +CM CM CM+ + +

0) 0) 0) PH PH PH

CM CO^ hJ 00 0 CO[V] [V] [V]

[2 [2 [2

i ii ii i i ii i

CM1 COO U

CM

PH

II

COO

(U

wHM

SQM CO

(U4-J•H

(U

•H CO

CM1 CO0

CM

53llco

0 0

1?HM COW55O

ii

(U4-1•HCO (U

00

e

CJCM

CM+ 00

S

-f-

CM

0

II

CMx— \

CO00

IwHM2o)_30 Q

<u4J

1Oo

CM1 CO O 0

CM+ C0

0

II

coO 0

BMo(J

3

(U4-1 •HU

, — |

U

,a

0•HCO

COa

M

o•H CO

a

0MCOCO

3

1111

+CM

,

v V•H Cco m

CM ,ia "ii m" \ <»oo ^CO +

a Hi

0M <rto oCM pw

S S

iii ii

0 PM

CMaii

CO

oPM

+

+B

CM

^0PMCM

5

Ij1 11

CM'cT

CO

CM+ cO

0

II•s

oCO

HM

Q£-1a%

(U4J•HVI

>>,J3a

CM v£) CO v£) OO

-51-

NJ

I

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

gypsum

bruc

ite

chry

soti

le

arag

onit

e

GYPS

UMCa

+2

+2.-2

BRUCITE

Mg(OH)

2 = Mg

+ 20

H

CHRYSOTL

5H20

=

3Mg+

260

H

ARAG

ONIT

CaC0

3 =

Ca+2

Mg+2 + F~

= MgF+

———

KCAS

04

Ca+2

+ SO

?2

= Ca

SO?

4 4

+2

+————

KMGOH

Mg

+ OH

= MgOH

————

KH3B03

H3B03 = H

+ H

2BO~

+

+

+2

forste

rite

FORSTRIT

Mg2Si04 + 4

H20

= 2M

g

diop

side

DIOPSIDE

CaMg

Si^O

, + 6

H20 -

Ca

2+

clinoens

tati

te

CLEN

STIT

MgSi03 + -3^0 - Mg

———

KNAHPO

Na+ + H

POT2=

Na

HPOT

4 4

trem

olit

e TR

EMOL

IT

Ca2Mg5Si

g022

(OH)

2 +

+

-2

__

—._

vvu

pn

v

-L

iiD

n

imi>

n^J

XX

lJr

\J

^

t L

\J /

^

^

Xll

r w

/4

4

————

KMGHPO

Mg+2

+ HPO~2=

MgHP04

———

KCAHPO

Ca+2 + HP0

72= Ca

HPO?

4 4

————

KH2C

03

HCO~

+ H

= I^

CO*

i r\

40H

Mg

I o

40H

2Ca

20H

+25M

g+2

140H

sepiolite

+2SE

PIAL

IT

Mg0Si

.O_

C(OH)'3H00 + 4.5H00 »

2Mg

+ SH.SiO,

ZJ/.D

Z

Z

tftf

4 (OH)

u>

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

talc

hydr

omag

nesi

te

adularia

albite

anor

thit

e

analcime

muscovite

phlo

gopi

te

illi

te

kaol

init

e

halloysite

beid

elli

te

chlo

rite

al uni

te

gibbsite

boehmite

pyro

phyl

lite

phillipsite

erionite

TALC

HYDMAG

ADULAR

ALBITE

ANORTH

ANALCM

KMICA

PHLOG

ILLITE

KAOLIN

HALLOY

BEIDEL

CHLOR

ALUNIT

GIBC

RS

BOEHM

PYROPH

PHILIP

ERIO

N

Mg3Si401()(O

H)2 + 10H20 -

3Mg+Z + 4H4Si

04 + 60H

~

Mg5(C

03)4

(OH)

2' 4H

20 =

5Mg+2

+ 4C

O~2 + 20

H~ + 4H20

KAlSi3Og + 8H

20

= K+ + A1(OH)~ + 3H

4Si04

NaAlSi Og

+ 8H

20 = Na+ + A1(OH)~ + 3H

4Si04

CaAl

2Si

2Og + 8H

20 *

Ca+2 + 2A1(OH)~ + 2H

4Si

04

NaAlSi206»H

20 + 5H

20

- Na+ + A1(OH)~ + 2H

4Si

O

KAl3S

i30

10(O

H)2 + 12

H20

- K+ + 3A1(OH)~ + 3H

4Si04 + 2H+

KMg3AlSi30

1()(

OH)2 + 10

H20

= K+ + 3Mg+2 + A1(OH)~ + 3H

4Si04 + 60

H~1

10

J_

K 6Mg 25A1

2 3S

i3 50

10(O

H)2+11

.2H20 =

.6

K +.25Mg +2.3A1(OH)~+3.5H

4S10

4+1.

