visual characterization technique for gravel-cobble river

12
VISUAL CHARACTERIZATION TECHNIQUE FOR GRAVEL-COBBLE RIVER BED SURFACE SEDIMENTS; VALIDATION AND ENVIRONMENTAL APPLICATIONS CONTRIBUTION TO THE PROGRAMME OF CIRSA (CENTRE INTERUNIVERSITAIRE DE RECHERCHE SUR LE SAUMON ATLANTIQUE) CHRISTIAN LATULIPPE,* MICHEL F. LAPOINTE AND TRACEY TALBOT Department of Geography, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 2K6 Received 14 July 1999; Revised 16 May 2000; Accepted 24 July 2000 ABSTRACT This paper presents an evaluation of the feasibility and the reliability of a visual characterization technique for gravel– cobble river bed surface substrate. Based on principal axis regressions, using phi scale (f), comparisons of visual estimation and grid sampling techniques show that useful predictive relations (R 2 =078–088) exist between visual estimates of the surface d 16 , d 50 and d 84 and estimates obtained for the same percentiles with the grid sampling technique. Comparisons of visual estimation and the surface-bulk sampling technique also indicate a predictive relation (R 2 =070) between the d 50 of the two methods. Trained operators can visually estimate gravel–cobble bed surface d 16 to uncertainties of 41 per cent, d 50 to 15 per cent and d 84 to 11 per cent (for example, there is a 55 mm error on a d 84 size of 50 mm). Furthermore, evidence shows that if operators are properly trained, a calibration relation for each percentile can be applied independently of operators. This visual characterization allows effective detailed mapping of spatial patterns in substrate size distribution along extensive reaches of gravel-bed rivers. The technique can be very useful in creating terrain models for various geomorphological, hydrological and biological applications such as the determination of entrainment thresholds, hydraulic roughness and substrate suitability for benthic insects or salmonid habitat. Copyright # 2001 John Wiley & Sons, Ltd. KEY WORDS: visual characterization; surface substrate; sediment size and distribution; gravel-bed river; bed sampling technique INTRODUCTION The characterization of bed sediment calibre in a gravel-bed river involves spatial sampling difficulties due to lateral, longitudinal and depth variability of sediment size and distribution (Mosley and Tindale, 1985; Church et al., 1987). The majority of existing sampling techniques (reviewed below) have been applied to spatially limited river forms such as riffles, pools and point bars (Milne, 1982; Payne and Lapointe, 1997). Nevertheless, these techniques are not optimized to describe with reasonable precision the lateral and longitudinal variability along long reaches of gravel-bed river, especially within a limited time span and the usual physical resources of a researcher. The usual way to achieve a spatial map of the sediment size distribution along a gravel-bed river has been to visually delimit the river bed into facies or areas whose surface grain size composition and distribution are approximately similar. This is followed by a characterization of the different areas by a surface sampling technique (Lisle and Madej, 1992; Sear, 1996; Buffington and Montgomery, 1999). This procedure, a form of stratified sampling, can be adequate, but it still relies on an initial visual delimitation of the boundaries of substrate facies in different areas. Because of the gradual nature of many facies transitions, this delimitation can be time consuming and relatively subjective in gravel-bed rivers. Furthermore, it has not been demonstrated that replication of this procedure by different operators can give consistent results. Earth Surface Processes and Landforms Earth Surf. Process. Landforms 26, 307–318 (2001) Copyright # 2001 John Wiley & Sons, Ltd. * Correspondence to: C. Latulippe, Department of Geography, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 2K6. E-mail: [email protected] Contract/grant sponsor: Centre Interuniversitaire de Recherche sur le Saumon Atlantique (CIRSA)

Upload: others

Post on 03-Oct-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Visual characterization technique for gravel-cobble river

VISUAL CHARACTERIZATION TECHNIQUE FOR GRAVEL-COBBLERIVER BED SURFACE SEDIMENTS; VALIDATION AND

ENVIRONMENTAL APPLICATIONS CONTRIBUTION TO THEPROGRAMME OF CIRSA (CENTRE INTERUNIVERSITAIRE DE

RECHERCHE SUR LE SAUMON ATLANTIQUE)

