vournas sauer pai 1997

Upload: chetan-kotwal

Post on 13-Feb-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Vournas Sauer Pai 1997

    1/8

    LS VI R

    Electrical Pow er Energy Systems, Vol. 18 No. 8 pp. 493-500 1996

    Copyright 1996 Elsevier Science Ltd

    Printed in Great Britain. All rights reserved

    PII

    S0 14 2-0 61 5(9 6)0 00 09 -9 0142-0615/96/ 15.00+ 0.00

    e la tionsh ips b e tw ee n v o ltag e and

    ang le s tab il it y o f p o w er sys tem s

    C D V o u r n a s

    Electr ica l Energy Systems Labora to ry Nat iona l

    Tech n ica l Un ivers i ty PO Box 261 37

    A th e n s G R - 1 0 0 2 2 G r e ece

    P W S a u e r a n d M A P a i

    Depar tment o f E lect r i ca l and Computer Eng ineer ing

    Un ive rs i ty o f I l li no is 1 406 W. Green St Urbana

    IL 61 801 US A

    This pap er discusses modelling a nd theoretical issues asso-

    ciated with vol tage an d angle stabil i ty o f pow er systems. A

    time-scale decomposition is per form ed to illustrate how the

    critical modes can be identified with reduced-order models

    and the bi furcation p henom ena can be explained with these

    low order models. E xam ples are given fo r single and muhi-

    machine systems. Copyright 1996 Elsevier Science Lt d

    Keyw ords. voltage stability, angle stability, bifurcation,

    reduced order modelling

    I I n t r o d u c t i o n

    P ow e r sy s t e m dyna m ic s a r e c lo sely re l a t ed t o t he m e c ha n -

    ica l and e lec t rica l dyn am ic s ta te va r iables o f a l l the

    sync h r onous m a c h ine s i n t e r c onne c t e d t h r ough the ne t -

    w or k . H i s to r i ca l l y , pow e r sy s t e m s t a b i l it y ha s be e n a s so -

    c i a t e d w i th t he ge ne r a to r r o to r a ng l e dyna m ic s . I n t h i s

    pap er w e re -examine the i ssue of the c lass ic ' s teady s ta te '

    (non-osc i l la tory) angle s tabi l i ty in the l ight of r ecent

    resea rch re la t ing to vol tage s tabi l i ty problems. We

    in t e nd to de m ons t r a t e t ha t t he S a dd le N ode B i f u r c a t i on

    ( S N B ) a s soc i a t e d w i th t he m a x im um pow e r de li ve r e d by a

    sync h r onous m a c h ine unde r c o ns t a n t e xc i t a t ion i s no t a n

    'angle ' s tab i l i ty problem , but o n the cont ra ry i t in i t ia te s a

    s low de m a gne t i z a t i on p r oc e s s s e nsed in t he ne tw o r k a s a

    vol tage decay wi th negl ig ib le f requency e r ror . I t i s only

    du r ing t h i s p r oc e s s t ha t t he a c tua l l o s s o f sync h r on i sm

    point i s me t .

    Vo l tage s tabi l i ty i s pred om inan t ly load s tabi l i ty 1 '2 .

    H ow e ve r , i t c a nno t be c om ple t e ly s e pa r a t e d f r om the

    dyna m ic s o f t he sync h r onous ge ne r a to r s w h ic h p r ov ide

    bo th t he pow e r a nd the vo l t age t o t he l oa d buse s . I n a t r a -

    dit ional analysis, voltage stabil i ty was init ia l ly considered

    Received 8 Jun e 995; revised 23 No vem ber 995; accep ted

    8 February 996

    f rom a load f low perspec t ive , in which the g enera tor s w ere

    s im p ly r e ga r de d a s ' P V b use s ' . The c on t r a d i c t i on o f u s ing

    the t e rm ' s t a b il i t y ' t o r e fe r t o a p r ob l e m w i th no dyna m ic s

    was recognized eventua l ly and i t i s now genera l ly

    a c c e p te d t ha t ' vo l t a ge c o l l a pse i s u l t im a te ly a dyna m ic

    phe n om e non 1 '2 . H ow e ve r , t he dyna m ic s i nvo lve d in

    vol tage s tabi l i ty have in many s tudies been res t r ic ted to

    loa d bu se s on ly , i nvo lv ing f o r i n s t a nc e l oa d t a p c ha ng ing

    (LTC ) t rans formers , r e s tora t ive loads 3 '4 , e tc ., wh ose t ime

    f r a m e is o f t he o r de r o f one o r m o r e m inu te s . M a ny

    vol tage s tabi l i ty inc idents evolve in th is t ime f rame , for

    w h ic h t he ge ne r a to r dyna m ic s c a n be l e g i t im a te ly sub -

    s t i t u t e d b y a pp r o p r i a t e e qu i l i b r iu m c ond i t i ons 5,6.

    In many cases , however , a vol tage ins tabi l i ty scenar io

    or ig ina t ing in the midte rm t ime-sca le gradua l ly man ifes ts

    i t se l f a s tr ans ient ins tabi l i ty , and the equi l ibr ium of

    gene ra tor dynam ics i s eventua l ly los t 7 leading to a loss

    of synchronism. Also , the re i s a t leas t one case repo r ted in

    the l i te ra ture s a s a vol tag e col lapse inc ident , for w hich

    sync h r ono us ge ne r a to r s s e e m to be t he ke y f a c to r r espon -

    sible for the instabil i ty.

    The t he o r e t i c al que s t i on ske t c he d a bove c a n b e s t a t e d

    as fo l lows: S ince vol tage s tabi l i ty i s d i rec t ly or indi rec t ly

    l inked to the ' s teady s ta te ' angle s tabi l i ty problem is

    the r e a f r a m e w or k f o r c o r r e c t l y de c oup l ing a ng le a nd

    vo l t a ge s t a b i li t y p r ob l e m s? A n a nsw e r t o a s im i l a r que s -

    t ion i s a t tem pted in Refe rence 9 for osc i l la tory ins tabi l i ty

    us ing t he c onc e p t o f a n ' i nc r e m e n ta l r e a c ti ve c u r r e n t f l ow

    ne tw or k ' . I n ou r a na ly si s , t he a nsw e r is sough t b y a pp ly -

    ing s ingu la r pe r tu r ba t ion a na ly s i s t o a n un r e gu la t e d

    m ul t im a c h ine pow e r sy s t e m in o r de r t o de c om pose i t

    f o r m a l ly i n to a s l ow a nd f a s t subsys t e m . The phys i c a l

    c onc e p t o f t im e -sc a le de c om p os i t i on w a s i n t r oduc e d in

    R e f e r e nc e 10 , w he r e t he pow e r sy s t e m w a s de c om pose d

    in to a mid- te rm and a t r ans ient t ime-sca le . In our

    a pp r o a c h w e p r oc e e d f u r the r t o de c o m po se the ge ne r a to r

    dyn amics ( in the t r ans ien t t ime-sca le ) in to v ol tage ( f lux)

    4 9 3

  • 7/23/2019 Vournas Sauer Pai 1997

    2/8

    4 9 4

    Relat ionships between voltage and angle stabili ty of po we r systems. C. D. V oum as e t a l .

    and s ha f t ( e l ec t rom echan i ca l ) dynam i cs . U s i ng t h i s

    app roach i t i s c l ea r l y dem ons t r a t ed t ha t t he re i s on l y

    one m ech an i s m fo r gene ra t o r S NB , wh i ch i nvo lves bo t h

    vo l t age and ang l e , bu t no t f r equency o r power .

