voltage security and out-of-step protection using ... 1/42 stockholm – april 18, 2013 workshop on...

42
Stockholm – April 18, 2013 G.N.Taranto 1/42 Workshop on Resiliency for Power Networks of the Future Voltage Security and Out-of-Step Protection Using Synchrophasors Prof. Glauco N. Taranto, Ph.D. COPPE/UFRJ Programa de Engenharia Elétrica

Upload: trankhuong

Post on 16-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Stockholm – April 18, 2013 G.N.Taranto 1/42

Workshop on Resiliency for Power Networks of the Future

Voltage Security and Out-of-Step Protection Using Synchrophasors

Prof. Glauco N. Taranto, Ph.D.

COPPE/UFRJ Programa de Engenharia Elétrica

Stockholm – April 18, 2013 G.N.Taranto 2/42

Workshop on Resiliency for Power Networks of the Future

Acknowledgements Acknowledgements

Stockholm – April 18, 2013 G.N.Taranto 3/42

Workshop on Resiliency for Power Networks of the Future

2008 / 2 Curso COE754 - Glauco Taranto 3

ESTABILIDADE DE SISTEMAS DE POTÊNCIA

Capacidade de permanecer em equilíbrio operativo

Equilíbrio entre forças em oposição

ESTABILIDADEANGULAR

ESTABILIDADE DE TENSÃO

ESTABILIDADE APEQUENAS

PERTURBAÇÕES

ESTABILIDADETRANSITÓRIA

ESTABILIDADEMID-TERM

ESTABILIDADELONG-TERM

GRANDESPERTURBAÇÕES

PEQUENASPERTURBAÇÕES

Capacidade de manter sincronismo

Equilíbrio de torques nas máquinas síncronas

Grandes perturbações

Primeiro swing

Estudos até 10 s

Capacidade de manter perfil de tensãoaceitável em regime permanente

Balanço de potência reativa

Perturbações severas

Grandes excursões de tensão e freqüência

Grandes perturbações

Eventos chaveados

Dinâmica de OLTC ecargas

Coordenação deproteção e controles

Relações PxV e QxV emregime permanente

Margem de estabilidade

Reserva de reativo

Ponto de Colapso

Métodos LinearesINSTABILIDADE

APERIÓDICAINSTABILIDADEOSCILATÓRIA

Torque de sincronismoinsuficiente

Dinâmica rápida e lenta

Período de estudo devários minutos

Freqüência do sistemaconstante e uniforme

Dinâmica lenta

Período de estudo dedezenas de minutos

MODOS INTER-ÁREASMODOS LOCAIS MODOS DE CONTROLE MODOS TORSIONAIS

Torque de amortecimento insuficiente

Ação de controle desestabilizante

Métodos Lineares

Voltage

Stability

Long-term

Power System Stability

Frequency

Stability

Stockholm – April 18, 2013 G.N.Taranto 4/42

Workshop on Resiliency for Power Networks of the Future

2008 / 2 Curso COE754 - Glauco Taranto 4

ESTABILIDADE DE SISTEMAS DE POTÊNCIA

Capacidade de permanecer em equilíbrio operativo

Equilíbrio entre forças em oposição

ESTABILIDADEANGULAR

ESTABILIDADE DE TENSÃO

ESTABILIDADE APEQUENAS

PERTURBAÇÕES

ESTABILIDADETRANSITÓRIA

ESTABILIDADEMID-TERM

ESTABILIDADELONG-TERM

GRANDESPERTURBAÇÕES

PEQUENASPERTURBAÇÕES

Capacidade de manter sincronismo

Equilíbrio de torques nas máquinas síncronas

Grandes perturbações

Primeiro swing

Estudos até 10 s

Capacidade de manter perfil de tensãoaceitável em regime permanente

Balanço de potência reativa

Perturbações severas

Grandes excursões de tensão e freqüência

Grandes perturbações

Eventos chaveados

Dinâmica de OLTC ecargas

Coordenação deproteção e controles

Relações PxV e QxV emregime permanente

Margem de estabilidade

Reserva de reativo

Ponto de Colapso

Métodos LinearesINSTABILIDADE

APERIÓDICAINSTABILIDADEOSCILATÓRIA

Torque de sincronismoinsuficiente

Dinâmica rápida e lenta

Período de estudo devários minutos

Freqüência do sistemaconstante e uniforme

Dinâmica lenta

Período de estudo dedezenas de minutos

MODOS INTER-ÁREASMODOS LOCAIS MODOS DE CONTROLE MODOS TORSIONAIS

Torque de amortecimento insuficiente

Ação de controle desestabilizante

Métodos Lineares

Angular

Stability

Transient

Stability

Frequency

Stability

Power System Stability

Stockholm – April 18, 2013 G.N.Taranto 5/42

Workshop on Resiliency for Power Networks of the Future