2H

Al Si 0

(OH)

+ 7H 0

= 2A

1(OH

)~ +

2H,S

iO,

+ 2H+

£

£*

,J

^

£•

^

"*T

Al2Si

205(O

H)4 + 7H

20 =

2A1(OH)~ + 2H

4Si04'

+ 2H+

(Na,

K,3sMg)

.33A12.

33Si

3.67

°10(OH)

2+12H20

= •33(Na,K,3sM

g)++2

.33A

l(OH

)~H-

3.67

H4Si

04+2H+

Mg5Al2S

i3010

(OH)

8 + 1

0H20 = 5Mg+

2 + 2

A1(O

H)4 + 3

H4Si

04 + 8

0H~

i i o

O

KA13(S

04

)2(O

H)6

= K + 3A

1 ° + 2S

O~ + 60H

A1(OH)

3 =

Al+3 + 30

H~

AIO(OH)

+ H

20 =

Al+3 + 30H~

jAl

2Si40

10(O

H)2 + 12H

20 =

2A1(

OH)4 + 4H4Si

04 + 2H

Na 5K 5

AlSi3Og

'H20 + 7H

20

= 0.5Na+ + 0.5K+ + A1(OH)

4 + 3H

4Si

04

NaAlSi3

509'3H20 + 6H

20 = Na+ + A1(OH)~ + 3.

5H4Si

04

I Ln

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 7«;

cli

no

pti

loli

te

CLI

NO

P

mo

rden

ite

MOR

DEN

nahcoli

te

NA

HCO

L

tro

na

TRO

NA

nat

ron

NATR

ON

therm

onatr

ite

THRN

AT

flu

ori

te

FLU

OR

Ca-

montm

ori

llonit

e M

ONTC

A

hali

te

HA

LITE

thenard

ite

THEN

AR

mir

ab

ilit

e

MIR

AB

I

mac

kin

awit

e M

ACK

IT

——

——

K

HC

03

——

——

K

NA

C03

— —

T

TN

TA

Hrm

— -

TfN

A<?

n4

JxiN

riQ

Wr

___ _

in^Q

nA—

JxIX

OU

H

——

——

K

MG

C03

——

T

^MPu

rni

(K,N

a)A

lSi5

012

«3.5

H20

+ 8

.5H

20 =

(K

,Na)

+

A1(

OH

)4

+ 5

H4S

i04

(Na,

K)A

lSi4

11'3

H20

+ 8

H20

-

(Na,

K)+

+ A

1(O

H)~

+ 4

.5H

4Si0

4

NaH

C03

=

Na+

+ H

CO~

i o

NaH

C03

«Na2

C03

'2H

20 =

3N

a +

HC

03

+

C0~

+ 2

H20

i o

Na2

C03

'10H

20

= 2N

a +

C

O"

+ 1

0H20

• n

Na2

C03

«H20

=

2Na

+

C03

+

H20

CaF

2 =

Ca+

2 +

2F~

Ca

17A

12

33S

i3

67°1

0^°

H^2

+

12H

= -1

7Ca+

2 +

2.3

3A1(

OH

)4

+

3.67

H4

Si0

4

NaC

l =

Na+

+ C

l~

+

2N

a0SO

. =

2Na

+

SO?

24

4 i 2

Na2

S04

«10H

20

= 2N

a +

S04

+

10H

20

+

-4-9

FeS

+

H

= F

e +

HS~

2 +

—CO

+

H

* H

CO~

+

2 —

Na

+ C

03

= N

aC03

Na+

+ H

CO~

= N

aHC

+

-2M

a +

<?n

= N

fl^n

liel

~

ij

\J i

IN

ctO

vV,

4 4

+

-2K

-4-

cn

— vcn

T

O\J

,

JN.D

U.