    A fo rm al decom pos i t i on o f t he dynam i cs o f a m u l t i -

    m ach i ne , un reg u l a t ed s y s t em i n t o f a s t e l ec t rom echan i ca l

    osci l l a t ions and s low f lux-vol tage response modes i s

    und er t ak en i n S ec t i on II . S ec t i on I I I s uggest s an app rox -

    i m a t e m e t hod o f ana l y si s fo r a pa r t l y r egu l a t ed s y s tem ,

    and Sect ion IV presents three i l lus t ra t ive examples .

    I I D e c o m p o s i t i o n o f m a c h i n e d y n a m i c s

    I 1 . 1 Slow ma ni fo ld in mul timachine systems

    A p owe r s y s tem cons is t ing o f m s ync h ronou s m ach i nes

    can be d escr ibed in the t rans ien t t ime-scale by the fo l low-

    i ng s e t o f equa t i ons , w i t h t he m ach i nes r ep res en t ed u s i ng

    t he one -ax i s m ode l U:

    6 = , , . , 1 )

    ~ o l TM t~

    = P m

    - P (6 , E q ) - ~ o i D w

    ( 2 )

    T d l ~ = E f - E ( 6 , E~q) ( 3 )

    wh ere 6 , to , E~ , and E r are m x 1 vectors represent ing the

    ro tor angles , speed deviat ions , in ternal vol tages ( f i e ld

    f luxes) , and exci ta t ion vol tages of the m ma chines , respec-

    t ively , TM, D, and Td are m x m diagonal mat r ices con-

    t a i n i ng t he m echan i ca l s t a r t i ng t i m es T M i = 2Hi) , the

    dam pi ng t e rm s , and t he f i el d open c i r cu i t t i m e cons t an t s ,

    respect ively , and f inal ly mo i s the syn chro nou s speed . The

    m ach i nes cons i de red i n t h i s s ec t i on a re w i t hou t au t o -

    m at i c vo l t age r egu l a to r s and t he m echa n i ca l pow er i npu t

    P m i s a s s um ed t o be cons t an t . The ope ra t i on wi t hou t

    AVR s i s pos s i b l e when t he m ach i nes a re under m anua l

    vo l t age con t ro l , o r when t hey have r eached t he i r exc it a -

    t ion limit s. Th e funct ion s P an d E are m-valu ed funct ion s

    of the s ta te var iab les 6 and Eq, depending on the in ter -

    connec t i on be tween m ach i nes and l oads .

    T h e m u l t im a c h i n e m o d e l ( 1 ) -( 3 ) c a n b e d e c o m p o s e d

    in to two subsys tems , a s low one cons i s t ing of f lux-decay

    mo des , and a fas t one descr ib ing e lect rome chan ical osci l-

    l a t ions . To achieve th i s , the fo l lowing parameters are

    i n t roduced :

    c

    V 4 )

    1 m

    I I = m I I

    5 )

    w = cw (6)

    H = d i a g [ H i / H o ] (7)

    Us i ng t he above n o t a t i on , t he s y s t em (1 ) -(3 ) t akes t he

    fo l l owi ng s t andard fo rm fo r s i ngu l a r pe r t u rba t i on ana -

    lysis12:

    e 6 = , , / 8 )

    e J

    = H - 1 [ P m - P ( ~ , E ; ) - ~ H o D J ] (9)

    E ~ = T d 1 [ E f - E(6, Eq)] (10)

    In (8)- (10 ) 6 , w are the fas t var iab les an d E q are the s low

    variables.

    C ons i de r t he m -d i m ens i ona l m an i fo l d in t he s t a t e s pace

    o f t he s y s t em (8 ) - (10 ) de f i ned by t he 2m equa t i ons :

    6 = h l (Eq) =

    h l o

    + eh n+ O( c 2 ) (11 )

    Of = h 2 ( E q ) = h 2 o + eh : l+O (e 2) (12)

    The mani fo ld def ined by h i , h2 wi l l be an in tegral or

    i nva r i an t m an i fo l d fo r t he f a s t s ha f t dynam i cs i f t he

    fo l l owi ng cond i t i ons ho l d , wh i ch gua ran t ee t ha t a

    t r a j ec t o ry s t a r ti ng o n t he m an i fo l d wi ll r em a i n on i t fo r

    al l t ime:

    Ohl 1

    ~ q q T d [ E f - E ( h b E q )] = h 2 ( 13 )

    0h2

    ~ -1 r ~

    C ~q q I d L l L f

    E ( h l E q ) ]

    = H - 1 [ P m - P ( h l , E q ) - ~ H o D h 2 ] ( 1 4 )

    No t e t ha t h i , h 2 a re func t i ons o f E~ .

    The above cond i t i ons (13 ) and (14 ) a r e ob t a i ned by

    subs t i tu t ing (1 l ) an d (12) in to (8) and (9) and m akin g use

    of(10) . I t i s no t poss ib le in gen eral to so lve equa t ions (13)

    and (14) in ord er to obta in analy t ical ly the in tegral

    ma ni fo ld h i , h2 (a lso cal led the s low ma ni fo ld) o f the

    s ys t em . An app rox i m a t e s l ow m an i fo l d can be found ,

    how eve r, by su bst i tut ing hi , h 2 as a~aower series in c, as in

    (1 l ) and (12) and eq uat ing the c and eI t erms . This

    process g ives the fo l lowing set of equat ions :

    O h l o T _ I rr,

    C~-E-7-q d [~f - E( hl o, E q) - eM 4h ll ] ~ h20 -4- eh21

    0 h 2 o T - 1

    ,~,

    e ~ -E -~ q d L r - f - E ( h , o , E~) - c M 4 h t , ]

    = H - 1 [ P m - P (h l0 , E q ) - e M , h , , - ~ H o D h2o ]

    where m a t r i ces M1 and M 4 a re de f i ned as t he J acob i ans o f

    func t i ons P an d E w i t h r e s pec t t o 6 ca l cu l a t ed a l ong t he

    m a n i f o l d hi0:

    0 P 6 = h o O ~ 6 =h to

    1 = ~ - ~ M 4

    Equ at ing the coeff ic ien t s of e :

    0 = h 2 o ( 1 5 )

    0 =

    H - I [ p m - P ( h l 0 , E q ) ] ( 1 6 )

    Equ at ing the coeff ic ien t s of e l:

    0 h i 0 T - 1

    h 2 1 ~ -- ~ q d [ E f - E ( h l 0 , E / q )]

    (17)

    0 = - H - I M l h l l ( 1 8)

    f rom which i t i s c lear that

    h u = 0

    Note that (15) was used to obta in (18) . Di f ferent ia t ing

    I .