CHRISTIAN LATULIPPE,* MICHEL F. LAPOINTE AND TRACEY TALBOT

Department of Geography, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 2K6

Received 14 July 1999; Revised 16 May 2000; Accepted 24 July 2000

ABSTRACT

This paper presents an evaluation of the feasibility and the reliability of a visual characterization technique for gravel–cobble river bed surface substrate. Based onprincipal axis regressions, using phi scale (f), comparisons of visual estimationand grid sampling techniques show that useful predictive relations (R2 = 0�78–0�88) exist between visual estimates of thesurfaced16, d50andd84and estimates obtained for the same percentiles with the grid sampling technique. Comparisons ofvisual estimation and the surface-bulk sampling technique also indicate a predictive relation (R2 = 0�70) between thed50ofthe twomethods. Trained operators can visually estimate gravel–cobble bedsurfaced16touncertainties of41per cent,d50to15 per cent andd84to 11 per cent (for example, there is a 5�5 mm error on ad84size of 50 mm). Furthermore, evidence showsthat if operators are properly trained, a calibration relation for each percentile can be applied independently of operators.This visual characterization allows effective detailed mapping of spatial patterns in substrate size distribution alongextensive reaches of gravel-bed rivers. The technique can be very useful in creating terrain models for variousgeomorphological, hydrological and biological applications such as the determination of entrainment thresholds, hydraulicroughness and substrate suitability for benthic insects or salmonid habitat. Copyright# 2001 John Wiley & Sons, Ltd.

KEY WORDS:visual characterization; surface substrate; sediment size and distribution; gravel-bed river; bed sampling technique

INTRODUCTION

The characterization of bed sediment calibre in a gravel-bed river involves spatial sampling difficulties due tolateral, longitudinal and depth variability of sediment size and distribution (Mosley and Tindale, 1985;Churchet al., 1987). The majority of existing sampling techniques (reviewed below) have been applied tospatially limited river forms such as riffles, pools and point bars (Milne, 1982; Payne and Lapointe, 1997).Nevertheless, these techniques are not optimized to describe with reasonable precision the lateral andlongitudinal variability along long reaches of gravel-bed river, especially within a limited time span and theusual physical resources of a researcher. The usual way to achieve a spatial map of the sediment sizedistribution along a gravel-bed river has been to visually delimit the river bed into facies or areas whosesurface grain size composition and distribution are approximately similar. This is followed by acharacterization of the different areas by a surface sampling technique (Lisle and Madej, 1992; Sear,1996; Buffington and Montgomery, 1999). This procedure, a form of stratified sampling, can be adequate, butit still relies on an initial visual delimitation of the boundaries of substrate facies in different areas. Because ofthe gradual nature of many facies transitions, this delimitation can be time consuming and relativelysubjective in gravel-bed rivers. Furthermore, it has not been demonstrated that replication of this procedureby different operators can give consistent results.

Earth Surface Processes and LandformsEarth Surf. Process. Landforms26, 307–318 (2001)

Copyright# 2001 John Wiley & Sons, Ltd.

* Correspondence to: C. Latulippe, Department of Geography, McGill University, 805 Sherbrooke Street West, Montreal, Quebec,Canada, H3A 2K6. E-mail: [email protected]/grant sponsor: Centre Interuniversitaire de Recherche sur le Saumon Atlantique (CIRSA)

Page 2: Visual characterization technique for gravel-cobble river

This studyproposesa usefulalternativevisual techniqueto characterizethe surfacesubstrate(sizeanddistribution)over an expanseof a gravel-bedriver. The techniqueis quick, relatively preciseandeasytoapplyin clear-waterflows, evenoverlong river reaches.It canalsobeeasilycoupledto grid datasmoothingalgorithmsin commonGISpackagesto produceinterpolatedmapsof substratecalibreinformation(exampleof which will beprovidedbelow).Thesemapscanbeusefulto describespatialpatternsin streamhabitatforvariousorganismsaswell asbedroughnessandcritical entrainmentstressrequiredin the developmentoftwo- or three-dimensionalhydrodynamicor sedimenttransportmodels.

