volatility modelling - financial econometrics vu bachelor...

38

Upload: others

Post on 10-Oct-2019

22 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Volatility modelling

Financial EconometricsVU Bachelor Econometrie

Charles Bos

Tinbergen Institute & Vrije Universiteit Amsterdam

[email protected], 11A91

2 April 2015

FE15 Ts 3, p. 1/31

Page 2: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Overview

I Modelling time varying variances in time series of �nancialreturns. See Tsay (2010, �3.1-3.9, �3.14 and �3.16), Creal,Koopman, and Lucas (2013).

I Characteristics of �nancial dataI ML-estimation - recoupI Time varying variance: GAS, GARCH, EGARCH etc.I Diagnostic testing

FE15 Ts 3, p. 2/31

Page 3: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Modelling time varying volatilities in returns.

rt = log(1 + Rt) = log(Pt/Pt−1) = logPt − logPt−1

continuously compounded return

= µt + at

forecastable part + unforecastable error

1. Forecastable part µt : small/negligible, or e.g. ARMA model

2. Unforecastable error part at :I disturbance, (un-)conditional expectation zeroI with standard AR(I)MA modelling: var(at) = σ2

t≡ σ2, �xed

I with �nancial data, often serial correlation,σ2

t= var(at | F t−1) = var(rt | F t−1)

I F t−1 is the �ltration, the information set at time t − 1.

FE15 Ts 3, p. 3/31

Page 4: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

S&P 500 volatility and clustering

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

91 94 97 00 03 06 09 12 15

Adj Close

-10

-5

0

5

10

15

91 94 97 00 03 06 09 12 15

Returns�(Returns|year)

-0.2

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

ACF Returns

-0.2

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

ACF Sq returns

1990/1-2015/3 daily S&P 500

FE15 Ts 3, p. 4/31

Page 5: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Intermezzo ML: Simple model + notationModel (speci�cs):

y ∼ N (µ, σ2) DGP

f (y |θ) =1√2πσ2

exp

(−(y − µ)2

2σ2

)Density

Notation (general):

Ln(θ;Yn) =n∏

i=1

f (yi |θ) Likelihood

ln(θ;Yn) = log Ln(θ;Yn) =∑

log f (yi |θ) Log-likelihood

Eθ∗ log f (Y |θ) ≡ l∗(θ;Y ) Expected loglikelihood

θn = argmaxθ ln(θ;Yn) ML estimator

FE15 Ts 3, p. 5/31

Page 6: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

ML: Why would this work?

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-6 -4 -2 0 2 4 6-30

-25

-20

-15

-10

-5

0flog flog g

Lemma (Monahan (2011), L9.1)

Ef (log g(y)) =

∫(log g)f (y)dy ≤

∫(log f )f (y)dy = Ef (log f (y))

(log f is high whereever f (y) high, so highest in expectation)

FE15 Ts 3, p. 6/31

Page 7: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

ML: Why II

Consequence of lemma:

l∗(θ;Y ) ≤ l∗(θ∗;Y )

or: Random θ will never give a better loglikelihood than `real'parameters θ∗, in expectation.

Law of large numbers:

1

nln(θ;Yn)

LLN→ Eθ∗(log f (Y |θ)) ≡ l∗(θ;Y ) =

∫log f (y |θ)f (y |θ∗)dy

Hence: Maximum value of ln(θ) should correspond, for large n,with n × l∗(θ

∗), so θ ≈ θ∗.

FE15 Ts 3, p. 7/31

Page 8: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

ML: Optimisation

1. Start at j = 0, with θ ≡ θ(j)

2. Approximate with 2nd order Taylor expansion at θ:

Q(θ) ≡ ln(θ;Yn)

Q(θ + h) ≈ q(h) ≡ Q(θ) + hTQ ′(θ) +1

2hTQ ′′(θ)h

3. Maximise approximation q(h):

q′(h) = Q ′(θ) + Q ′′(θ)h = 0

⇔ Q ′′(θ)h = −Q ′(θ) or Hh = −g

4. Update: θ(j+1) = θ(j) + h, j = j + 1, and repeat from 2. asnecessary.

FE15 Ts 3, p. 8/31

Page 9: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

S&P 500 volatility and clustering

-10

-5

0

5

10

15

91 94 97 00 03 06 09 12 15

Returns

1990/1-2015/3 daily S&P 500 returns

Model: rt ∼ N (µ, σ2)

FE15 Ts 3, p. 9/31

Page 10: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

S&P 500 volatility and clustering

-10

-5

0

5

10

15

91 94 97 00 03 06 09 12 15

Returns�(r|year)

1990/1-2015/3 daily S&P 500 returns, andmoving-window yearly standard deviation.