    (16) w ith respe ct to Eq.

    0 h t o

    n t - - f f~ , + n 2 = 0

    ( 1 9 )

    U l ~ q

  • 7/23/2019 Vournas Sauer Pai 1997

    3/8

    Relationships between voltage and angle stabi l i ty of powe r systems. C. D. Vournas e t a l . 4 9 5

    wh ere M2 i s def ined as :

    OP 6=hi0

    2 = ~ q q

    F ro m (19 ) we can wr i t e t he J acob i an o f the s l ow m an i fo l d

    h i0

    fo r t he gen e ra t o r ang l es a s a func t i on o f t he m a t r i ces

    M1, M 2 :

    0 h I 0 = - M I I M 2

    (20)

    F i na l ly , t he O(e 2) app rox i m at i on o f t he i n t eg ra l m an i -

    fo ld for the shaf t var iab les i s g iven by:

    6 s =

    h lo

    (21)

    J s = - e M i l M 2 T i I [E t E (h l0 , Eq )] (22 )

    w h e r e h lo i s the impl ic i t funct ion of E~ def ined by the

    solu t ion of :

    P h l o ,

    Eq) --

    a m 2 3 )

    Variables 6s , wts are the s low components of the fas t

    va r i ab l es co r res pond i ng t o t he s ha f t dynam i cs and a re

    funct ion s of E~ .

    No t e t h a t a cco rd i ng t o (22) t he f r equency dev ia t i ons

    du r i ng s l ow t r ans i en t s a re o f o rde r e , a l t hough t he ang l es

    m a y va ry con s i de rab l y to ach i eve t he pow er ba l ance (23 ).

    This i s character i s t i c of the c lass ical descr ip t ion of vol tage

    s t ab i l i t y p rob l em s , where l a rge vo l t age va r i a t i ons a re

    accom pan i ed by neg l i g i b l e f r equency e r ro r s . As t he

    va l ue o f t he f r equency e r ro r i s s m a ll i t is r eas onab l e t o

    as s um e t ha t t he f r equenc y con t ro l l oop i s no t exc i ted

    dur in g s low f lux-vol tage t rans ients .

    1 1 . 2 Slow f lux an d vol tage dynamics: SNB

    An app rox i m at e decom pos ed ve r s i on o f t he s l ow f l ux

    dynam i cs is de r i ved f rom (10 ) by r ep l ac i ng 6 by

    h l 0 ,

    w h i c h

    is obta ine d by so lv ing (23). Thus :

    1 ~1 = T d I [ E l - E h l 0 , E t q )] 2 4 )

    The l i nea r i zed ve r s i on o f (24 ) a round an equ i l i b r i um

    poin t E qo g ives the fo l lowing s ta te ma t r ix , obta in ed

    us ing the def in i t ions of the M ma t r ices and (20) :

    As = T i I [M3o + Ma oMllM 2o] (25)

    where:

    0 E

    eh lo

    3 - - 0 E ~

    and the subscr ip t 0 deno tes evalu at ion a t the equil i-

    br iu m po in t E~o.

    The m at r ices M 1 - M4 def ined in th is and the previous

    sect ion , are d i rect general izat ions of the l inear izat ion

    coeff ic ien ts K 1 - K 4 used in the He ffron -Phi l l ip s mo del

    13,14

    of a s ynch ro nous m ac h i ne . There ex is ts an exac t one

    t o one co r res po ndence , w i t h t he excep t i on o f M 3 wh i ch

    co r res ponds t o - 1 /K3 o f the s i ng le m ach i ne m ode l .

    No t e t ha t t he ap p rox i m at e s t a t e m a t r i x o f t he sl ow

    ma chin e dyna mic s (251) i s the sam e ma t r ix tha t w as

    in t rod uce d in Refer ence 15 as a vol tage s tab i li ty

    ma t r ix . Fol low ing the abov e analys i s , th i s mat r ix

    app rox i m at es wi t h an c 2 e r ro r t he f l ux dynam i cs o f a

    m u l t i m ac h i ne sy s t em wi t hou t AVR s . M oreover , a ze ro

    e i genva lue o f t h i s m a t r i x c o r res ponds exac t l y t o a s add l e

    node b i fu rca t i on o f t he o r i g ina l s y s t em , as can be eas i ly

    ver i f ied by l inear iz ing (1)- (3) as in Reference 15 . The

    SNB con di t ion o f th i s sys tem i s g iven by:

    det[M3o + M4oM lolMzo] = 0 (26)

    A s add l e node b i fu rca t i on in a m u l t i m ac h i ne s y s t em wi ll

    resu l t in a s low f lux decay fe l t by a l l genera tors . This w i ll

    have a s i m i la r d r i f ti ng e f f ec t on t he ge nera t o r t e rm i na l

    and l oad bus vo l t ages l ead i ng t he who l e s y s t em e i t he r to a

    vo l t age co ll apse , o r t o t he l o ss o f s yn ch ron i s m be t wee n

    t he genera t o r s .

    1 1 . 3 Fast dynamics. electrome chanical oscil lations

    O n c e a n a p p r o x i m a t e s lo w m a n i f o l d h as b e e n f o u n d f r o m

    (21 ) and (22 ) , t he f a s t dynam i cs o f t he m u l t i m ach i ne

    s ys tem can be r econs t ruc t ed u s i ng t he o f f -m an i fo l d va r i-

    ab les def ined below:

    6r = 6 - 6s (27)

    (28)

    f ---~0.2 -- W

    The o f f -m an i fo l d dynam i cs a re des c r i bed wi t h an O(e 2 )

    app rox i m at i on by t he fo l l owi ng d i f f e ren t i a l equa t i ons ,

    which are der ived by d i f fere nt ia t ing (27) an d (28) as in

    Reference 12 and omi t t ing the 2 and h i ghe r o rde r t e rm s .