This paperis divided into four sections:(1) a brief review of bedsedimentsamplingtechniques;(2) anexplanationof the methodologyandtraining protocolusedfor the visual estimationof a river bedsurfacesedimentsizedistribution;(3) theerrorestimationlinked to this techniqueanda comparisonwith commonsurface sampling techniques(grid sampling and surface-bulksampling); and (4) a discussionof theapplicability andsomeadvantagesof theproposedvisual characterizationtechnique.

SUBSTRATESAMPLING REVIEW

A wide rangeof methodsexist to characterizesubstrate.At thebeginningof the1950s,severalresearcherswereinterestedin thesizedistributionof bedsedimentin orderto quantify thebedroughnessof a channelflow. Indeed,LaneandCarlson(1953),while focusingon canalconstruction,developeda surfacesamplingtechniqueto evaluatethe Manningcoefficient.This techniqueconsistsof extractinga thin surfacelayer of1 m2 areafor sieveanalysis.Forsimilar reasons,Wolman(1954)developedagrid samplingtechnique,whichinvolvessettinga grid over thesurfaceandpicking up theparticlesimmediatelybeneatheachpoint on thegrid. Usually,it is recommendedthat100particlesbecollectedandtheirb-axismeasured,which is themorerepresentativeaxisto estimatediameterof anellipsoidalparticle(Kosteretal., 1980).Unlike thefrequency-by-weight relationsof volumetric sampling techniques,the Wolman grid techniquesuse frequency-by-numberstatistics(Churchet al., 1987).KellerhalsandBray (1971)proposedconversionformulaeto relatethesevarioustypesof grain size statistics.Severalvariationsexist of thesebasictechniques,suchas thephotographictechnique(Adams,1979)andthegreased-blocktechnique(Ettema,1984).

In 1964,biologistsinterestedin thegravel-sizedistributionin salmonspawningareasdevelopedtheirownsampling techniqueusing ‘McNeil-type samplers’ (McNeil and Ahnell, 1964). This method involvescollectingsediment(from 6 to 15kg) underwaterto a depthof 60cm into thesubstrate.Walkotten(1973)developedanotherapproach,called the ‘freeze-coretechnique’.A hollow rod is insertedinto the bedintowhichcoolingliquid (carbondioxin or nitrogen)is injected.Thisbindstheparticlessurroundingtherodandallows themto be extractedfor analysis.RoodandChurch(1994)emphasizedsomeweaknessesof thesemethods:the McNeil-type samplersmay undersamplethe fine particle contentand it is impossibletopredeterminethe volume of sedimentfor the freeze-coretechnique.Furthermore,individual samplesbyeithertechniquemaybetoo small to allow a statisticallyprecisecharacterizationof cobble/gravelsubstratesizedistribution.Therefore,RoodandChurch(1994)proposeda combinationof the two techniques.Thistechniqueconsistsof burying a 20cm diameterbarrel in a bed to a depthof 30cm, the maximumdepthusuallyusedby somesalmonidfor spawning(Devries,1997),andinto which the freeze-coretechniqueisapplied.Thismethodhasprovento beefficient to awaterdepthof 1�1 m andcollectsapproximately13�5 kgof sediments.PayneandLapointe(1997)useda flow-isolationchamberfor extractinglargemasses(100kg)of substratein a subaqueousenvironment.

METHODOLOGY OF THE VISUAL CHARACTERIZATION TECHNIQUE

The visual characterizationtechniquefor surfacesubstrateproposedin this paperallows a rapid visualestimationof thesurfacegrainsizedistributionof a1 m2 bedarea(eitheremergedor submergedunderclearwater).Particleslessthan2 mm in diameterarenot takeninto accountin thevisualestimation,consequentlylimiting thetechniqueto gravel-bedrivers.This techniquewasdevelopedandtestedfor moderatelyroundedsedimentsin analluvial gravel–cobbleriver andhasnot beentestedfor highly imbricated,platy sediments

Copyright# 2001JohnWiley & Sons,Ltd. Earth Surf.Process.Landforms26, 307–318(2001)

308 C. LATULIPPE ET AL.

Page 3: Visual characterization technique for gravel-cobble river

andin systemsdominatedby bouldersor clusters.Thegrainsizerangeof the1 m2 areavariedbetween2 and38mm (d16), 11 and64mm (d50) and24 and115mm (d84). Additional studiesareneededto validatethisvisual techniquefor otherriver environments.

