w. winkler anforderungen an die systemauslegung von ... · w. winkler anforderungen an die...

61
W. Winkler Anforderungen an die Systemauslegung von Schiffsantrieben mit Brennstoffzellen (Requirements of system design of ship propulsion with fuel cells) Internationaler Congress für Schiffs-Technik (ICST) Hamburg, 10.09.2015 Prof. Dr. techn. Wolfgang Winkler, Retired Director of Institute for Energy Systems and Fuel Cell Technology

Upload: duongdien

Post on 10-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

W. WinklerAnforderungen an die Systemauslegung von

Schiffsantrieben mit Brennstoffzellen(Requirements of system design of

ship propulsion with fuel cells)

Internationaler Congress für Schiffs-Technik (ICST)

Hamburg, 10.09.2015

Prof. Dr. techn. Wolfgang Winkler, Retired Director of

Institute for Energy Systems and Fuel Cell Technology

German and EU projects: FC ships

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FCSHIP

FELICITAS

FellowSHIP

New H-SHIP

METHAPU

e4ships

ZEMSHIP

MC-WAP

U – 212/214 silent

H2

• Sustainable transportation principles

• All electric ship and system integration

• Hybrid system design

• Principles of fuel processing

• Principles of energy storage

• Engineering challenges

• Conclusion

• Sustainable transportation principles

• All electric ship and system integration

• Hybrid system design

• Principles of fuel processing

• Principles of energy storage

• Engineering challenges

• Conclusion

Changing role of industry

• Combined heat and power

• Optimized heat generation

• Thermal processes

Substance heat

• Fluctuatiing operation

• Optimized heat management

• Electrochemical processes

Substance electricity

Tool:Thermodynamics2nd law

Entropy flow of society as the scaleReversible process defines the ruleReversible process borderline of real process

Sustainable development realization

RealProcess

Boundary process of real process

in

out

Exergy

Exergy

Exergetic Efficiency

ReversibleProcess

science engineering

Structure

Visible irr. Entropy Production

(real)

Geometric description of

solution

Reversible Structure(virtual)

System designwithout decisionabout geometry

Boundaries of Reversibility

1

ζ

Overview reversible Processes

Potential difference h Potential difference Tsource - Tab

Chemical Potential

No reversible S Reversible S from:Tsource ΔS

Reversible S (ΔRS)

Reversible mechanical System

Reversible thermal System

Reversible chemical System

Distance AB

m•v²

2

A B

m•g•h

h

Reversible

structure

Irreversibility:

Friction

Demand on external

energy storage and

supply of work

ENGINE

Demand on internal

storage and conversion

of energy

ARCHITECTURE

Pendulum

m

Reversible transportation principles

Typical mission parameters

Velocity

km/h

Rel.mass

kg/person

Height

m

Cycles /

mission

Ship 40 20000 0 1

Airplane 850 600 10000 1

Land

vehicle100 400 0 - 1000

High

number

Vehicle recovery potential

0

10

20

30

40

50

60

70

ship

airp

lane

en

erg

y/p

assen

ger

MJ/p

ers

on

kinetic

potential

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5 10 15 20 25

number of cycles

100 km/h

10 m

land vehicle

All-Electric systems with FC

Internal Recovery

Storage

Fuel Cell+

Fuel tank

Electric Storage

Friction determined

Recovery determined

Dissipation

Supply Storage

Land Vehicles Tra

nsp

ort

ati

on

syste

m

Ships

Airplanes

• Sustainable transportation principles

• All electric ship and system integration

• Hybrid system design

• Principles of fuel processing

• Principles of energy storage

• Engineering challenges

• Conclusion

Conventional and All Electric Ship propulsion systems

Current technologies

with engines or

gas turbines

Engines or gas turbines

gears

M M

FC

FC FC

FC

Future technologies

FCs and electric

drives

Ele

ctr

ic g

rid

„Reversible“ System Components

„All-Electric“ System

Range Extension

Power Electronic

Electric Motor-

Generator

Electric Storage

Exte

rneal P

ow

er

Supply

Engine

Fuel Cell

Flow battery

Infrastructure supplies:

Fuel, Electrolyte, Grid

New Batteries

Reversible System Structure

Minimizing dissipative Effects

Harvesting

Ambient energy

Supply for

Propulsion, Utility

Hotel load and

internal consumer

Ship structurePropulsion system

Structural and dissipative influences

Aircraft Ship

Propulsion Not yet POD

Power generation 1st application 1st application

Space lowest possible restricted

Weight lowest possible restricted

Mechanical stress dynamic dynamic

Hydrocarbon use kerosene diesel

Desulphurisation needed needed

FC and “all-electric“ design demands

Watertank

Electrolyser

Powerelectronic

Hydrogentank

Oxygentank

Solararray

Electricmotor

Fuelcell

daynight

Regenerative FC system

Pathfinder Plus

(USA)

Regenerative all-electric aircraft/ship

Source: NASA/ONR

Solar Power and Wave Energies

AUV (Russia)

