vivian de la incera

34
Vivian de la Incera University of Texas at El Paso THE ROLE OF MAGNETIC FIELDS IN DENSE QUARK MATTER

Upload: jaquelyn-albert

Post on 30-Dec-2015

25 views

Category:

Documents


1 download

DESCRIPTION

THE ROLE OF MAGNETIC FIELDS IN DENSE QUARK MATTER. Vivian de la Incera. University of Texas at El Paso. OUTLINE. Color Superconductivity Color Superconductivity in a Magnetic Field: Magnetic CFL Magnetic-Field-Induced Gluon Condensate: Paramagnetic CFL - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Vivian de la Incera

Vivian de la Incera

University of Texas at El Paso

THE ROLE OF MAGNETIC FIELDS IN DENSE QUARK MATTER

Page 2: Vivian de la Incera

Color Superconductivity

Color Superconductivity in a Magnetic Field: Magnetic CFL

Magnetic-Field-Induced Gluon Condensate: Paramagnetic CFL

Chromomagnetic Instabilities at Intermediate Densities (unstable

gapped 2SC)

Solution to the CI in 2SC: Spontaneous Generation of GC and B

Conclusions

OUTLINE

Page 3: Vivian de la Incera

The biggest puzzles lie in the

intermediate regions

RHIC

Crystalline CS, Gluonic Phases, other?

Magnetic Field

QCD Phases

Page 4: Vivian de la Incera

?

4

At the core

Super-High Densities (~ 10 times nuclear density)

Relatively Low Temperatures (T < 10 MeV)

High Magnetic Fields (probably larger than B~ 1015–1016G for core of magnetars)

NEUTRON STARS

Page 5: Vivian de la Incera

plus

Attractive interaction

s

Cooper instability

at the Fermi surface Asymptoti

c freedom

Formation of Quark-Quark Pairs: Color

Superconductivity

COLOR SUPERCONDUCTIVITY

Bailin & Love, Phys Rep. ‘84

Page 6: Vivian de la Incera

Diquark condensate

O = O Dirac⊗ O flavor⊗ O color

1 2 3

Rapp, Schafer, Shuryak and Velkovsky, PRL’98

Alford, Rajagopal and Wilczek, PLB ’98

If density great enough, Ms can be neglected and

6

COLOR–FLAVOR LOCKED PHASE

Page 7: Vivian de la Incera

7

All quark pair. No gapless fermions, no massless gluons.

Color superconductivity is more robust than conventional superconductivity (no need to resort to phonons). Hence is a high Tc superconductor.

Chiral symmetry is broken in an unconventional way: through the locking of flavor and color symmetries.

CFL MAIN FEATURES

Page 8: Vivian de la Incera

d

s

u

d

d

u

u

s

s

A

8G

A

8cos sin A A G 8 8sin cos G A G

ROTATED ELECTROMAGNETISM

Page 9: Vivian de la Incera

u u ud d ds s s

0 0 -1 0 0 -1 1 1 0

- CHARGES

All -charged quarks have integer chargesQ

QThe pairs are all -neutral, but the quarks can be neutral or chargedQ

ROTATED CHARGES

Page 10: Vivian de la Incera

CFL SCALES

At very large densities

Page 11: Vivian de la Incera

MAGNETISM IN COLOR SUPERCONDUCTIVITY

Can a magnetic field modify the Can a magnetic field modify the Pairing Pattern? Pairing Pattern?

Can the CS produce a back reaction Can the CS produce a back reaction on the magnetic field?on the magnetic field?

Can a color superconductor generate Can a color superconductor generate a magnetic field?a magnetic field?

Page 12: Vivian de la Incera

Color Superconductivity & B

Page 13: Vivian de la Incera

0 0 01 1 1

( )0 ( )0 ( )0

5 0 5

5

0

( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( )

1 [ ( ) ( ) ( ) ( )

2

( ) ( ) h.c.

{

]}

B

C

xy

MCFL MCFL

MCFL

C

C

x G y x G y x G y

x y x y

x

I

y

2 3 3

0 0

0

1 2 11 3 2( , , , , , , , , )

, ,

0

s s s d d d u u

Q

u

Q

0

0

' '

(1,1,0,1,1,0,0,0,1)

(0,0,0,0,0,0,1,1,0)

(0,0,1,0,0,1,0,0,0)

1

diag

diag

d

Q

iag

( )0

( )00

10

10

[ ] ( )

[ ] ( )