Training protocol

Usinga subaqueousgrid sampletechnique,Wohl et al. (1996)notedthatmultiple operatorscanproducestatisticallydifferent measuresof d50 andd84. Marcuset al. (1995)notedthat the sizeestimateprecisiondecreaseswhenmultiple operatorswith differentbiaspool their samplesandsuggestedrigoroustraining toreducethiseffect.To achievestatisticallyconsistentresults,operatortrainingis necessarybeforecarryingoutvisualgrainsizesurveys.Theoperatorsarefirst trainedto estimatevisually theb-axislengthof 200particles(rangingin sizefrom 5 to 160mm) laid out on a table.After training,operatorsareusuallycapableof doingthis to an accuracyof 15 per centof diameter.An introductionis thengiven to the basicsubstratesurfacesamplingtechniques(grid andsurface-bulksamplingtechniques).Operatorsareinformedthat in a spatiallyrandomor systematicsampleof abedsurface(suchasagrid sample),with datarankedby particlediameters,the d16, d50 and d84 diameterscorrespondto thoseparticle sizessuchthat 16, 50 and 84 per cent of thesampledbedarea,respectively,is coveredby particlessmallerthanthegivensize.Operatorsthenattempttovisually estimatethed16, d50 andd84 (in mm) of 20 different1 m2 areasof contrastingtextureon thestudygravel–cobbleriver system.Immediatelyafter visual estimation,the operatorsapply the grid samplingtechniqueonexactlythesamearea(with a1 m2 grid andby picking up100particles)to calculatethesizeofthepercentileneeded.Theoperatorsaretheninstructedto replaceeachrock in theexactpositionfrom whichit wastakenfor measurement.This is immediatelyfollowedby asurface-bulksamplingtechnique,wherethethicknessof thesurfacelayeron a 1 m2 areais definedby thedepthof thehole left by removingthe largestrock (Churchetal., 1987).Thesurfacelayeris thenentirelyremoved,massis recordedandgrainsaresievedand weighed.The reliable estimatesof the d16, d50 and d84 of each1 m2 areabasedon acceptedsurfacesampling techniques(grid sampling and surface-bulk sampling) are communicatedto the operatorsimmediatelyafter theycompleteeachof thesamplingtechniques.This allowstheoperatorsto further trainandcalibratetheir visualestimations.This training protocoltakesapproximatelytwo to threedays.

ERRORESTIMATION OF VISUAL CHARACTERIZATION TECHNIQUE

After this training, a study wasconductedon 37 new sitesusing the sameprotocol.On these1 m2 sites,operatorswereaskedto performvisualestimationsof thed16, d50 andd84. To evaluatethereliability of thevisualcharacterizationtechnique,visualestimationsof thed16, d50 andd84 werecomparedto theresultsonthe sameareaof the d16, d50 andd84 given by the grid samplingandsurface-bulksampling.Principalaxisregressionswereusedto analysethe relationshipamongvarioustypesof sizeestimates.

Comparisonsbetweenvisual samplingandgrid samplingtechnique

Threetrainedoperators(S1,S2andS3)completedvisualestimationsof thed16, d50 andd84 onrespectively29, 21 and 18 of the 37 1 m2 sitessampled.Typically, researcherswill usethe visual field estimateandconvert theseto equivalentgrid samplingresults,using a calibration relation developedfor eachvisualestimator.Sinceall surfacesamplingtechniques(visual,grid andsurface-bulk)aresubjectto measurementerror,a leastsquaressimplelinearregressioncannotbeusedfor purposesof calibrationor predictionof onesampling techniqueto another.It has beensuggestedthat when all variablesare in the sameunits ofmeasurement,theprincipalaxismethodprovidesa singleaxis to representthe trendbetweentwo variables(Mark andChurch,1977;SokalandRohlf, 1981).