Voltage Instability Identification

PART I

Stockholm – April 18, 2013 G.N.Taranto 6/42

Workshop on Resiliency for Power Networks of the Future

  Voltage Stability

  Short term

â From miliseconds to a few seconds

â Large perturbation

â Induction motor starting, HVDC

  Long term

â From seconds to many minutes

â OLTC, OEL

â Manual intervention may be possible

Introduction Introduction

Work Focus

Stockholm – April 18, 2013 G.N.Taranto 7/42

Workshop on Resiliency for Power Networks of the Future

LThThLThTh

ThLTh

L QEXPXEXQEV −−±−= 2242

42

The Static “Nose” Curve (P-V)

Stockholm – April 18, 2013 G.N.Taranto 8/42

Workshop on Resiliency for Power Networks of the Future

Background

  The method is based on:

  Measurements of voltage and current phasors

  Thevenin equivalent

  Impedance matching

Background

Stockholm – April 18, 2013 G.N.Taranto 9/42

Workshop on Resiliency for Power Networks of the Future

Background (Thevenin)

LThThL IZEV!!!

−=

ThL ZZ =

1 equation

2 unknowns

Maximal power

transfer

Background

Stockholm – April 18, 2013 G.N.Taranto 10/42

Workshop on Resiliency for Power Networks of the Future

VIP – Voltage Instability Prediction

Source: K. Vu and D. Novosel, “Voltage Instability Predictor (VIP) - Method and

System for Performing Adaptive Control to Improve Voltage Stability in Power

Systems,” US Patent No. 6,219,591, April 2001.

Finding: relying only on voltage magnitudes

to detect voltage instability is neither helpful

nor reliable!

Background

Stockholm – April 18, 2013 G.N.Taranto 11/42

Workshop on Resiliency for Power Networks of the Future

Fundamentals

⎟⎠⎞

⎜⎝⎛= −

Th

L

EV θβ coscos 1

0≈ThRassuming Eth is

unknown Methods already proposed:

1)   LMS

2)   Tellegen´s Principle

Fundamentals

Stockholm – April 18, 2013 G.N.Taranto 12/42

Workshop on Resiliency for Power Networks of the Future

Conceptual Analysis

Step Known Variables Estimated Variables

ZL(Ω) IL(A) VL(V) ETh(V) ZTh(Ω) ETh(V) ZTh(Ω)

1 9 2 18 21 1,5 19 0,5

2 8 2,22 17,76 21 1,46 19 0,56

20 V (?)

1 Ω (?)

LVIL ZL

Hint!

Eth = 20 V

Zth = 1 Ω

Fundamentals

Stockholm – April 18, 2013 G.N.Taranto 13/42

Workshop on Resiliency for Power Networks of the Future

Proposed Algorithm

Step 1 – Estimate the initial value of Etho

Step 2 – Compute Xtho

Step 3 – Compute Eth(i) according to the logics of

the previous numerical example

Step 4 – Compute Xth(i) given Eth

(i)

Step 5 – Increment (i) and return to Step 3.

Proposed Algorithm

Stockholm – April 18, 2013 G.N.Taranto 14/42

Workshop on Resiliency for Power Networks of the Future

Simulation Results

  The proposed algorithm was applied to the entire Italian System from

real data

  System Characteristics:

  2549 buses (380 kV and 220 kV networks)

  2258 transmission lines and transformers

  325 generators

  50 GW of load

  Dynamic models for OLTCs, OELs, voltage regulators and speed governors

  Application to load and “transit” buses

  Sampling rate – 20ms (1 phasor/cycle in 50Hz)

Results

Stockholm – April 18, 2013 G.N.Taranto 15/42

Workshop on Resiliency for Power Networks of the Future

380 kV Network

Milan

Florence

Results

Stockholm – April 18, 2013 G.N.Taranto 16/42

Workshop on Resiliency for Power Networks of the Future

Brugherio 380kV Bus Results

Stockholm – April 18, 2013 G.N.Taranto 17/42

Workshop on Resiliency for Power Networks of the Future

It is being tested with actual PMU data

Hasle

SwedenNorway

BRAZIL NORWAY

  Voltage colapse has not occured so far. The effectiveness of the algorithm is yet to be proved.

Stockholm – April 18, 2013 G.N.Taranto 18/42

Workshop on Resiliency for Power Networks of the Future

Concluding Remarks   The phasor measurements can efficiently be utilized in voltage

instability prevention.