4 4

-1-2

-2\x

~

i r>

f\ —

\X

r,r>

r\Q

Mg

+

C03

=

MgC

03

Mn

j- u

rn""

=

Mr»

urn

2H

76

----- -

77

—— —

79

—— —

80

—— —

81

———

flO

__

i _ .

Ln

84

—————

Ln

Of 88

———

89

———

90

— ——

91

— ——

92

—— —

93

———

QA

—————

KMGS04

KCAOH

KCAHC03

KCAC03

KCAF+

KALOH

KALO

H2

KALOH4

KALF

KALF

2

KALF

3

KALF

4

KALS04

KAS0

42

KHS0

4

KH2SC

KH2S

KHS

tfHYV

\t ~f-

Mg

Ca+2

Ca+2

Ca+2

Ca+2

Al+3

Al+3

Al+3

M+3

Al+3

Al+3

Al+3

Al+3

Al+3

H+ +

H2S

HS~

<

. sw

+ S0

4*

= MgSO°

+ OH"

=

CaOH+

+ HCO^

= CaHCO^

+ CO

^2

- Ca

CO°

+ F

~= CaF+

+ OH"

= A10H+2

+ 20

H~ = AKOH)^"

+ 40

H" =

A1(OH)

4

+ F

" = A1F+2

+ 2F"

= A1

F2

+ 3F"

= A1

+ 4F

" - A1F~

+ soT2

- A

isot

4 4

soT2

- f

lsoT

4 4

+ 10

H+ + 8e~

= H,

H+ + H

S-

* H+ + S

"2

n =

. 9 ̂n

4- H

4- <

ON

I

95 96 97 98 99 100

101

102

103

104

105

106

107

108

109

110

111

112

113

hy

dro

xy

apat

ite

fluora

pati

te

chal

cedony

mag

adii

te

cri

sto

bali

te

sil

ica gel

quart

z

viv

ianit

e

mag

net

ite

hem

atit

e

mag

hem

ite

go

eth

ite

gre

enali

te

amor

phou

s F

e(O

H).

,

KCH

4

HY

XA

PT

FLU

APT

CHA

LC

MA

GA

DI

CR

ISTO

SIL

GE

L

QU

ART

Z

Jxj?

C"J

n.fc

T^Tp

rrf^T

j ^

KFE

OH

4

KFE

OH

2

VIV

IAN

MAG

NET

HEM

ATI

MAG

HEM

GO

ETH

GRE

ENA

FEO

H3A

HCO

~ +

8e~

+ 9

H+

-

CH4

+

3H20

Ca5

(P04

) ^(O

H)

+

3H20

-

5Ca+

2 +

3H

PO~'

Cac

CP

Q.K

F +

3H

00 -

5C

a+2

+

3HP0

72

+

5432

4

2 2

44

+

+

NaS

i70

1 ,.(

OH

)-«3

H90

+ H

+

9H

«0 =

N

a

C-f

<"\

-1

. *?

U

C\

II

C-I

rt

O-L

VJn

i^

&

fln\J

L

i, O

J.w

>2

2 44

2 2

44

c-i r

t >i>

*?

u r\

— ;

u

c-in

o^

.\jn

i^

^.n.

-\_/

=• n

, ox

*j,

2 2

44

+2

+

+

-F

e +

2H

20

= Fe

(OH

)2

+

2H

+e

+2

4-

Fe

+

3H20

=

Fe(

OH

+

3H

+e~

1 2

j.F

e +

4H

20

= F

e(O

H)~

+

4H

+

e~

Fe+

2 +

2H

20

= F

e(O

H)°

+2

H+

+2

-3

Fe

(P0

4)2

»8H

20

= 3F

e +

2P

04

+ 8

HJ

+

+3Fe

0,

+

8H

-

3Fe

+ 4

H90

+ e

J

^

m*

, +

+

3F

e20

3 +

6H

=

2Fe

+

3H20

+

+3

Fe20

3 +

6H

-

2Fe

+

3H20

FeO

(OH

) +

H20

=

Fe+

3 +

30

H~ +2

Fe

^Si^

Og-

CO

H),

+

5H

«0 =

3F

e +

2H

oSi<

, , «

Fe(

OH

).