Principalaxisregressionswereobtainedfor comparisonsbetweenthevisualestimationsof anoperatorandtheresultsof a grid samplingfor thesamepercentile.It shouldbenotedthatthedatahavebeentransformedfrom millimetres to a phi scale(Wentworth,1922; Churchet al., 1987). Nine principal axis regressionequationswerederived,onefor eachoperatorandsizepercentile(Figure1).Backtransformedto millimetres,

Copyright# 2001JohnWiley & Sons,Ltd. Earth Surf.Process.Landforms26, 307–318(2001)

VISUAL CHARACTERIZATION TECHNIQUE FOR GRAVEL RIVER BEDS 309

Page 4: Visual characterization technique for gravel-cobble river

this yieldserrorestimatesexpressedin percentages.This is consistentwith havingsizeuncertaintieswhichscalewith particlediameter.Notethatstandarderrorsin predictingthegrid resultfrom visualestimation(SE(vis-grid)) arelargerfor thed16 but relatively identical for d50 andd84 (Figure1).

Slopeand interceptcomparisons(Scherrer,1984;Zar, 1984)of the principal axis regressionequationswere conductedseparatelyfor eachpercentile(d16, d50 and d84), to determineif there is a significantdifferencein thetrendof thevisualto grid calibrationsamongoperators.Theanalysisdemonstratesthat,foreachpercentile,the slopeand the elevationgiven by the principal axis regressioncannotbe consideredsignificantlydifferent (at a = 0�05) amongtheoperators.Therefore,datacanbepooledfor the threetrainedoperatorsandusefulpredictiveequationsareobtainedbetweenvisualestimatesandgrid samplingresultsforeachpercentile(Figure 2). Although different trained operatorsmay have different bias, the calibration

Figure1. Relationbetweenvisualestimatesof threedifferentsamplersandcorrespondinggrid samplingresultson1 m2 area,for threepercentiles:(A) f16; (B) f50; (C) f84

Copyright# 2001JohnWiley & Sons,Ltd. Earth Surf.Process.Landforms26, 307–318(2001)

310 C. LATULIPPE ET AL.

Page 5: Visual characterization technique for gravel-cobble river

equationsfor d16 andd50 of our threeoperatorswerenot significantlydifferent from the line of agreement.TheSE(vis-grid)obtainedby thepooleddatademonstratesthatthethreeoperatorscanvisuallyestimatebedsurfacef16 to uncertaintiesof 0�582f, f50 to 0�211f andf84 to 0�162f. Therefore,generalcalibrationrelationsto transformvisualestimatesinto equivalentgrid samplingresultsfor thestudyoperatorsaregivenasfollows:

�16 grid � 0 � 974�16 vis ÿ 0 � 130 andSE (vis-grid)� 0 � 582

d16 grid � 1 � 094 �d16 vis�0�974 andSE (vis-grid) is approximately41 per cent

�50 grid � 1 � 015�50 vis � 0 � 103 andSE (vis-grid)� 0 � 211

d50 grid � 0 � 931 �d50 vis�1�015 andSE (vis-grid) is approximately15 per cent

�84 grid � 1 � 178�84 vis � 1 � 121 andSE (vis-grid)� 0 � 162

d84 grid � 0 � 460 �d84 vis�1�178 andSE (vis-grid) is approximately11 per cent

In general,thebestcandidatesfor visualcharacterizationwouldbethosewith consistent(or zero)biasandsmallestpossiblerandomerror (basedon standarderror statistics)

Relationbetweenvisual samplingandsurface-bulksamplingtechnique

Thecomplexrelationbetweena surfacecountsample(suchasa grid sampling)anda bulk sampleof thearmourlayer hasbeeninvestigatedtheoreticallyandexperimentally(KellerhalsandBray, 1971;HoeyandFerguson,1994).In this section,visual estimateswerecomparedto surface-bulksamplingresultsfor eachpercentile.Using the sameanalysisas the previoussection,comparisonsof the principal axis regressionsindicatethattheslopeandinterceptof thecalibrationequationcannotbeconsidereddifferent(ata = 0�05)forthed50 only, amongtheoperators(Figure3). Theuncertaintiesin thecalibrationof thevisualestimateto the