  High sampling rates are necessary.

  Prediction of voltage instability in a region can be made without

extensive use of the communications resources.

  It is possible to proposed more sophisticated control logics relying on

data synchronization via GPS.

  Comprehensive simulating results with the Italian System and

preliminary measured results with the Brazilian System encourage

further research on this topic.

Concluding Remarks

Stockholm – April 18, 2013 G.N.Taranto 19/42

Workshop on Resiliency for Power Networks of the Future

Future needs

I

I

V

I

Results

Stockholm – April 18, 2013 G.N.Taranto 20/42

Workshop on Resiliency for Power Networks of the Future

Out-of-Step Protection

PART II

Stockholm – April 18, 2013 G.N.Taranto 21/42

Workshop on Resiliency for Power Networks of the Future

Mo#va#on    The  Uruguayan  Power  System  

• Peak load of 1.7 GW (80% in great Montevideo)

• Gen. capacity 2.6 GW (53% hydro, 47% thermal)

l  Hydro generation mostly in the North

l  Thermal generation concentrated in South

Stockholm – April 18, 2013 G.N.Taranto 22/42

Workshop on Resiliency for Power Networks of the Future

Mo#va#on  (cont.)  

  Outages  in  two  500  kV  lines  (Palmar  –  Montevideo)  

l  Can lead the system to a complete blackout

l  Fast controlled N-S separation by opening the 150 kV network,

plus fast load shedding in the South

Stockholm – April 18, 2013 G.N.Taranto 23/42

Workshop on Resiliency for Power Networks of the Future

Objec#ve  

  The  comparison  of  three  emergency  protec#on  strategies  to  maintain  the  system  in  opera#on  with  the  smallest  amount  of  load  curtailment.  

Stockholm – April 18, 2013 G.N.Taranto 24/42

Workshop on Resiliency for Power Networks of the Future

Out-of-step Protection

  Unstable electromechanical oscillations   Can appear after a large disturbance   OOS protection can be done with conventional distance

relays

24

ZA ZL ZB

VC VD

ILEB 0EA δ

( )AZjLZBZAZ

LICV

CZ −⎟⎠⎞⎜

⎝⎛ −

++==

2cot1

Stockholm – April 18, 2013 G.N.Taranto 25/42

Workshop on Resiliency for Power Networks of the Future

Out-of-step Protection

25

Electrical Center (EC)

l  Power Swing Blocking (PSB)

l  Out-of-Step Tripping (OST)

Stockholm – April 18, 2013 G.N.Taranto 26/42

Workshop on Resiliency for Power Networks of the Future

Out-of-step Protection (cont.)

26

ZR = ZA

ZS = ZB

Stockholm – April 18, 2013 G.N.Taranto 27/42

Workshop on Resiliency for Power Networks of the Future

The  Strategies  

  Strategy#0   –   Load   shedding   in   the   South  subsystem;    Strategy#1   –   Controlled   Islanding   and   load  shedding  with  local  measurements;    Strategy#2   –   Controlled   Islanding   and   load  shedding  with  synchrophasor  measurements.  

Stockholm – April 18, 2013 G.N.Taranto 28/42

Workshop on Resiliency for Power Networks of the Future

Strategy  #0  

  This  is  the  strategy  in  opera#on  today;    The  system  remains  connected  with  one  synchronous  island  through  the  150  kV  network;    A  very  large  amount  of  load  is  shed.  

Stockholm – April 18, 2013 G.N.Taranto 29/42

Workshop on Resiliency for Power Networks of the Future

Strategy  #1  

  Islanding  scheme  (IS)  applied  to  pre-­‐selected  network  loca#ons,  preferably  near  the  electrical  center.  IS  performed  by  installing  OST  func#ons  in  the  preselected  loca#ons;  

l  A less amount of load is shed.

Stockholm – April 18, 2013 G.N.Taranto 30/42

Workshop on Resiliency for Power Networks of the Future

Strategy  #2  

  Controlled   Islanding   and   load   shedding   with  synchrophasor  measurements;    Power   Swing   Detec#on   (PSD)   and   Predic#ve  Out-­‐Of-­‐Step   Tripping   (OOST)   algorithms  patented   by   Guzman-­‐Casillas   and   Schweitzer  Engineering  Laboratories,  Inc.  (SEL).  

l  A lesser amount of load is shed.