G i

G i

eA

Three-flavor NJL in a Rotated Magnetic Field

Page 14: Vivian de la Incera

MCFL AnsatzMCFL

and S A only get contributions from pairs of neutral quarks

2 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 2

S S A S A

S A

S A

S A

S A S S A

S A

S

B B

B B

B B

B B

B BA

S A

S A S

B

BA S

B

B B B

and B BS A get contributions from pairs of neutral and pairs of

charged quarksFerrer, V.I. and Manuel, PRL’05, NPB’06

Page 15: Vivian de la Incera

0 0 01 1 11

[ , ] [2

]xy

S SI S

00

0

C C C

where the Gorkov fields separate by their rotated charge as

and the corresponding

Gorkov inverse propagators

and

contain the gaps:

(0)

( )

( )

0 0MCFL

MCFL

MCFL

, NAMBU-GORKOV FIELDS IN NONZERO B

Page 16: Vivian de la Incera

2 3 2

2 3 2 22 22 23 (2 ) 3 (2 )( ) 2( ) ( ) ( )

B BB

B

AA

A AB

Aeg d g

q

Bq dq

q

2

2 2

3

2 3 2 2

17 7

9 94 (2 ) ( ) ( ) 2( )B

A AA

A A

g d q

q q

2 3

2 3 2 22 218 (2 ) ( ) ( ) 2( )B

A AS

A A

g d q

q q

2 2 3

2 2 2 32 22 26 (2 ) 6 (2 )( ) ( ) ( ) 2( )

A A

A

BB

S

A

B

B B

g dq g d q

q

eB

q

GAP EQUATIONS at LARGE MAGNETIC FIELD

Page 17: Vivian de la Incera

2

2

2

2 2

0.3, 0.2

~

~ B

1A8

A

g

=3/2, ,

1

eB

B 0

yx

=

yx

G

2 2

2 2

3 1exp( )

1 2( )

36 21 1 2 2exp 1

17 17 (1 ) 74

1 1

4A S

A

B B

S A

BA

eg

x

y

y

x y y

B

2

2

1exp( ),

(2 2 )

2 2

3

~

2

2

B

B 2

AB

G

= , = ,

g

N N

N N

Be

G

Ferrer, V.I. and Manuel, PRL’05, NPB’06

GAP SOLUTIONS at LARGE MAGNETIC FIELD

Page 18: Vivian de la Incera

CFL VS MCFL

• 9 Goldstone modes: charged and neutral.

• 5 Goldstone modes: all neutral

• Low energy CFL similar to low density hadronic matter. Schafer & Wilzcek, PRL’99

• Low energy MCFL similar to low density hadronic matter in a magnetic field.

Ferrer, VI and Manuel, PRL’05 NPB’06

SU(3)C × SU(3)L × SU(3)R × U(1)B SU(3)C × SU(2)L × SU(2)R × U(1)B × U(1)A

8 1 : 8( ) , ( ) 21

221 12 2

221 12 2

3 4 1 1 : 3 4( ) , ( ) ,

( )1

1

8

( ) 8

B

B

B

A

A A

A A

A

A

A

Page 19: Vivian de la Incera

B = 0 B 0

LOW ENERGY CFL THEORY IN A MAGNETIC FIELD

Ferrer & VI, PRD’07

Page 20: Vivian de la Incera

Showing that the charged Goldstone bosons acquire a magnetic-field-induced mass

The dispersion relations for the charged Goldstone bosons is

Ferrer & VI, PRD’07

LOW ENERGY THEORY IN A MAGNETIC FIELD

For a meson to be stable its mass should be less than twice the gap, otherwise it

could decay into a particle-antiparticle pair. Hence,

CFL MCFL crossover

Page 21: Vivian de la Incera

HAAS-VAN ALPHEN OSCILLATIONS OF THE GAP AND MAGNETIZATION

Noronha and Shovkovy, PRD’07

Fukushima and Warringa, PRL’08

Page 22: Vivian de la Incera

1G 3G

2G

Because of the modified electromagnetism, gluons are charged in the color superconductor

G G

I I

0 0 0 1 -1 1 -1 0

8G

Charged Gluon Sector of Mean-Field Effective Action in CFL:

EJF & de la Incera, PRL 97 (2006) 122301

MAGNETIC EFFECTS ON THE GLUONS

Page 23: Vivian de la Incera

Assuming that there is an external magnetic field in the z-direction, one mode becomes unstable when

H2

MH m

with corresponding eigenvector:

“Zero-mode problem” for non-Abelian gauge fields whose solution is the formation of a vortex condensate of charged spin-1 fields.