Figure2. Comparisonbetweenvisualestimationsandgrid samplingresultsfor eachpercentileusingpooleddataof all samplers

Copyright# 2001JohnWiley & Sons,Ltd. Earth Surf.Process.Landforms26, 307–318(2001)

VISUAL CHARACTERIZATION TECHNIQUE FOR GRAVEL RIVER BEDS 311

Page 6: Visual characterization technique for gravel-cobble river

surface-bulksampling(SEf50 (vis-sb)= 0�289f or approximately20 per cent of d50) are larger then theimprecisionin calibratingvisualestimatesto grid samplingfor thesamepercentile(0�21f or 15 percentofd50).

In summary,calibrationbetweenvisual estimationsand grid samplingresultsfor the threepercentilesstudiedareoperatorindependent,but lessprecisefor d16 thancoarserpercentiles.Therelationbetweenthevisualandsurface-bulktechniqueis significantly different from line 1:1 andonly operatorindependentford50 percentile.The principal axis regressionson Figure 3 reveal that visual samplingtechniquetendstounderestimatethe size of the d50 with respectto surface-bulksamplingresults.The latter result is to beexpected.This is logically consistentwith HoeyandFerguson’s(1994)findingsthatgrid-basedd50 estimatesof thesurfacelayertendto besystematicallysmallerthanbulk d50 values.Thisalsoappearsto beinconsistentwith theKellerhalsandBray (1971)predictionthat grid samplingis equivalentto bulk sieveanalysis.

APPLICABILITY AND ADVANTAGES OF THE VISUAL CHARACTERIZATION TECHNIQUE

Percentilesof thegrainsizedistributioncanbeusedto estimateseveralgeomorphological,hydrologicalorbiologicalvariables,suchasbedroughness(Limerinos,1970;Bray,1979;Hey,1979),critical shearstressforentrainment(Chang,1992;SimonsandSenturk, 1992)andrelatedbedmaterialtransportpredictions(Meyer-PeterandMuller, 1948;Einstein,1950;Parker,1990).Bed surfaced16, d50 andd84 canalsobe useful tocharacterizevisualestimatesof riffle zonegravelsfor salmonidreproduction(Kondolf andWolman,1993;Moir et al., 1996)aswell ashabitatsuitability for variousfishes(Morantzet al., 1987;Heggenes,1996;Heggeneset al., 1996)or benthicmacroinvertebrates(Muotkaet al., 1996).

The advantageof the visual characterizationtechniquebecomesobvious when estimatinggrain sizedistributionsalongseveralkilometre-longreachesof gravel-bedrivers, wherethe lateral and longitudinalsedimentologicalvariability is important. Properly trained and calibratedoperatorsrequire only a fewsecondsto evaluategrain size percentilesof the bed surface over 1 m2 area and hundredsof suchgeoreferencedestimatescanbeeasilydonein a reach.Visual estimatescanbecalibratedagainstotherwellknown river bed surfacesedimentsamplingtechniques,suchas grid and surface-bulksampling,with anacceptablelevel of precisionfor manyapplications.

Figure3. Comparisonbetweenvisualestimationsandgrid samplingresultsfor eachpercentileusingpooleddataof all samplers

Copyright# 2001JohnWiley & Sons,Ltd. Earth Surf.Process.Landforms26, 307–318(2001)

312 C. LATULIPPE ET AL.

Page 7: Visual characterization technique for gravel-cobble river

The methoddevelopedin this paperwas applied on a 4 km sectionof the Sainte-MargueriteRiver(Canada).A descriptionof theriver bedsubstratewith thevisualestimationtechniquewasintegratedinto atopographicsurveyof theriver donewith atotalstation.At almosteverytopographicsoundingpoint,d16, d50

and d84 were estimatedvisually and input in the georeferencedatabase.A densecoverageof visualestimations(Figure 4) can be madewithin a reachto estimatevariableslinked to the sedimentsize anddistributionin a seriesof geomorphological andbiological applications.