• Sustainable transportation principles

• All electric ship and system integration

• Hybrid system design

• Principles of fuel processing

• Principles of energy storage

• Engineering challenges

• Conclusion

Hybridization targets

Hybridization

EfficiencyUtilization ofthermodynamicpotential

InvestmentMatching ofpower demandand technology

Cell waste heat removal

Excess air cooling Direct cell cooling

Cell power production

gas turbine process

steam turbine process

endothermic process

Stirling-engine

AMTEC process

thermoelectric converter

Flue gas utilisation

Possible process structures of FC hybrids

Electric hybrid system

Grid demand

Peak power Base load

Power management

Surface storageFlow battery

Fuel cell

Chemical

Reactor

T, p

Ideal insulation

±WtrevA

T0,p0

-Q0revHE-WtrevHE

Reversible Heat Engines

HE1

HEnHP1

+Q0revHP

+WtrevHP

Reversible Heat Pumps

HPj

C

±Q0revC

±WtrevC

Hybridization by reversible chemicalreactor and reversible docking station

Reversible H2 Fuel Cell +

Reversible Docking

Station

Example: Reversible Fuel Utilization

System Temperature T

Gibbs Carnot

Van´t Hoff

G0

Fre

e R

eactio

n E

nth

alp

y

G

TCT0

Ion Conducting

Membrane

workheatfluid

Simplified reversible FC hybrid

work

flue gasair fuel

preheater

FC

waste heat

work

heatheat engine

(CC)

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8

Heat engine efficiency

Fu

el c

ell e

ffic

ien

cy

0,1 0,2

0,3 0,4

0,5 0,6

0,7 0,8

0,9

Parameter:

System

efficiency

Generalized FC hybrid efficiency chart

System

efficiency

2nd law: Carnot limitation

2n

dla

w:

Nern

st

lim

itati

on

fuelairflue gas

reformer

SOFC waste heat extraction (sub-systems)

pressure difference HEX walls

air inlet temperature in SOFC

size of HEX surfaces

exhaust temperature

Intermediate expansion INEX :

Possible SOFC-GT systems

External cooling EXCO:

Comparison SOFC-GT systems

EXCO :INEX :

SOFC waste heat extraction (sub-systems)

1 pressure

level (system)

2 - n pressure

levels (systems)

pressure difference

HEX walls

only pressure

loss

maximal pressure

differerence

limit for air inlet

temperature in SOFC

SOFC

temperature

gas turbine outlet

temperature

size of HEX surfaces min. 1/7 of

ambient system

min. 1/2,5 of

ambient system

exhaust temperature 500 - 600 °C~ 200 °C

50 MW SOFC-GT Entwurfsstudie von 1994

SOFC-BehälterKompressor

Wärmeübertrager

GeneratorSOFC-Modul Gasturbine

Abhitze-

kessel

Rauchgas-

kondensator

Schornstein

el = 76 %

• Sustainable transportation principles

• All electric ship and system integration

• Hybrid system design

• Principles of fuel processing

• Principles of energy storage

• Engineering challenges

• Conclusion

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6

System efficiency in % Number of components

SR

System efficiency & number of components for PEFC systems

ATR POX

Fuel: Kerosene

SOFC

HE3

HE2

heat

flow

SH

PH

flue gas

air

FGC

FGC

FGC

FGC

FH2

FH1ECO

AH

T

T

T

T

ref

SOFC

work

water fuel

evaporator

0

reformer

evap

HE1

SOFC system with integrated reforming

SOFC temperature TSOFC 900 C

reformer temperature Tref 750 C

evaporator temperature Tevap 200 C

ambient temperature T0 25 C

excess air 2

water surplus nW 2

exergetic efficiency SOFC SOFC 0,60

exergetic efficiency heat engine HE 0,70

efficiency of air heater AH 0,90

efficiency of heat exchangers HEX 0.98

SOFC

processHEprocessHEprocess

process

SOFC

TT

1

QQ

TFC Tref > Tevap

pliedsup

used

Q

Q

SOFC system study parameters

45

50

55

60

65

70

75

80

1 2 3 4 5 6 7 8

Excess air

Sy

ste

m e

ffic

ien

cy

s

ys

t [-]

0,85

0,9

0,95

1

SOFC= 0.6, HE= 0.7, water surplus nW= 2 integrated reforming

SOFC = 900 °C, ref = 750 °C, evap = 200 °C

AH

Excess air and SOFC system efficiency

HE3 (environment)

out of service

all HE out of service

auxiliary burner on

T

Integration of reforming

60

65

70

75

80

85

750 800 850 900 950 1000

SOFC Temperature in °C

Syste

m e

ffic

ien

cy in

% 0.6ext

0.6int

0.8ext

0.8intExternal reforming

Internal reforming

HE = 0.7 excess air = 2, excess water nW = 2

Tref = 750 °C, Tevap = 200 °C

SOFC

Hybrid Improvement Strategy

in

out

Exergy

Exergy

Reversible

Process Structure

Real Process

Structure

Irreversible

Entropy

Production

MINIMUM

R&D

Activities

• Sustainable transportation principles

• All electric ship and system integration

• Hybrid system design

• Principles of fuel processing

• Principles of energy storage

• Engineering challenges

• Conclusion

Storage structures

Ve

ly

Vre

Ionic transport (electrolyte)

Substance transport

Electron transport

Volume storage Surface storage

seldseld.re

sely*

Storage processes

Principal electrical storage processes

PM.ESmAelKM.ES.tel VFV)A(cnW 00

Stored electric work

VA SnAc *

0

*

0)(

Surface storageVolume storage

)(

)()(

0

00

AM

AAc

Substance concentration of reference substance A0

Cell voltageVESm.PM in V

KMEStelw ..