    No te that the s low c om pone nts 6s, W s are funct ions of E q

    and t he re fo re t he ir t i m e de r i va ti ves have t o be eva l ua t ed

    using the chain rule, i .e. (21) and (22.) are different iated with

    respec t to E q an d mu l t ip l ied b y E~ g iven by (10) .

    err = eh21 + w~ + ~Mi1M 2Td 1 [Ef - E(h lo + 6 I Eq)]

    (29)

    = n - I [ Pm - P h l o + 6 t , E q ) -

    ~--~ Dwt] (30)

    In l inear iz ing equa t ions (29) and (30) arou nd a po in t ly ing

    on t he s l ow m an i fo l d , fo r wh i ch ~ t = 0 , t he dependence o f

    h i0 , h21 on E q has to be tak en in to acc oun t by app ly ing the

    chain ru le o nce mo re, i .e .

    + e M l l n 2 T d - I [ ( M 3 - M 4 ~ ) A E q - M 4 A r f J

    Subs t i tu t ing h21 f rom (17) and us ing (20) it becom es c lear

    t ha t t he sl ow va r i ab les Eq a re e l i m i na ted f rom the above

    equat ion . Th e sam e is t rue wh en l inear iz ing (30) .

    Now, i n o rde r t o r e t u rn t o t he o r i g i na l va r i ab l es we

    define:

    Wr= (1/e)w~ (31)

    and the fo l lowing l inear ized s ta te equat ion for the off -

    m an i fo l d , e l ec t rom echan i ca l o s c il l at i on dynam i cs i s

    ob t a i ned :

    Ad. fJ = [ -T~l lM 1 -T~I1D LA~f]

    where I , , is the m m i den t i t y m a t r i x . The M m at r i ces fo r

    t he f a s t dynam i cs s t a te equa t i ons (32 ) a re com p u t ed a t an

    e q u i l ib r i u m p o i n t o f t h e o f f - m a n i f o l d d y n a m i c s 6 t = 0 ,

    i . e . a poin t ly ing on the s low mani fo ld . This i s not

    neces s a r il y an equ i l ib r i um po i n t o f t he s y s tem , becaus e

    t he s l ow dynam i cs m ay no t be a t equ i l i b r ium a t t h i s po i n t.

    One in teres t ing aspect of (32) i s that i t demonst ra tes

    m at hem at i ca l l y t ha t t he f i e l d wi nd i ng i s i n t roduc i ng

  • 7/23/2019 Vournas Sauer Pai 1997

    4/8

    4 9 6 R e l a t i o n s h i p s b e t w e e n v o l ta g e a n d a n g l e s t a b i li t y o f p o w e r s y s t e m s : C . D . V o u r n a s et al.

    p o s i t i v e d a mp in g t o r q u e t o t h e f a s t e l e c t r o me c h a n ic a l

    o sc i ll a t io n s t h r o u g h th e ma t r ix b lo c k - M i - I M z T ~ I M 4 .

    T h e r e f o r e , a n u n r e g u la t e d sy s t e m i s n o t e x p e c t e d t o

    dem ons t ra te o sc i l la tory ins tab i l i ty , a s d iscussed in grea te r

    deta il in Reference 16.

    11.4 R e v i e w o f t h e a s s u m p t i o n s

    L e t u s c o n s id e r n o w th e a s su mp t io n s imp l i c i t l y ma d e

    dur ing th is br ie f p resenta t ion .

    ( 1) F o r n o n - imp e d a n c e l o a d s t h e f u n c t i o n s P a n d E a r e

    n o t u n iq u e , b e c a u se t h e y d e p e n d o n t h e so lu t i o n o f

    th e n e tw o r k . O u r a s su m p t io n i s t h a t , s t a r ti n g f r o m a

    n o r ma l o p e r a t in g p o in t , t h e sy s t e m r e ma in s w i th in o n e

    causa l r eg ion 17. As the a lgebra ic cons t ra in ts ha ve no

    s ingula r po in ts ins ide the causa l r eg ion , the func t ions

    P a nd E remain unique an d they a re the ones cor re -

    sp o n d in g t o t h e n o r ma l o p e r a t i o n o f th e sy s t em.

    ( 2 ) T h e d e c o mp o s i t i o n p r e se n t e d h e r e i s p o s s ib l e o n ly

    whe n the fa s t dy nam ics o f the sys tem ( i. e. the e lec t ro-

    mechanica l osc i l la t ions) a re s tab le . I t i s a l so c lea r

    f rom Sec t ion I I . 1 tha t a cond i t ion for the ex is tence of

    a s low manifo ld i s tha t equa t ion (23) has a so lu t ion .

    There fore , M 1 shou ld be nons ingula r . W e wi ll r e turn

    to th is po in t when d iscuss ing the f i r s t i l lus t ra t ive

    example .

    ( 3 ) F o r a n y su d d e n d i s tu r b a n c e , t h e p r e - d i s tu r b a n c e

    c o n d i t i o n s mu s t b e lo n g t o t h e r e g io n o f a t tr a c t i o n

    o f t h e p o s t - d i s tu r b a n c e s t a b l e e q u i li b r iu m o f t h e o f f -

    ma n i f o ld d y n a mic s .

    I I I S y s t e m w i t h r e g u l a t e d m a c h i n e s

    T h e in t r o d u c t io n o f A V R s in t h e mu l t ima c h in e sy s t e m

    (1) - (3) in te r fe res wi th the t ime-sca le decomposi t ion pe r -

    f o r me d in t h e p r e v io u s s e c t i o n f o r t h e f o l l o w in g r e a so n s .

    (1) I t i s we l l known tha t exc i ta t ion cont ro l le r s cont r i -

    b u t e , u n d e r c e r t a in c o n d i t i o n s , n e g a t i v e d a mp in g t o

    the e lec t romech anica l osc i l la t ions . This may re su l t in

    a v io l a t io n o f th e s e c o n d a s su m p t io n o f S e c t io n I I .4

    tha t r equi re s the s tab i l i ty of f a s t sha f t dynam ics .

    (2) Hig h exc i ta t ion sys tem ga ins tend to forc e the

    machine f lux va r iab les E~ to become fas t . Thus , the

    b a s i s f o r t h e d e c o mp o s i t i o n i n to f a s t a n d s lo w

    d y n a mic s i s d e s t ro y e d .

    A s a c o n se q u e n c e , t h e p r o b l e m o f t ime - sc a le d e c o m-

    p o s i t i o n w h e n a l l t h e g e n e r a to r s i n a p o w e r sy s t e m a r e

    u n d e r a u to ma t i c v o l t a g e r e g u l a t i o n , h a s n o t b e e n

    addressed in th is pape r .

