voltage demonstration steven gough innovation and low carbon network engineer...

11
Voltage Demonstration Steven Gough Innovation and Low Carbon Network Engineer [email protected] 0117 933 2170 07810 054850

Upload: merry-lucas

Post on 18-Dec-2015

233 views

Category:

Documents


7 download

TRANSCRIPT

Voltage Demonstration

Steven GoughInnovation and Low Carbon Network [email protected] 933 217007810 054850

Introduction

• Background• Aims• Progress in Phase 1• Phase 1 output graphs• Plans for Phase 2• Learning so far

Background

• D-SVC - Static VAr Compensator for Distribution Networks

• Supplied by Hitachi• Can produce 400kVAr leading or

lagging• 11kV connected via a dedicated

11kV/415V transformer• Designed for use on long rural

feeders that have Distributed Generation (DG) for voltage control

Aims• Stabilise voltage for a

windfarm at the end of a 11kV feeder

• Establish the impact of the D-SVC on the 11kV network

• Test the three different modes available on the D-SVC– Voltage Regulation– Voltage Averaging– Short Term Fluctuations

Progress in Phase 1• D-SVC is installed on site

adjacent to a 1.5MW windfarm in Cornwall

• Protection was installed on the LV side of the transformer as there was not a metering unit

• Monitoring equipment was installed along the feeder

• D-SVC has been running on various modes for nearly 4 months

D-SVC

G

Summerheath

Roskrow WF

Kernick Industrial Estate

Bickland Hill Primary

Phase 1 Output Graphs (1)

Real and Reactive Power at Windfarm

-200

0

200

400

600

800

1000

1200

1400

1600

1800

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Time

Po

we

r

Average kW

Max kW

Min kW

Average kVar

Max kVar

Min kVar

Real and Reactive Power at SVC

-500

-400

-300

-200

-100

0

100

200

300

400

500

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Time

Po

we

r

Average kW

Max kW

Min kW

Average kVar

Max kVar

Min kVar

Voltage at D-SVC

225

230

235

240

245

250

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

TimeP

ha

se to

Lin

e V

otla

ge

Va

Va(max)

Va(min)

Vb

Vb(max)

Vb(min)

Vc

Vc(max)

Vc(min)

Phase 1 Output Graphs (2)

Voltage at D-SVC

225

230

235

240

245

250

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Time

Ph

ase

to L

ine

Vo

tlag

e

Va

Va(max)

Va(min)

Vb

Vb(max)

Vb(min)

Vc

Vc(max)

Vc(min)

Voltage at Windfarm

6000

6050

6100

6150

6200

6250

6300

6350

6400

6450

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

TimeP

ha

se to

Lin

e V

otla

ge

Va

Va(max)

Va(min)

Vb

Vb(max)

Vb(min)

Vc

Vc(max)

Vc(min)

Voltage at Bickland Hill Primary

5950

6000

6050

6100

6150

6200

6250

6300

6350

6400

6450

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Time

Ph

ase

to L

ine

Vo

tlag

e

Va

Va(max)

Va(min)

Vb

Vb(max)

Vb(min)

Vc

Vc(max)

Vc(min)

Phase 1 Output Graphs (3)

Voltage at Windfarm with D-SVC Switched In

6050

6100

6150

6200

6250

6300

6350

6400

6450

6500

6550

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

TimeP

ha

se to

Lin

e V

otla

ge

Va

Va(max)

Va(min)

Vb

Vb(max)

Vb(min)

Vc

Vc(max)

Vc(min)

Voltage at Windfarm with D-SVC Switched Out

6050

6100

6150

6200

6250

6300

6350

6400

6450

6500

6550

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Time

Ph

ase

to E

art

h V

otla

ge

Va

Va(max)

Va(min)

Vb

Vb(max)

Vb(min)

Vc

Vc(max)

Vc(min)

Plans for Phase 2• Three D-SVCs will be used across two adjacent primary

substations• A D-VQC (Voltage and Reactive Power (Q) Control System) will

be used at the primary to control all three D-SVCs and the tap changer at one of the primary substations

• Although the site has not been confirmed, there is a combinations of medium wind generation, very long rural feeders and a large number of domestic properties with PV

D-SVC

D-SVC

D-SVC

G

Learning so far• When setting up a protection of the D-SVC the protection

needs to be on the HV side of the transformer• When sizing the transformer for a D-SVC it is important

select well above the power requirement of the device• The D-SVC can help smooth the voltage• The D-SVC can help reduce the range of voltages see on the

11kV

Any Questions?

Steven GoughInnovation and Low Carbon Network [email protected] 933 217007810 054850