Surface storage1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

1,00E+05

1,00E+06

0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00

1 10

100 1000

10000 c(Na)

Maximalenergy density

in kWh/m³

c*(A0)

Storage process synergies

Volume storageSurface storage

Regenerative fuel cell

Flowbattery

Electrodedesign

Batch process Flow process

• Sustainable transportation principles

• All electric ship and system integration

• Hybrid system design

• Principles of fuel processing

• Principles of energy storage

• Engineering challenges

• Conclusion

Specific Weight of Energy Converters

Diesel Engines

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000

Capacity in kW

Sp

ecif

ic W

eig

ht

in k

g/k

W

Gasturbines

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

0,00 5000,00 10000,00 15000,00 20000,00 25000,00

Capacity in kW

Sp

ecif

ic W

eig

ht

in k

g/k

W

PEFC H2 Systems

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

0,00 1,00 2,00 3,00 4,00 5,00 6,00

Capacity in kW

Sp

ec

ific

We

igh

t in

kg

/kW

High Temperature FC Systems

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

0,00 500,00 1000,00 1500,00 2000,00 2500,00 3000,00 3500,00

Capacity in kW

Sp

ec

ific

We

igh

t in

kg

/kW

Source: www.dieselgasturbine.com, US Fuel Cell Council

Definition of FC Cost Reduction Target

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10000 20000

Capacity in kW

Sp

ecif

ic C

ost

in U

S$/k

W HT-FC System

Diesel Engine

GT System

Funding + convent. Plant Cost =

Real Fuel Cell Cost

Funding in US$/kW

What are the

technical options

for cost reduction

Definition of FC Weight Reduction Target

0

20

40

60

80

100

120

140

160

0 500 1000

Capacity in kW

Sp

ecif

ic W

eig

ht

in k

g/k

W HT-FC System

Diesel Engine

GT System

Needed

Weight

Reduction:

Factor <10

Cost reduction strategies

• Simplification of process

- Integration of fuel processing

- Direct fuel cell

- Reduction of components

• Reduction production cost

• Improvement of design

- Volume reduction of components

- Micro technology

Micro-process technology

Ratio definition

Ratio = Micro solution/Macro solution

Area/Weight ratio

0

2

4

6

8

10

12

0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2

Tube diameter in cm

Are

a/W

eig

ht

rati

o

Factor 10

Mass transfer ratio

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0,2 0,4 0,6 0.8 1 1,2 1,4 1,6 1,8 2 2,2

Tube diameter in cm

Ma

ss

tra

ns

fer

co

eff

icie

nt

rati

o

Factor 4,6

Vessel integrated area ratio

0

2

4

6

8

10

12

0,2 0,4 0,6 0.8 1 1,2 1,4 1,6 1,8 2 2,2

Tube diameter in cm

Ve

ss

el

inte

gra

ted

are

a

rati

oVessel inner

diameter: 100 cm Factor 10

Area related vessel material ratio

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0,2 0,4 0,6 0.8 1 1,2 1,4 1,6 1,8 2 2,2

Tube diameter in cm

Are

a r

ela

ted

ve

ss

el

ma

teri

al

rati

o

Factor 20

Vessel inner

diameter: 100 cm

• Sustainable transportation principles

• All electric ship and system integration

• Hybrid system design

• Principles of fuel processing

• Principles of energy storage

• Engineering challenges

• Conclusion

• Fluctuating electricity for land and bio fuels for sea transport

• No principal change in naval power supply

• All-electric ship offers easy use of fuel cells and renewableharvesting system solution

• Hybridization combines fuel cells, heat engines, or/and batteries

• Hybridization allows fuel cell system efficiencies of more than 70%

• Electric storage helpful but not essential as for land transport

• Minimizing dissipation losses engineering task

• Micro technology allows clear weight and thus cost reduction forelectrochemical devices

H2 + 1/2 O2 H2O

1/2 O2

H2O

Current IElectric work

H2

2e-

1

2H+

Anode Electrolyte Cathode

2

3

O2-

Oxygen ion conduction

.e2H2H2

OHOH2 2

2

2

2 Oe2O2

1

H2 + 1/2 O2 H2O

1/2 O2

Current IElectric work

H2

2e-

1

2H+

Anode Electrolyte Cathode

2

O2-

3

H2O

Proton conduction

2

2 Oe2O2

1

OHOH2 2

2

.e2H2H2