VPalmar  

VMontevideo  

Stockholm – April 18, 2013 G.N.Taranto 31/42

Workshop on Resiliency for Power Networks of the Future

The  Fundamentals  of  SEL’s  Patent  

  U#lizes:  

  Displacement  –  Speed  –  Accelera#on  

 (θPalmar  –  θMontevideo)  =  δ

 δ x δ  •     

Stockholm – April 18, 2013 G.N.Taranto 32/42

Workshop on Resiliency for Power Networks of the Future

SEL’s  Patent  –  PSD  

Stockholm – April 18, 2013 G.N.Taranto 33/42

Workshop on Resiliency for Power Networks of the Future

SEL’s  Patent  –  OOST  

Stockholm – April 18, 2013 G.N.Taranto 34/42

Workshop on Resiliency for Power Networks of the Future

Quan#ta#ve  Analysis  of  Transient  Response  in  the  A-­‐S  Plane  

S [Hz]

A [Hz/s]

M1

M2

M3

z3 z2 z1 s0 s1 s2m0

m1

m2

S [Hz]

A [Hz/s]

z1 s0

m0

Stockholm – April 18, 2013 G.N.Taranto 35/42

Workshop on Resiliency for Power Networks of the Future

Simula#on  Results  

  The  scenario  under  study  is  one  with  maximum  thermal  genera#on  with  some  hydro  units  in  service.  The  scenario  assumes  that  one  of  the  500  kV  Palmar-­‐Montevideo  TL  is  out  of  service  and  a  3-­‐phase  fault  occurs  at  the  remaining  500  kV  line  in  the  Montevideo  end.

  The  clearance  #mes  used  were:    t=60ms (3 cycles) for the near end

  t=80ms (4 cycles) for the far end

Stockholm – April 18, 2013 G.N.Taranto 36/42

Workshop on Resiliency for Power Networks of the Future

Simula#on  Results  for  Strategy  #1  

Stockholm – April 18, 2013 G.N.Taranto 37/42

Workshop on Resiliency for Power Networks of the Future

Simula#on  Results  for  Strategy  #2    

-0.5 0 0.5 1 1.5 2

-2

-1

0

1

2

3

4

S [Hz]

A [H

z/s]

A

B

CD

E

F

O

Stockholm – April 18, 2013 G.N.Taranto 38/42

Workshop on Resiliency for Power Networks of the Future

Load  Shedding

Strategy  #0   Strategy  #1   Strategy  #2  

600  MVA   496  MVA   416  MVA  

100%   82,7%   69,3%  

1/3  of  Uruguay  total  load  

Stockholm – April 18, 2013 G.N.Taranto 39/42

Workshop on Resiliency for Power Networks of the Future

Conclusions          (1/2)  

  Two  strategies  for  controlled  islanding  of  the  Uruguayan  power  system  were  presented:  one  using  only  local  measurements  and  the  other  using    synchrophasors.  

  Simula#on  results  showed  that  controlled  islanding  of  the  North-­‐South  #e  with  fast  load  shedding  with  both  strategies  performed  significantly  beger  than  the  current  u#lity  prac#ce.  

  The  necessary  load  shedding  was  reduced  by  17%  when  the  PSB-­‐OST  scheme  (using  only  local  signals)  was  u#lized,  and  by  31%  when  the  OOST  scheme  (using  synchrophasor  measurements).  

Stockholm – April 18, 2013 G.N.Taranto 40/42

Workshop on Resiliency for Power Networks of the Future

Conclusions          (2/2)  

  The  strategy  that  uses  synchrophasor  measurements  is  more  agrac#ve  since  it  is  able  to  curtail  less  amount  of  load,  due  to  its  predic#ve  capability.  However,  the  strategy  that  uses  only  local  signals  should  not  be  discarded  since  it  provides  a  simple  and  cost-­‐effec#ve  solu#on  to  the  problem.  It  also  has  the  advantage  that  it  can  be  implemented  with  the  current  protec#on  system  already  in  place.  

Stockholm – April 18, 2013 G.N.Taranto 41/42

Workshop on Resiliency for Power Networks of the Future

For further reading

  R. Franco, C. Sena, G. N. Taranto & A. Giusto, “Using Synchrophasors for Controlled Islanding – A Prospective Application for the Uruguayan Power System”, IEEE Transactions on Power Systems, Vol. 28, No. 2, pp. 2016-2024, May 2013. DOI 10.1109/TPWRS.2012.2224142

  S. Corsi & G. N. Taranto, “A Real-Time Voltage Instability Identification Algorithm Based on Local Phasor Measurements,” IEEE Transactions on Power Systems, Vol. 23, No. 3, pp. 1271-1279, August 2008. DOI 10.1109/TPWRS.2008.922586

Voltage Instability Identification

Out-of-Step Protection

Stockholm – April 18, 2013 G.N.Taranto 42/42

Workshop on Resiliency for Power Networks of the Future Rio de Janeiro

Tack så mycket !