Nielsen & Olesen NPB 144 (1978)

Skalozub, Sov.JNP23 (1978);ibid 43 (1986)

Ambjorn & Olesen, NPB315 (1989)

1 2( , ) (1, )G G G i

MAGNETIC FIELD INDUCED INSTABILITY IN CHARGED SPIN-ONE FIELDS

Page 24: Vivian de la Incera

Minimum Equations:

Magnetic Antiscreening

+

24

PARAMAGNETIC CFLPARAMAGNETIC CFL

Page 25: Vivian de la Incera

H < Hc H ≥ Hc

H < Hc H ≥ Hc

Color Color SuperconductoSuperconducto

rr

Conventional Conventional SuperconductorSuperconductor

25

MCFLPCFL

DIFFERENT BEHAVIOR in a B

Page 26: Vivian de la Incera

CFL:

SU(3)C SU(3)L SU(3)R U(1)B U(1)e.m. SO(3)rot

SU(3)C+L+R U(1)e.m SO(3)rot

MCFL:

SU(3)C SU(2)L SU(2)R U(1)B U(-)(1)A U(1)e.m SO(2)rot SU(2)C+L+R U(1)e.m SO(2)rot

8 1 : 8( ) , ( ) 21

221 12 2

221 12 2

3 4 1 1 : 3 4( ) , ( ) ,

( )1

1

8

( ) 8

B

B

B

A

A A

A A

A

A

A

PCFL: gluon condensate G4i iG5

i & induced

SU(3)C SU(2)L SU(2)R U(1)B U(-)(1)A U(1)e.m SO(2)rot

SU(2)C+L+R U(1)e.m

PHASES IN THREE-FLAVORS THEORY

Rapp, Schafer, Shuryak& Velkovsky, PRL’98 Alford, Rajagopal and Wilczek, PLB ‘98

Ferrer, V.I. and Manuel PRL’05; NPB ’06

Ferrer & V.I. PRL ’06

B~

Page 27: Vivian de la Incera

Chromomagnetic

Instability

E.J. Ferrer and V.I. Phys.Rev.D76:045011,2007

MAGNETIC PHASES AT HIGH DENSITY PHASES AT HIGH DENSITY

Page 28: Vivian de la Incera

Color Neutrality and beta equilibrium

Unstable Gapped 2SC

a=1,2,3 masslessa=4,5,6,7 negativea=8 positive

Gapless 2SC

a=1,2,3 masslessa=4,5,6,7 negativea=8 negative

Stable Gapped 2SC

a=1,2,3 masslessa=4,5,6,7 positivea=8 positive

Gluons Masses

1 2 2

Huang/Shovkovy, PRD 70 (2004) 051501

CHROMOMAGNETIC INSTABILITIES IN 2SCCHROMOMAGNETIC INSTABILITIES IN 2SC

Page 29: Vivian de la Incera

At Tachyonic Mode of Charged Gluons

µ8

CHROMOMAGNETIC INSTABILITIES IN 2SC

charged gluons

8th gluon

Huang/Shovkovy, PRD 70 (2004) 051501

Page 30: Vivian de la Incera

- 8

EFFECTIVE ACTION for CHARGED GLUONS

Page 31: Vivian de la Incera

GLUON CONDENSATE AND INDUCED MAGNETIC FIELD

Solutions:

The gluon condensate generates a magnetic field

E.J. Ferrer and V.I. , Phys.Rev.D76:114012, 2007 .

2g-1

2q2

2Mm

22 0q G B

Page 32: Vivian de la Incera

Supernova remnants associated with magnetars should be an order of magnitude more energetic, but

Recent calculations indicate that their energies are similar.

When a magnetar spins down, the rotational energy output should go into a magnetized wind of ultra-relativistic electrons and positrons that radiate via synchrotron emission.

So far nobody has detected the expected luminous pulsar wind nebulae around magnetars.

Possible Alternatives:

B can be boosted (Ferrer& VI,

PRL’06) or even induced (Ferrer& VI, PRD’07; Son and Stephanov, PRD’08)

by a CS core

DIFFICULTIES OF THE STANDARD MAGNETAR MODEL

Page 33: Vivian de la Incera

Neutron stars provide a natural lab to explore the effects of B in CS

What is the correct ground state at intermediate densities? Is it affected by the star’s magnetic field? Inhomogeneous Gluon Condensates, other field-related effects…

Explore possible signatures of the CS-in-B phase in neutron stars

CONCLUSIONS

Page 34: Vivian de la Incera

It seems to be a profound connection between magnetism and color superconductivity. More work needs to be done to explore this association at a deeper level and to establish a link between theory and astrophysical observations.

Connections between MCFL/PCFL and Quark-Nova Mechanism?

(CSQCD II conference)

OUTLOOK