wagner chapter 3

23
Book club Andreas Wagner, The Origins of Evolutionary Innovations Chapter 3 Book club presented by G. M. Dall'Olio, Pompeu Fabra, IBE-CEXS

Upload: giovanni-dallolio

Post on 29-Nov-2014

686 views

Category:

Technology


4 download

DESCRIPTION

Jouhttp://bioinfoblog.it

TRANSCRIPT

Page 1: Wagner chapter 3

Book club

Andreas Wagner,The Origins of Evolutionary Innovations

Chapter 3

Book club presented by G. M. Dall'Olio, Pompeu Fabra, IBE-CEXS

Page 2: Wagner chapter 3

Reminder:Genotype network

A genotype network is a set of genotypes that have the same phenotype, and are connected by single pairwise differences

AAAAA AAAAC AAAAG AAAAT AAATT

AAACA AAACC AAACG AAACT AAATC

AACCA AACCC AACCG AACCT …..

ACCCA ACCCC ACCCG ACCCT …..

CCCCA CCCCC CCCCG CCCCT …..

….. ….. ….. ….. …..

Yellow = same phenotype = a genotype network Note: genotype network == neutral network

Page 3: Wagner chapter 3

Chapter 3:Regulatory Innovations

This chapter describes the evolution of regulation mediated by Transcription Factors binding sites

Regulation is much more difficult to study than metabolic networks

Page 4: Wagner chapter 3

Regulatory innovations,definitions (1)

Genotype: a square matrix, called “Gene regulatory Circuit”

Describes the interactions between regulation factors

Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426

Page 5: Wagner chapter 3

Understanding Gene Circuits

Gene 1 (first column): activates Gene 2 and 

Gene 5 (orange) inhibits Gene 4 

(blue)

Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426(image adapter for color blind people)

Page 6: Wagner chapter 3

Genotype Space of Regulatory Circuits

Each cell corresponds to a regulatory circuit matrix 

0000000000000000000000000

0100000000000000000000000

0100000100000000000000000

0100000100000100000000000

0100000100000100000100000

1000000000000000000000000

1100000000000000000000000

1100000100000000000000000

1100000100000100000000000

1100000100000100000100000

1000001000000000000000000

1100001000000000000000000

1100001100000000000000000

1100001100000100000000000

1100001100000100000100000

Page 7: Wagner chapter 3

Neighbors of Regulatory Circuits

Each circuit differs for one reaction

Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426(image adapter for color blind people)

Page 8: Wagner chapter 3

Regulatory innovations,definitions (2)

Et is the list of expression status of each gene at a 

time t:

Et = (E

gene1(t), E

gene2(t), E

gene3(t), E

gene4(t), E

gene5(t))

Phenotype: the expression state E∞ at equilibrium

Page 9: Wagner chapter 3

Genotype Networks in Regulatory networks

Yellow cells have the same phenotype:

E∞ = (E

gene1(t=∞), E

gene2(t=∞), E

gene3(t=∞), E

gene4(t=∞), E

gene5(t=∞))

We can make some observations without knowing the identity of the genes.0000000000000000000000000

0100000000000000000000000

0100000100000000000000000

0100000100000100000000000

0100000100000100000100000

1000000000000000000000000

1100000000000000000000000

1100000100000000000000000

1100000100000100000000000

1100000100000100000100000

1000001000000000000000000

1100001000000000000000000

1100001100000000000000000

1100001100000100000000000

1100001100000100000100000

Page 10: Wagner chapter 3

Dimensions of Genotype networks

Genotype networks of regulatory circuits can be very big

An organism can stand many changes to its regulatory network, without changing the phenotype

Page 11: Wagner chapter 3

Galactose metabolism in Yeast and C.albicans

In Yeast, GAL4 initiates the transcription of  enzymes required for galactose metabolism

In C.albicans, GAL4 is associated to telomere and has unknown function

Traven A, Jelicic B, Sopta M. Yeast Gal4: a transcriptional paradigmrevisited. EMBO Rep. 2006 May;7(5):496-9. Review. PubMed PMID: 16670683; PubMedCentral PMCID: PMC1479557

Page 12: Wagner chapter 3

Regulation of mating in Yeast and C.albicans

In yeast, the Cph1 homologue is involved in mating type determination (...)

In C.albicans, Cph1 is involved in galactose metabolism

Page 13: Wagner chapter 3

Galactose metabolism in Yeast and C.albicans

The regulatory network for galactose metabolism has changed drammatically from S.cerevisiae to C.albicans

Figure from: Rokas A, & Hittinger CT (2007). Transcriptional rewiring: the proof is in the eating. Current biology : CB, 17 (16) PMID: 17714646

See also: Martchenko, M., Levitin, A., Hogues, H., Nantel, A., & Whiteway, M. (2007). Transcriptional Rewiring of Fungal Galactose-Metabolism Circuitry Current Biology, 17 (12), 1007-1013 DOI: 10.1016/j.cub.2007.05.017

Page 14: Wagner chapter 3

Galactose metabolism in fungii

Figure from: Rokas A, & Hittinger CT (2007). Transcriptional rewiring: the proof is in the eating. Current biology : CB, 17 (16) PMID: 17714646

See also: Martchenko, M., Levitin, A., Hogues, H., Nantel, A., & Whiteway, M. (2007). Transcriptional Rewiring of Fungal Galactose-Metabolism Circuitry Current Biology, 17 (12), 1007-1013 DOI: 10.1016/j.cub.2007.05.017

Page 15: Wagner chapter 3

Evolvability of Gene Networks

Authors introduced 600 new regulatory interactions in E.coli, and it tolerated 95% of them

Isalan M, Lemerle C, Michalodimitrakis K, Horn C, Beltrao P, Raineri E,Garriga-Canut M, Serrano L. Evolvability and hierarchy in rewired bacterial gene networks. Nature. 2008 Apr 17;452(7189):840-5. PubMed PMID: 18421347; PubMedCentral PMCID: PMC2666274.

Page 16: Wagner chapter 3

Example: Stem Cells transformation

Changes of very few transcription factors can transform a cell into a stem cell, or another type

Graf T, Enver T. Forcing cells to change lineages. Nature. 2009 Dec3;462(7273):587-94. Review. PubMed PMID: 19956253.

Page 17: Wagner chapter 3

Robustness to change is a requisite for innovations

Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426

Page 18: Wagner chapter 3

The number of phenotypes is much smaller than

the number of genotypes Number of genotypes: 3^(S^2), where S=number of 

genes Number of phenotypes: 2^(2*S) There are much more genotypes than phenotypes

Page 19: Wagner chapter 3

Some phenotypes have more genotypes than others

[1]: A. Wagner, The Origins of Evolutionary Innovations. Figure 3.2

Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426

Page 20: Wagner chapter 3

Distance between circuits with the same phenotype

On average, two circuits from the same genotype network differ by about 80% of their reactions

Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426

Page 21: Wagner chapter 3

Phenotypes of neighbors

Neighbors of two genotypes in the same network are usually different

[1]: A. Wagner, The Origins of Evolutionary Innovations. Figure 3.6

[1]: A. Wagner, The Origins of Evolutionary Innovations. Figure 2.6

Page 22: Wagner chapter 3

Distance between two genotype networks

On average, all the genotype networks are interwoven 

The distance to pass from a phenotype to another is usually shorter than the distance between two circuits in the same network

Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426

Page 23: Wagner chapter 3

Take Home messages

Genotype networks of regulatory circuits are large

Regulatory phenotypes are robust to changes (e.g. GAT4 in S.cerevisiae/C.albicans)

Many more genotypes than phenotypes

Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426