+ 3

H

= F

e +

3H

00

40H

30H

60H

114

115

116

anni

te

pyri

te

ANNI

TE

PYRITE

FeS.

10H20 = K+ + 3Fe+2 + A1(OH)~

60H

montmorillonite MO

NTBF

2H+ + 2e~

= Fe+2

+ 2HS

+ 10

.04H

20

0.28(H,Na,K)

+ + 0.

29Mg

+2 + 0.

23Fe+3 + 1.58 A1(OH)

+3.93

117

mont

mori

llon

ite

MONTAB

118

119

120

121

122

123

124

125

1 O

£J.

ZO

127

1 O

flJ.

ZO

129

130

131

1 79

hunti

te

HU

NTI

TE

gre

igit

e

GR

EGIT

E

amor

phou

s Fe

S FE

SPPT

__

__

__

__

in

jJT

IlO

P

__

__

__

_

KT

AP

nA

——

— —

— —

——

T

TP

AH

9P

——

——

——

K

MG

P04

Trv

roT

TO

'D

——

——

——

——

VT

TH

HJ\

.JL

J-U

n

_

__

__

__

tT

f T

Cn

A

__

___

__

__

IT

MW

AP

Lau

mon

tite

LA

UMON

_„ _ __

__

__

_

TfC

PH

H

TT

TJ

A f

\TJ

——

——

——

irM

wA

cn

CaM

g

Fe3S

FeS +2

Fe

x c Ca+

2u

d _ +2

l^a

L>

a +2M

g Z

+2M

gL

i+JL

l

Li

4-N

0~il

xx Q

CaA

l+2

<?r

ij*. +2

TD

ftU

a +

3(C

03)4

=

3Mg

4 +

4H

+ +

2e~

=

+

+2+

H

= Fe

+

HS

i TT

*D

^\

^ f ̂

\TI

T

rl2

rU4

i?et

l2,

-3

4- p

n =

Papn

• f\

J,

\j3il

. \J

.4

4_

-A*

XI

*D^\

" ^oX

I2

4

~ ^an

2.

o+

P

0~

° =

MgP

O~

I*

TJ

^/%

^

l^>

f/>

XJ

T

tirt-

cU.

— ng

n.2

+

nu

~

— T

^ nu

^U

tl

~

Lil

Utl

cn"~

T -i

QH"~

4^*

' '

JL1O

U, 4

+ 1

0H+

+ 8

e~

= N

0Si.

01 9

'4H

«0 +

81

Z

H

XZ

L

j.

nH~

— QT

-HH

T

uti

— oru

ri

+ O

H"

- Ba

OH

+

«i

cf\~

~

_

XTU

c?rC

~

=0.42(H,Na,K)~Vo.45Mg+2

+ 0.

34Fe+3 + 1.

47A1

(OH)

~

+2

-2

Ca Z + 4C

03

0.84H

3.82

Ca+2

+ 2A1(OH>

133

134

135

136

137

138

139

140

i

141

142

143

144

145

146

147

148

149

150

151

KHCL

KNAC

L

KKCL

KH2S04

K02SATO

KC02

KFEH

PO

KFEH

P+

amor

phou

s A1(OH)

3 AL

OH3A

H +

Cl

= HC

1'

prehnite

strontianite

cele

stit

e

bari

te

with

erit

e

strengite

leon

hard

ite

nesq

ueho

nite

arti

nite

Na K 2H

- Cl

Cl"

= Na

Cl°

KC1°

S0~2

0.5H

20

C02(

g)H20 =

H2C

O

Fe+2

+ HPO

T2 4

Fe+2

HPO

2

FeHPO? 4

FeHP

ot

+3Al(OH)

= Al

+

30H

SrC0

SrSO.

PREHNT

STRONT

CELE

ST

BARITE

WITH

ERIT

BaCO

STRE

NGIT

LEON

BLAN

K

NESQ

UE

ARTIN

Sr+2

C0

Sr+2

+

SO

BaSO.