    A n o th e r , p e r h a p s mo r e c h a l l e n g in g , p r o b l e m i s t h e

    a n a ly si s o f a p o w e r sy s t e m w h e n so m e o f i t s g e n e r a to r s

    a re r egula t ing and some a re not , be ing e i the r under

    m anua l cont ro l , o r a t the i r exc i ta t ion limi t. Th is problem

    was d iscussed fo r ins tance in Refe renc e 18 . In th is s i tua -

    t i o n t h e r e a r e so me s lo w s ta t e v a r ia b l e s a s so c i a te d w i th

    the unregula ted machine f lux dynamics , so tha t a t ime-

    sca le decomposi t ion i s poss ib le , a t leas t in pr inc ip le ,

    prov ided tha t the s tab i l i ty of the e lec t romecha nica l osc i l -

    la t ions i s ma in ta ined .

    A t t h i s s t a g e a f o r ma l d e c o mp o s i t i o n s imi l ar t o t h e o n e

    presented in Sec t ion I I i s no t ava i lab le for the pa r t ly

    regula ted case . Ins tead we sugges t an a l te rna t ive , le ss

    r i g o r o u s f o r mu la t i o n , t h a t g iv e s g o o d a p p r o x ima te

    resu l t s under ce r ta in c i rcumstances .

    T h i s a p p r o x ima te me th o d a s su me s a n a lg e b r a i c

    e q u iv a l e n t o f t h e r e g u l a te d m a c h in e s s imi l a r t o t h e P V

    b u s r e p r e se n t a t io n o f t h e c l as s ic a l l o a d f lo w . F o l lo w in g

    th is the s low dynamics s ta te equa t ions (24) and (25) for

    th e r e d u c e d sy s t e m c o n s i s ti n g o n ly o f t h e u n r e g u la t e d

    ma c h in e s a r e f o r mu la t e d . F o r l o w e x c i t a t i o n g a in s t h i s

    p r o c e s s is n o t a c c u r a t e b e c a u se o f t h e A V R v o l t a g e

    dro op s 5 . Fo r h igh ga in exc i te r s , how ever , a co ns tan t

    v o l t a g e e q u iv a l e n t f o r t h e r e g u l at e d ma c h in e s c a n p r o v id e

    a f i rs t approx im a t ion , a s wi ll be seen in the next sec t ion .

    I V I l l u s t r a t i v e c a s e s t u d i e s

    At th is po in t th ree case s tud ies a re in t roduced as i l lus-

    t r a t ive exam ples . Th e f i r s t case i s a s imple s ing le -machine

    in f in i t e - b u s sy s t e m u se d t o e x p l a in t h e me c h a n i sm o f

    v o l t a g e i n s t a b il i t y a n d l o s s o f sy n c h ro n i sm. I n t h e

    se c o n d c a se t h e v a l i d i t y o f t h e t ime - sca l e d e c o mp o s i t i o n

    in t r o d u c e d i s d e mo n s t r a t e d o n a mu l t ima c h in e C I G R E

    test system. The third case study again involves a single

    ma chine and i t is se lected to represen t the sa lient features of

    a r ea l wor ld inc ident documented in Refe rence 8 a s a

    voltag e collapse .

    IV.1 S i n g l e m a c h i n e i n f i n i te b u s s y s te m

    In th is example we wi l l r e -examine in a new l igh t the

    c la ss ica l pow er -angle curve of a s ing le -machine infin ite-

    bus sys tem. The machine i s r epresented a s a one -axis

    mo d e l ( 1 ) - ( 3 ) , h a v in g b o th a n g l e a n d f l u x d y n a mic s . T o

    make th ings a s s imple a s poss ib le we cons ide r a loss le ss

    sy s t e m a n d a r o u n d r o to r ma c h in e w i th

    X d = Y q .

    T h e

    equi l ibr ium curve o f th is sys tem is g iven as:

    P m E f V sin 6

    d

    (where V is the con s tan t vo l tage o f the inf in ite bus) and

    c o r r e sp o n d s t o t h e f a mi l a r s i n u so id a l c u rv e d r a w n in th e

    a n g le - p o w e r p l a n e f o r c o n s t a n t e x c i t a t i o n v o l t a g e ET,

    with the SN B exac t ly a t 6 = 90 , a s show n in F igure 1 .

    Equa t ion (23) de f in ing the s low manifo ld co inc ides in

    th is case wi th the t r ans ien t pow er -angle curve g iven by:

    V 2 ( 1 , 1 )

    E q V

    sin 6 sin 26

    em

    The t r ans ien t power -angle curves for th ree d i f fe ren t

    v a lu e s o f , q ranging f rom 0 .85 to 1 .0 , a re a lso show n in

    F igu re 1 wi th d ot ted l ines.

    1

    0 . 8

    n E 0.6

    0 . 4

    0 . 2

    0

    / E ' q = 1 . 0

    S N B . / / ~ \ \ \

    A ;

    \ %',

    / / /

    /

    / i f

    / ..;>

    I

    E'q---0.85 x

    ? ? U

    2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

    r o to a n g l e ( d e g )

    F igu r e 1 . S t eady state and t r a n s ie n t p o w e r a n g l e c u r v e s

  • 7/23/2019 Vournas Sauer Pai 1997

    5/8

    Relationships between voltage and angle stabil ity of powe r systems: C D Vournas

    e t a l: 4 9 7

    O

    M I

    8 O k V

    ISOkV

    _m l

    q o

    F i g u r e 2 C I G R E t e s t s y s t e m

    Starting from no load and slowly increasing the

    machine loading the trajectory of the system will follow

    the equilibrium curve, along the solid line, up to the SNB

    point. At this point the machine will not lose synchro-

    nism, because the synchronizing coefficient, which is the

    slope of the transient power-angle curve defined above, is

    still positive. However, because the excitation level is

    inadequate to maintain the required power transfer at

    steady state, the trajectory will depart from the equili-

    brium curve. The field flux will begin to decrease, and the

    machine angle will start increasing very slowly, with

    negligible frequency error according to 22), along the

    constant power line. If this voltage degradation does not

    bring about a serious disruption of the system operation,

    the machine will eventually lose synchronism at the point,

    where the transient power-angle curve becomes tangent

    to the constant power line. At this point the synchroniz-

    ing coefficient K1 will become zero, which in the single

    machine case is equivalent to the singularity of the

    synchronizing matrix MI.