Model: rt ∼ N (µ, σ2t )

FE15 Ts 3, p. 9/31

Page 11: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Time-varying volatility

yt ∼ N (µ, σ2t ) Volatility changes

ft = σ2t Signal is volatility

gt ≡ ∇t =∂l(θ; y)

∂ft= −1

2

(1

ft− (yt − µ)2

f 2t

)It|t−1 = Et−1∇t∇′t = −Et−1 Ht

= Et−11

4f 2t

(1− 2

(yt − µ)2

ft+

(y − µ)4

f 2t

)=

1

2f 2t

ht ≡ st = −H−1g = I−1t ∇t

= −(2f 2t )1

2

(1

ft− (y − µ)2

f 2t

)= −

(ft − (yt − µ)2

)ft+1 = ft + ht Newton-Raphson

ft+1 = ω + Ast + Bft Generalised Autoregressive Score (GAS)

FE15 Ts 3, p. 10/31

Page 12: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

TV II

Back to basics: What did just happen?

at = yt − µ Unforcastable part

ft+1 = ω − A(ft − (yt − µ)2

)+ Bft Variance update

= ω + (B − A)ft + Aa2t

Compare

σ2t+1 ≡ α0 + βσ2t + α1a2t GARCH

GAS model building scheme (yt ∼ N (µ, σ2t ), ft ≡ σ2t ) ≡Generalised Autoregressive Conditional Heteroskedasticity model(Engle, 1982; Bollerslev, 1986, GARCH)

FE15 Ts 3, p. 11/31

Page 13: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

TV III: GARCH(G)ARCH(1, 1):

σ2t+1 = α0 + α1a2t + β1σ

2t

I ARCH(1): β1 = 0, so σ2t+1 = f (a2t )

I Higher lags possible, necessary, ARCH(m)

I GARCH(1,1): β1 > 0, so σ2t+1 = f (a2t , σ2t ) ≡ f (a2t , a

2t−1, . . . )

I Higher lags possible, hardly ever useful

I Result/intention: scaled innovation

εt =atσt

=yt − µtσt

∼ i. i. d.N (0, 1)

I Alternatively: e.g. εt ∼ t(0, 1, ν) [Implications...]

I Restrictions on parameter space?FE15 Ts 3, p. 12/31

Page 14: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

TV IV: Expectations

Distinguish conditional and unconditional moments

E(yt) = µ E(yt | F t−1) = µ

var(yt) =α0

1− α1 − β1var(yt | F t−1) = σ2t

K (yt) =3(1− (α1 + β1)2)

(1− (α1 + β1)2 − 2α21)K (yt | F t−1) = 3

FE15 Ts 3, p. 13/31

Page 15: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

TV IV: ExpectationsDistinguish conditional and unconditional moments

E(yt) = µ E(yt | F t−1) = µ

var(yt) =α0

1− α1 − β1var(yt | F t−1) = σ2t

K (yt) =3(1− (α1 + β1)2)

(1− (α1 + β1)2 − 2α21)K (yt | F t−1) = 3

0

0.2

0.4

0.6

0.8

1

1.2

-4 -3 -2 -1 0 1 2 3 4

�2 minimal

FE15 Ts 3, p. 13/31

Page 16: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

TV IV: ExpectationsDistinguish conditional and unconditional moments

E(yt) = µ E(yt | F t−1) = µ

var(yt) =α0

1− α1 − β1var(yt | F t−1) = σ2t

K (yt) =3(1− (α1 + β1)2)

(1− (α1 + β1)2 − 2α21)K (yt | F t−1) = 3

0

0.2

0.4

0.6

0.8

1

1.2

-4 -3 -2 -1 0 1 2 3 4

�2 minimal

�2 maximal

FE15 Ts 3, p. 13/31

Page 17: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

TV IV: ExpectationsDistinguish conditional and unconditional moments

E(yt) = µ E(yt | F t−1) = µ

var(yt) =α0

1− α1 − β1var(yt | F t−1) = σ2t

K (yt) =3(1− (α1 + β1)2)