= Ba

4+2

+ SO

~2 T2

4 2

Ba+2

2H2C

a+2 + 2

A1(OH)

Fe+3

= 2C

a+2

4A1(OH)

Mg+2

C0~2

2Mg+2

20H

VO

I

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

——

K02

AQ

sep

ioli

te

SEP

PT

dia

spo

ra

DIA

SP

wair

akit

e.

WA

IRK

T

——

KFE

HP2

——

KM

N3+

——

KM

NCL

+

——

KM

NCL

2

——

KM

NC

L3-

——

KMNO

H+

——

KM

N(O

H)3

——

KM

NF+

——

KM

NS0

4

WTH

TKT/

I o

O

KM

NH

C03

0.5

H2

H20

=

*2s

i

A10

0H

CaA

l,

Fe+

2

Mn+

2

vr +

2M

n

vr +

2M

n

vr +

2M

n

vr +

2M

n

vr +

2M

n

vr +

2M

n

vr

+2

Mn

0 =

0.2

50

2(a

q)

+ H

+

e

H+ +

OH

~

.07

,.(O

H).

3H90

+ 4

.5H

00 =

2M

g+2

+

3H,

O

/ • J

t*

A,

L

+ H

20

= A

l+3

+

30H

~

Si4

012

.2H

20 +

10

H20

=

Ca+

2 +

2A

1(O

H)

+ H

2P0;

-

FeH

2P0f +

e-

= M

n +

e

+ C

l~ -

MnC

l+

+

O ̂

1

turn

lkjTw

« f*

T £

\j±

, =

ru

iox

A

+ 3C

1~

= M

nCl"

+ O

H~

= M

nOH+

+ 30

H~

- M

n(O

H)~

+ F~

+ M

nF+

+ S0

7 =

MnS

4 4

Mn+

2 +

2N

O~

= M

n(N

03)2

+2

- +

vr>%

i t3

r>r\

vr^u

rTt

JJHI

T

riL

«u«»

^

mir

HjL

/_3

3

40H

-LUO

169

170

171

172

173

174

i o 17

5

176

177

178

179

180

181

1R9

————

manganosite

pyrolusite

6, birnessite

nsut

ite

bixb

yite

hausmanite

pyro

chro

site

Mn(OH)

3

mang

anit

e

rhodochr

osit

e

KMN04—

BLAN

K

KHMN02--

MANG

ANO

PYRO

LUST

BIRNSITE

NUST

ITE

BIXBYITE

HAUSMITE

MNOH2

MNOH3

MANG

ANIT

HHODOCHR

ttT AMI?

jrm

i- ^n

«u =

jymu.

-r on

-r

2

4

Mn

+ 4H

00

= Mn

OT" + 8H

2

4

Mn+2 + 2H

?0 = HMnO~ + 3H+

£•

£

MnO + 2H+

- Mn

+2 + H

20

Mn02 +

4H+ +

e" =

Mn+3 +

21

Mn02 +

4H+ + e~ =

Mn+3 + 21

+

- +3

Mn02 + 4

H +

e = Mn

* 21

+

+3

Mn2°3 + ^H

= 2Mn

+ 3H

Mn30

4 +

8H+ + 2e~

- 3Mn+2

-

Mn(O

H)2

= Mn

+2 +

20

H~

Mn(O

H)3

- Mn

+3 + 30H~

MnOOH +

3H+

- Mn

+3 -

2H20

MnC0

3 = Mn

+2 + G

O"

183

184

185

186

187

188

189

190

191

192

193

MnCl

+2

tephro

ite

rhodonite

MnS(gr

een)

MnSO,

Mn2(S04)3

MnCl

2 - Mn

+ 2C1

MNCL2

MNCL2,1W

MNCL

2,2W

MnCl

2.2H20

= Mn'" + 2C1

MNCL

2,4W

TEPHRITE

Mn+2 + 2C1

+2 Mn+2

+ 2C

1

4H+ -

2Mn+2

+2RHODONIT

MnSi03 + 2H

+ H

20 -

Mn

MNS

CRN

MnS + H+ =

Mn+2 + H

S"

MnSO

. - Mn+2 + SOT2

4 4

2Mh+3 + 3BO~

2MN

2S04

,3

MN3P04,2

3Mn+2

MnHP0

MNHP

04

MnHPO. - Mn+

2 + HPO

j2

4 4