    We return now to the question that was left open before

    closing Section II, i.e. the possibility of a singular M1. For

    a single machine connected to an infinite bus through a

    lossless line it can be shown that Ml becomes singular

    always at a loading level that is higher than that producing

    a SNB t9. Although a similar strict proo f is not available

    for the general case, it is reasonable to expect that due to

    the highly reactive nature of the power networks) the

    SNB of an unregulated mult imachine system will precede

    the loss of synchronism through a singularity of the

    synchronizing matrix, as shown in Figure 1.

    IV.2 ultimachine test system

    As mentioned above, the system studied here is taken

    from a CIGRI~ task force 2. The same system has been

    studied extensively in Reference 7 for various loading

    scenarios. A single line diagram is shown in Figure 2. The

    operat ing point studied here is one for which machine M2

    has tripped. Therefore, this is a five-machine system with

    two infinite buses, shown in the lower part of Figure 2.

    Two cases are analysed for this system. Suppose first

    tha t all five machines are wit hout AVR. The eigenvalues

    of the full model of the system are shown in Table 1

    together with those of the reduced fast and slow sub-

    systems described by equations 32) and 25), respec-

    tively. The e2 accuracy obtained by the time-scale

    T a b l e 1 . E i g e n v a lu e s w i t h o u t A V R

    Full model Fast subsystem Slow subsystem

    -0.240 +j6.81

    -0.280 +j 6.59

    -0.250 ij6.16

    -0.189 +j3.98

    -0.204 j4.94

    +0.283

    -0.302

    -0.226

    -0.276

    0 . 1 9 9

    -0.241 +j6.82

    -0.279 +j 6.59

    -0.250 +j6.16

    -0.190 j3.98

    -0.204 j4.9 4

    +0.285

    -0.302

    -0.226

    -0.276

    -0.199

    T a b l e 2 . E i g e n v a l u e s w it h A V R s o n m a c h i n e s M 5 a n d M 6

    Full model Three mach. appr. Full model

    low gains slow subsystem high gains

    -0.014 -0.056 -0.052

    -0.221 -0.222 -0.221

    -0.276 -0.276 -0.276

    -0.325 +j3. 90 -0.187 +j3. 75

    -0.226 j4 .93 -0.220 +j4 .89

    -0.243 +j6 .16 -0.286 +j6. 13

    -0.279 + j 6.59 -0.264 + j 6.60

    -0.242 j 6.82 -0.251 + j 6.75

    -1.80, - 2.13 -4.94 + j 10.04

    -4.66 i j 1.39 -5.10 +j4 .84

    decomposition applied is self-evident. Note how the

    time-scale decomposition is possible even after the SNB

    of the unregulated system. In fact, only the stability of the

    electromechanical dynamics is required.

    Let us look now at the same system when some of the

    machines are regulating: In the simulated scenario,

    machines M 1, M3 and M4 have reached their overexcita-

    tion limits and therefore they have lost voltage control.

    This leaves three unregulated machines connected to the

    rest of the system. In a first attempt to model this

    situation, the dynamics of the regulated machines are

    ignored, as was discussed in Section III, and the slow

    dynamics subsystem 25) of the remaining three machines

    is formed. The eigenvalues of the full system and those o f

    the three-machine slow subsystem are shown in the first

    two columns of Table 2.

    As one real eigenvalue is very small, the system is close

    to a SNB, which is due to the field limitation of the three

    machines. This situation is reflected in the simplified

    three-machine formulation, although the actual value of

    the critical eigenvalue is not predicted accurately. As

    discussed in Section III, this is due to the small value of

    the excitation gains of the two remaining controlled

    generators: Machine M5 has an excitation gain of

    15p.u. and a time constant of 0.3 s, and machine M6 a

    gain of 35 p.u. and a time cons tant of 0.1 s. By increasing

    the gains to 95 p.u. and 135 p.u., respectively, and redu-

    cing the time constant of M5 to 0.1 s, the eigenvalues of

    the third column of Table 2 are obtained. Clearly in this

    case the three machine simplified equivalent which is still

    the one shown in the second column of Table 2 gives quite

    accurate results.

    The following conclusions can be drawn from this

    experience: The slow dynamics matrix 25) predicts accu-

    rately a SNB of a multimachine system with no AVRs. I t

  • 7/23/2019 Vournas Sauer Pai 1997

    6/8

    4 9 8 Relat ionships between voltage and angle stabil i ty of po we r systems C D Vournas et al.

    V

    Xl

    l

    ~

    VI 1 0 1

    P I I O P t

    F i gure 3 ,

    Single m achine tes t sys tem

    Table 3 . S ing l e m ac hine t es t sys tem data

    Generator Lines

    z ~d q XId Zldo X 1 X 2

    1.0 1.0 0.3 9 s 0.3 1.0

    Initial conditions Loads

    Rotor

    Ef Pg angle F 1 GA GB

    1.4 0.76 55 0.9811 0.63 0.50

    can also serve as an approximate model of a part of the

    system that is left without automatic voltage regulation

    due to field limitation.

    IV .3 A realistic SNB

    The system in this third case study is a single-machine

    system inspired from a B.C. Hydro, North Coast Region

    incident of 1979 reported in Reference 8. The parameters

    chosen for the test system are not those of the actual

    system, so that the similarity is limited only to the

    structure of the system (an isolated generating plant

    feeding a large load, weakly connected to the rest of the

    system), the instability scenario (partial load tripping in

    an aluminium plant), and the loading levels. This case

    study is meant to demonstrate the following points.

    An SNB of a synchronous generator can be felt as a

    voltage instability.

    A voltage instability is possible even with constant

    impedance loads (whereas an algebraic singularity is

    impossible in this case).

    When a disturbance takes the operating point very

    close to an SNB it takes minutes for the instability to

    evolve.

    The single line diagram is shown in Figure 3. The test

    system consists of an equivalent generator under manual

    excitation control, a load bus feeding a constant impe-

    dance, unity power factor load, and an infinite bus

    connected to the load bus through a long tie-line. The

    generator is modelled with one-axis rotor flux dynamics,

    as in Section II 1] . The parameters of the system and the

    initial conditions are shown in Table 3 on a 1000 MVA

    basis.

    The equilibrium P- V curve of the load bus is drawn in

    Figure 4 for constant generator output and excitation

    voltage E f because the machine is on manual voltage

    control. This curve is not similar to the tradit ional nose

    curve . The main difference is that there are two possible

    SNB points for a system operating initially at point A,

    one for high load (point C) and one for light load (point

    SNB). The light load bifurcation point is brought about

    by the power transfer limit on the long tie line. Note that

    1.1

    1.05

    0 9

    0.~

    :3

    ~0 . 8 ~

    O.E

    0.7~

    7 1 / /

    7

    o.6s / /

    0.6 / /

    2OO 3OO 4OO 5O0 600 700 80O

    PI MW)

    Figure 4. Load bus P V curve

    Q

    / B /

    / ^ /

    S N B ~

    / / /

    I i I

    9 00 1 0 0 0 1 1 0 0 1 2 00

    this SNB point is in the upper part of the P-V curve,

    meaning that the security margin would be larger for a

    constant power than for a constant impedance load.