(1− (α1 + β1)2 − 2α21)K (yt | F t−1) = 3

0

0.2

0.4

0.6

0.8

1

1.2

-4 -3 -2 -1 0 1 2 3 4

�2 minimal

�2 maximal

FE15 Ts 3, p. 13/31

Page 18: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

TV IV: ExpectationsDistinguish conditional and unconditional moments

E(yt) = µ E(yt | F t−1) = µ

var(yt) =α0

1− α1 − β1var(yt | F t−1) = σ2t

K (yt) =3(1− (α1 + β1)2)

(1− (α1 + β1)2 − 2α21)K (yt | F t−1) = 3

0

0.2

0.4

0.6

0.8

1

1.2

-4 -3 -2 -1 0 1 2 3 4

�2 minimal

�2 maximal

�2 average

FE15 Ts 3, p. 13/31

Page 19: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

TV IV: ExpectationsDistinguish conditional and unconditional moments

E(yt) = µ E(yt | F t−1) = µ

var(yt) =α0

1− α1 − β1var(yt | F t−1) = σ2t

K (yt) =3(1− (α1 + β1)2)

(1− (α1 + β1)2 − 2α21)K (yt | F t−1) = 3

0

0.2

0.4

0.6

0.8

1

1.2

-4 -3 -2 -1 0 1 2 3 4

�2 minimal

�2 maximal

�2 average

N(0, 1)

FE15 Ts 3, p. 13/31

Page 20: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

TV IV: ExpectationsDistinguish conditional and unconditional moments

E(yt) = µ E(yt | F t−1) = µ

var(yt) =α0

1− α1 − β1var(yt | F t−1) = σ2t

K (yt) =3(1− (α1 + β1)2)

(1− (α1 + β1)2 − 2α21)K (yt | F t−1) = 3

0

0.2

0.4

0.6

0.8

1

1.2

-4 -3 -2 -1 0 1 2 3 4

�2 minimal

�2 maximal

�2 average

N(0, 1)t(0, 1, �= 25.28)

FE15 Ts 3, p. 13/31

Page 21: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

TV V: ARMA in ηt = a2t − σ2

t

De�ne ηt ≡ a2t − σ2t

σ2t+1 = α0 + α1a2t + β1σ

2t

a2t = α0 + (α1 + β1)a2t−1 + ηt − β1ηt−1.

Then:

I ηt is uncorrelated series with mean 0.

I a2t is an ARMA(1, 1)

(Useful for deriving some theoretical properties)

FE15 Ts 3, p. 14/31

Page 22: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

ARMA-GARCH models

More general: ARMA(p, q)-GARCH(m, s) model

Φ(L)(rt − µ) = Θ(L)at

at | F t−1 ∼ N(0, σ2t ), σ2t+1 = α0 +m∑i=1

αia2t−i+1 +

s∑j=1

βjσ2t−j+1

Notice:

rt | F t−1 ∼ N (µt , σ2t )

rt 6∼ N (µ, σ2)

FE15 Ts 3, p. 15/31

Page 23: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

On estimationUse prediction error decomposition,

log L(y; θ) =n∑

t=1

log p(yt | F t−1)

= −n2log(2π)− 1

2

n∑t=1

log(σ2t )− 1

2

n∑t=1

a2tσ2t

�lling inI the prespeci�ed conditional density (here: normal)I the pre-�ltered vector of variances,

Σ = (σ1, . . . , σn) = fGARCH(y , θ)I the pre-�ltered residuals, A = (a1, . . . , an) = fARMA(y , θ)

and optimise.Conventional asymptotic properties, provided that ARMA and

GARCH processes are both stationary.FE15 Ts 3, p. 16/31

Page 24: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

On estimation IICheck model: inequality restrictions needed, e.g.

α0 > 0, 0 ≤ α1 < 1, 0 < β < 1, α + β < 1

How can we impose these?

I Transformation of parameters. Example:

α0 = exp(α∗0) α∗0 = log(α0)

α1 =exp(α∗1)

1 + exp(α∗1)α∗1 =???

Now α∗0, α∗1 can be estimated without restrictions.

I Direct method to impose inequality restrictions in Ox: useMaxSQP(), MaxSQPF() instead of MaxBFGS()

I Important: Do check if parameter values valid, or act otherwiseFE15 Ts 3, p. 17/31

Page 25: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

On estimation III

Initial conditions: What to do with pre-sample σ20, r0?

I For r0, use unconditional means (implied by θ), or samplemean

I For σ20, use unconditional variance (implied by θ), or samplevariance

I Alternatively, include them in vector of parameters?

Conditioning on presample-values gives conditional MLE.

Exact maximum likelihood is di�cult as the (unconditional) densityof the �rst observation of a sample r0 does not have a closed formexpression.

FE15 Ts 3, p. 18/31

Page 26: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Diagnostic testsQuestions:

I Do I need ARMA? (test yt for autocorrelation)

I Did I model ARMA correctly? (test at for autocorrelation)

I Do I need GARCH? (test a2t for autocorrelation)

I Did I model GARCH correctly? (test a2t /σ2t for

autocorrelation)

I Are residuals normally distributed?

Answers:

1. Check ACF

2. Check Lagrange Multiplier

3. Check Ljung-Box

and

4. Check Jarque-Bera for residual normalityFE15 Ts 3, p. 19/31

Page 27: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Diagnostics: ACF

-0.2

-0.1

0

0.1

0.2

0.3

0.4

5 10 15 20 25 30 35 40

ACF y

-0.2

-0.1

0

0.1

0.2

0.3

0.4

5 10 15 20 25 30 35 40

ACF a

-0.2

-0.1

0

0.1

0.2

0.3

0.4

5 10 15 20 25 30 35 40

ACF a2

-0.2

-0.1

0

0.1

0.2

0.3

0.4

5 10 15 20 25 30 35 40

ACF a2/σ2

SP500, 1990/01/02�2014/03/25, n = 6106 observations,MA(1)-GARCH(1,1)

Not a test, just visual...

FE15 Ts 3, p. 20/31

Page 28: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Diagnostics: LM-testLagrange multiplier test for autocorrelation:

xt = a0 + a1xt−1 + . . . amxt−m + et t = m, . . . , n

H0 :a1 = . . . am = 0 No autocorrelation in xt

H1 :Not H0

LM =(SSR0 − SSR1)/m

SSR1/(n − 2m − 1)≡ nR2

cH0∼ χ2(m)

Advantage:

I Only restricted model needs to be estimated (plus OLS)I If applied to a2t : Tests for (G)ARCH e�ects, or general

volatility e�ects.I If applied to ε2t : Tests for correct speci�cation of (G)ARCH

Q: Why n − 2m − 1, not n −m − 1?FE15 Ts 3, p. 21/31

Page 29: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Diagnostics: LB-test

Ljung-Box test for autocorrelation

H0 :ρj ≡ 0 No autocorrelation in xt

H1 :Not H0

QLB(m) = n(n + 2)m∑j=1

ρ2jn − j

H0∼ χ2(m)

Choose number of correlations wisely (...).

FE15 Ts 3, p. 22/31

Page 30: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Diagnostics: JB-test

Jarque-Bera test for normality

JB =n

6

(sk2 +

1

4(k − 3)2

)H0∼ χ2(2)

sk =m3

m3/22

Sample skewness

k =m4

m22

Sample kurtosis

H0 :xt ∼ N (µ, σ2) Normality of underlying series

H1 :Not H0

Could be useful for testing εt , GARCH-N or GARCH-t?

FE15 Ts 3, p. 23/31

Page 31: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Diagnostics: Results

Table: SP 500 autocorrelation tests

LM LB

y 44.952 [0.00] 42.794 [0.00]a 36.702 [0.00] 35.263 [0.00]a2 1336.246 [0.00] 2436.435 [0.00]ε2 13.893 [0.02] 14.290 [0.01]

Table: SP 500 normality tests

JB sk k

y 19101.143 [0.00] -0.238 11.652a 19050.133 [0.00] -0.253 11.638ε 959.012 [0.00] -0.415 4.755

FE15 Ts 3, p. 24/31

Page 32: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

GARCH alternatives

Many alternatives available, see Bollerslev (2010), Glossary to

ARCH (GARCH). 32 pages of acronyms and descriptions.