    A sudden load admittance reduction at time t = 0,

    from GA = 0.63p.u. (corresponding to point A) to

    GB = 0.5 p.u. (corresponding to the a lmost tangent load

    characteristic close to the SNB point in Figure 4) is

    simulated next. The results are shown in Figure 5. The

    following points are worth noting.

    All responses have a fast transient part corresponding

    to the electromechanical oscillation mode, which dies

    out in a few seconds after the disturbance.

    The effect of the SNB is evident both in the machine

    demagnetization and in the rotor angle upward drift.

    Synchronism is eventually lost 142 seconds after the

    disturbance.

    During the two minute interval prior to the loss of

    synchronism there are no observable effects either in

    frequency, or in the generated power of the synchro-

    nous machine.

    As soon as synchronism is lost, the generator power

    output drops abruptly and the frequency rises rapidly.

    Before the loss of synchronism, the apparent power

    flow on the tie line has reached 650 MVA, becoming

    double the value immediately after the disturbance,

    and the load bus voltage has dropped close to 0.7 p.u.

    It is interesting to compare the above remarks on the

    simulated test case of Figure 5 with the following com-

    ments on the actual B.C. Hydro incident taken from

    Reference 8.

    Although constant impedance load characteristic is

    considered soft and least aggravating in voltage stabi-

    lity studies, this case shows the fallacy of such general-

    iza tio ns. .. The output of generators was fairly steady

    within the observed duration, which excludes the pos-

    siblity of angle instability... The system separated

    when (i) the current at one end exceeded the over-

    current relay setting; (ii) the apparent impedance at the

    other end was within the out-of-step relay setting.

    V . C o n c l u s i o n s

    This paper has shown how models containing both angle

    dynamics and voltage dynamics can be decomposed into

  • 7/23/2019 Vournas Sauer Pai 1997

    7/8

    Relat ionships between voltage and angle stabi l i ty of pow er systems

    C D V o u r n a s e t a l 4 9 9

    2

    1.5

    1

    0.5

    r o t o r a n g l e r a d )

    0 50 100 150

    f i e l d f l u x p u )

    t .05

    1

    0.95

    0.9

    0.85

    50 100 150

    L o a d b u s V o l ta g e

    pu)

    0.

    0.8

    0.7

    37~

    377.5

    377

    376.5

    37E

    L

    700

    650

    0

    5OO

    40O

    300

    200

    0 50 100 150 0

    f r e q u e n c y rad/sec)

    g-

    50 100 150

    G e n e r a t e d p o w e r

    MW)

    le

    50 100 150

    T i e l ine active power MW)

    L o a d p o w e r MW)

    500 7001

    450 ~ 6 1

    40O ~ 5001

    350 4 1

    30O 300

    25O 2O0

    50 100 150 0 5 0 100

    t i m e s e e ) t ime sec)

    Figure 5

    Simulation results for case

    N 3

    50 100 150

    T i e l i n e a p p a r e n t

    power MVA)

    150

    sepa ra te subsys tems. In pa r t icu la r , the process was pe r -

    f o r me d o n a mo d e l w h e r e t h e e l ec t ro me c h a n ic al d y n a m ic s

    make up the fa s t subsys tem and the f ie ld f lux dynamics

    ma k e u p t h e s l o w su b sy s t e m. T h e se r e d u c e d - o r d e r su b -

    sys tems prese rve the c r i t ical nonl inea r i tie s and the l inea r

    s tab i l i ty in form at ion . Th e linea r ized mu l t imachine vol -

    tage subsy s tem has the same s tab i l i ty cond i t ion tha t has

    been pro pos ed in the pas t a s a vo l tage s tab i l ity ind ica tor .

    A s in g l e ma c h in e e x a mp le sh o w e d h o w a s a d d l e - n o d e

    b i f u r c a t i o n o c c u r s d u e t o t h e v o l t a g e su b sy s t e m b e f o r e

    a n y a n g l e i n s ta b i li t y . H o w e v e r , a n o n l in e a r s imu la t i o n

    sh o w s th a t w h e n a sy s t e m r e a c h e s t h i s s a d d l e - n o d e

    bi furca t ion poin t , the sys tem wi l l eventua l ly lose syn-

    chron ism as the gene ra to r f ie ld f lux s lowly decays . The

    imp o r t a n t p o in t h e r e is th a t t h e s a d d l e - n o d e b i f u r c a t i o n

    w a s a s so c i a t e d w i th v o l t a g e d y n a m ic s a n d n o t a n g l e

    d y n a mic s . T h u s i t sh o u ld b e c o n s id e r e d a v o l t a g e i n s t ab i l -

    i ty . However , a s the s low vol tage ins tab i l i ty progresses ,

    t h e a n g l e d y n a m ic s e v e n tu a l l y c o n t r i b u t e t h r o u g h a

    s ingula r i ty in the synchroniz ing ma tr ix , caus ing angle

    ins tab i l i ty . I t was shoran a lso tha t the s low vol tage decay

    p h e n o m e n o n ma y l a s t f o r min u t e s , w h ic h imp l i e s t h a t t h e

    in t e r a c ti o n o f s lo w ma c h in e d y n a m ic s w i th o th e r s l o w

    a c t in g d e v i c e s su c h a s L T C s ma y b e o f c o n s id e r a b l e

    in te res t . This i s a s t imula t ing problem for fur the r

    research.

    W h e n so me ma c h in e s h a v e a c t i v e v o l t a g e r e g u l a to r s ,

    t h e r e d u c e d - o r d e r s l o w v o l t a g e mo d e l co n s i s t in g o f o n ly

    the f ie ld f lux dyn am ics of exc i ta t ion- l imi ted m achines c an

    se r v e a s a n a p p r o x im a t io n o f th e u n r e g u la t e d su b sy s t e m

    s lo w d y n a mic s . T h i s a p p r o x ima t io n g iv e s g o o d r e su l t s

    o n ly f o r h ig h e x c i t a t i o n g a in s o f th e r e g u l a t i n g m a c h in e s.

    F u r th e r r e se a rc h i s n e c e s sar y in o r d e r t o a c h i e v e a mo r e

    a c c u r a t e mo d e l b y u s in g a f o r ma l t ime - sc a l e d e c o m p o s i -

    t i o n o f th e p a r t l y r e g u l a t e d sy s t e m.

    Vl A c k n o w l e d g e m e n t s

    T h i s w o r k w a s su p p o r t e d i n p a r t b y g r a n t s f r o m th e

    N a t io n a l S c i e n c e F o u n d a t io n , N S F E C S 9 1 - 1 9 4 2 8 a n d

    N S F E C S 9 3 -1 8 69 5 , t h e U n iv e r s i t y o f Il li n o is P o w e r

    A f f il ia t es P r o g r a m , a n d t h e G r a in g e r E n d o w me n t s t o

    the Un ive rs i ty of I ll ino is .

    V I I R e f e r e n c e s

    1 Ta y lo r , C W c onve ne r o fC IG R I~ TF 38 .02 .10 ,

    M o d e l l i n g o f

    v o l t a g e c o ll a p s e in c lu d in g d y n a m i c p h e n o m e n a

    Pre p r in t

    (March 1993)

    2 T a y l o r C W V o l t a g e s t a b i l i ty E P R I / M c G r a w H i ll ( 19 94 )

    3 H i l l, D J N on l ine a r dyna mic loa d mode l s w i th r e c ove ry fo r

    vol tage s tabi l i ty s tudies I E E E T r a n s . PW R S-8 (1993)

    pp 166 -176

    4 Xu, W a n d M a n s o u r Y Voltage s tabl i ty ana lys is us ing

    ge ne r i c dyna mic loa d mode l s

    I E E E T r a n s .

    P W R S - 9

    (1994) pp 479-493

    5 K u n d u r P P o w e r s y s t e m s t a b i l i t y a n d c o n t r o l E P R I /

    M c G ra w -H i l l (1994 )

    6 V a n C u t s e m T J a e q u e m a r t Y M a r q u e t J - N a n d P r u v o t

    P A c ompre he ns ive ana ly s is o f mid - t e rm vo l t a ge st a b i l it y

    I E E E T r a n s . PWRS-10 (1995) pp 1173-1182

    7 Van Cutsem, T a n d V o u r n a s C D Vol tag e s tabi l i ty ana lys is

    in t r a ns i e n t a nd mid - t e rm t ime s c a l es

    I E E E T r a n s .

    P W R S -

    11 (1996)pp 146-154

    8 I E E E C o m m i t t e e, Voltag e s tabi l ity of powe r systems: co n-

    cepts , ana lyt ica l tools , and indus try experience publ ica t ion

    90TH 0358-2 -PW R , IEE E (1990)

    9 Pa d iya r , K R a nd R a o , S S , D yn a m ic a na ly si s o f s ma ll

    s igna l vol tage ins tabi l i ty decoup led fro m angle ins tabi l i ty

    I n t . J . E l e c t r . P o w e r E n e r g y S y s t .

    Vol 18 No 7 (1996) 445 -

    452

    1 0 Y o r i n o N S a s a k i H M a s u d a Y T a m u r a Y K i t ag a w a

    M and Oshimo, A An inves t iga t ion of vol tage ins tabi l i ty

    p r o b l e m s

    I E E E T r a n s .

    PW R S-7 (1992) pp 600 -611

    1 1 S a u e r P W a n d P a i M A Mode l ing a nd s imu la t ion o f

    mu l t ima c h ine pow e r s y s t e m dyna mic s

    C o n t r o l a n d d y n a m i c

    s y s t e m s

    Vol 43 Part 3 Academic Press , San Diego, CA

    (1991) pp 1-60

    12 Kokotovi~, P, Khali, H D and O ReiH y, J S i n g u l a r P e r t u r -

    bat ion meth ods i n cont ro l . anal ys i s an d des ign A c a de mic

    Press (1986)

    13

    d e M e l l o F P a nd C o n c o r d i a C

    C onc e p t s o f s ync h ronous

    machine s tabi l i ty as a ffec ted by exc i ta t ion contro l

    I E E E

    T r a n s .

    PAS-88 (1969) pp 189-202

    14 Vournas , C D and Krassas , N D Vo l tage s tabi l i ty as a ffec ted

    by s ta t ic load charac te r is t ics

    P r o c . l E E P a r t C

    Vol 140

    (1993) pp 221-228

    1 5 V o u r n a s C D

    Voltag e s tabi l ity and c ontro l labi l i ty indices

    I E E E T r a n s . PW R S-10 (1995) pp 1183-1194

  • 7/23/2019 Vournas Sauer Pai 1997

    8/8

    5 R e la t i o n sh ip s b e tw e e n vo l ta g e a n d a n g le s ta b i li t y o f p o w e r sys te ms . C . D . Vo u r n a s e t a l

    16 Vourna s , C D, Pa i , M A

    and Sauer

    P W Th e e ffec t o f

    A u t o m a t i c V o l t a g e R e g u l a t i o n o n t h e b i f u r c a t io n e v o l u t i o n

    in p o w e r s y s t e ms Stockholm Power Tech Conference

    S to c k h o lm, J u n e 1 9 9 5 , t o a p p e a r a l s o in IE E E T ra n s . o n

    P W R S

    17 H iskens I A and Hill D J

    E n e rg y fu n c t io n s t r a n s i e n t

    s t a b i l i t y , a n d v o l t a g e b e h a v io u r in p o w e r s y s t e ms w i th

    n o n l in e a r l o a d s

    IEEE Tr ans .

    P W R S - 4 ( 19 89 ) p p 1 5 2 5 -

    1533

    18 Gebreselassie, A and C h o w , J H In v e s t ig a t io n o f t h e e ff e c t

    o f l o a d mo d e l s a n d g e n e ra to r v o l t a g e r e g u la to r s o n v o l t a g e

    s tab i l i ty

    Int J. Electr . Power Ene rgy Syst.

    V o l 1 6 N o 2

    (1 9 9 4 ) p p 8 3 -8 9

    19 Sauer P W Rajagopalan C Pai M A and Varghese A

    C r i t i c a l mo d e s a n d v o l t a g e in s t a b i l i t y in p o w e r s y s t e ms

    Proc . 1986 IEE E Internat ional Sympo s ium on Circui ts and

    Sy s t e m s

    V o l 3 , 8 6 C H 2 2 5 5 -8 , S a n J o s e , C A (1 98 6 ) p p 1 0 1 9 -

    1022

    2 0 V a n H e e k e , J c o n v e n e r o f C IG R I ~ T F 3 8 .0 2 .1 1 Indices

    predicting voltage collapse inclu ding dynamic phenomena

    F in a l r e p o r t ( J u ly 1 9 94 )