Here, three main alternatives:

I GARCH-t: Adapts for heavier tails found in practice

I GARCH-M: Allows volatility to in�uence mean return

I EGARCH: Generates asymmetric impact of news throughlog-volatilities

Modern alternative:

I Beta-t-GARCH (Harvey and Chakravarty, 2009) ≡ GAS-t(Creal, Koopman, and Lucas, 2013; Harvey, 2013)

FE15 Ts 3, p. 25/31

Page 33: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

GARCH-t models

Scaled residuals εt = at/σt often have `fatter tails' than than thenormal distribution → Use tν-distribution with an unknown degreesof freedom ν.Write

σ2t = α0 + α1a2t−1 + β1σ

2t−1,

at ∼ σt

√ν − 2

νtν , ν > 2,

f (at | F t−1) = h(ν)1

σt

[1 +

a2t(ν − 2)σ2t

]−(ν+1)/2with h(ν) a constant function of ν (see book).Df ν can be estimated or �xed.

FE15 Ts 3, p. 26/31

Page 34: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

GARCH-M model

Risk is costly → investors want compensation?Returns may have higher mean (M) when volatility increases, theso-called risk premium:

rt = µ+ cσ2t + at , at = σtεt .

orrt = µ+ cσt + at , at = σtεt .

This e�ect usually is not very strong as it induces serial correlationin the returns. This serial correlation usually is not verypronounced. The risk premium is more clearly identi�ed in a crosssection analysis of returns.

FE15 Ts 3, p. 27/31

Page 35: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

EGARCH model: log volatility and asymmetryWhat do you like more, negative (at = σtεt < 0) or positive(at > 0) shock? → asymmetric impact of news.EGARCH(1,1) model:

log(σ2t ) = α0 + g(εt−1) + α1 log(σ2t−1)

g(εt) = θεt + γ [|εt | − E (|εt |)]

I Models log volatilityI Relates to scaled innovation εt instead of innovation atI Additionally allows for e�ect of |εt |I Positive shock: E�ect θ + γ, negative: θ − γI Could use additional lags of g(εt) and log(σ2t )I Forecasting σ2 very non-linear. Multi-step not analytically

availableFE15 Ts 3, p. 28/31

Page 36: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Looking back

What did we do?

I Introduce concept of volatility

I Linked it to maximum likelihood

I Looked at moments

I Tested

I Discussed alternatives

What will you do?

I Link discussion to Tsay (2010)

I Think of what an AR(1)-GARCH(1,1) model would look like,how to estimate

I Try it out...

FE15 Ts 3, p. 29/31

Page 37: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Bibliography

Bollerslev, Tim (1986). �Generalized Autoregressive ConditionalHeteroskedasticity�. In: Journal of Econometrics 31.3, pp. 307�327.DOI: 10.1016/0304-4076(86)90063-1.� (2010). �Glossary to ARCH (GARCH)�. In: Volatility and Time

Series Econometrics: Essays in Honor of Robert F. Engle. Ed. byTim Bollerslev, Je�rey Russell, and Mark Watson. Oxford: OxfordUniversity Press. DOI:10.1093/acprof:oso/9780199549498.003.0008.Creal, Drew, Siem Jan Koopman, and André Lucas (2013).�Generalized Autoregressive Score Models with Applications�. In:Journal of Applied Econometrics 28.5, pp. 777�795. DOI:10.1002/jae.1279.

FE15 Ts 3, p. 30/31

Page 38: Volatility modelling - Financial Econometrics VU Bachelor ...personal.vu.nl/c.s.bos/fe15/pdf/finectr_vola.pdfVolatility modelling Volatility modelling Financial Econometrics VU Bachelor

Volatility modelling

Bibliography

Engle, Robert F. (1982). �Autoregressive ConditionalHeteroscedasticity with Estimates of the Variance of UnitedKingdom In�ation�. In: Econometrica 50, pp. 987�1008. URL:http://www.jstor.org/stable/1912773.Harvey, Andrew C. (2013). Dynamic Models for Volatility and

Heavy Tails. Cambridge: Cambridge University Press.Harvey, Andrew C. and Tirthankar Chakravarty (2009).Beta-t-(E)GARCH. Tech. rep. Update from CWPE 0840. Universityof Cambridge.Monahan, John F. (2011). Numerical Methods of Statistics.2nd ed. Cambridge series on statistical and probabilisticmathematics. Cambridge: Cambridge University Press. DOI:10.1017/CBO9780511977176.Tsay, Ruey S. (2010). Analysis of Financial Time Series. 3rd. NewJersey: John Wiley & Sons. URL: http://onlinelibrary.wiley.com/book/10.1002/9780470644560.

FE15 Ts 3, p. 31/31