Sedimentsizedescriptors

The visual characterizationtechniquecan be appliedto derive and map sedimentsize and distributionstatistics(Inman,1952;Kondolf andWolman,1993),oftenusedin streamecologicalcharacterization.Afterconversionof thevisualestimationto anequivalentgrid samplingvalue(in millimetres),thegeometricmeansurfacesubstratesizeat variouspointsin a river reachcanbe interpolatedusing[(f84� f16) / 2] at everyvisualsamplingpoint (Figure5).Usingthistechnique,thelongitudinalandlateralvariability of meansurfacegrainsizebecomesapparent.Basedon theuncertaintiesof d16 andd84, thestandarderrorof thegeometricmeancalculatedis 0�37f or approximately26 per cent.This error is not significant,when producinganinterpolatedmapof geometricmeanwith aphi sizecontourinterval.Thesortingindex(i.e.thedegreeof localheterogeneityat thebedsurface)definedas[(f84ÿ f16) / 2] is mappedin Figure6. Thestandarderrorof thesortingindexequals0�21f or approximately14percent.Forthereachstudied,riffle composedof verycoarsegravelhasanotablylargeareawith highhomogeneity(sortingindex�2),presumablyanindicationof sortingby transportover manymetresundera fairly uniform bedstressregime.The point bar tendsfirstly to finedownstreamfrom very coarsegravel to granulesandsecondlyto be relatively homogeneous,exceptedat

Figure4. Visual estimationof bed-surfacesedimenton a 100m reachof the Sainte-MargueriteRiver

Copyright# 2001JohnWiley & Sons,Ltd. Earth Surf.Process.Landforms26, 307–318(2001)

VISUAL CHARACTERIZATION TECHNIQUE FOR GRAVEL RIVER BEDS 313

Page 8: Visual characterization technique for gravel-cobble river

its tail where sorting index increases.The pool is composedof gravel-size particles and is veryheterogeneous.

Bedroughness,shearstressandcritical shearstressestimation

The percentilesestimatedwith the visual samplingtechniquecan be usedas input to bed roughnessequationsbasedonsurfacepercentiles,yieldingadensefield of estimatedbedroughnessvalues.A mapof thebed roughness,basedon the Manning–Stricklerformula (Richards,1982), where n = 0�0151 d50

1/6, ispresentedin Figure7 andtakesinto accountthelateralandlongitudinalvariability of sedimenttextures.Thepercentagesof error of the Manning–Strickler coefficient using the visual estimationconvertedinto gridsamplingvalueor into surface-bulksamplingvalueare2�4 and3�3 percentrespectively.Therefore,only thefourth decimalof theManning–Stricklercoefficientis affectedby grainsizeuncertainty.Terrainmapssuchas Figure 7 have the potential to improve the accuracyof two- or three-dimensionalhydrodynamicsimulations.

Shearstressandcritical shearstressmaps

Therelationbetweenappliedbedshearstress(to) andcritical shearstressfor entrainment(tc) is usedtomodel sedimenttransportin rivers. The depth-averagevelocity method(Wilcock, 1996) or the near-bedvelocity method(IppenandDrinker, 1962)areoften usedto calculateshearstresseson a river bed.Thesemethodsrequiremeasurementsof flow velocity,waterdepthandestimatesof localbedroughnesslength(z0).Bed roughnesslength can be computedby severalformulae basedprimarily on d84 or d90 (Hey; 1979;Whiting andDietrich,1990;WibergandSmith,1991;Wilcock, 1996).Localshearstresscanbeestimatedbycombining(1) depthaveragevelocity method(Wilcock, 1996),(2) Whiting andDietrich (1990)formula to

Figure5. Geometricmeancalculatedusingthevisual characterizationtechnique.

Copyright# 2001JohnWiley & Sons,Ltd. Earth Surf.Process.Landforms26, 307–318(2001)

314 C. LATULIPPE ET AL.

Page 9: Visual characterization technique for gravel-cobble river

calculatez0 and(3) visual techniqueto estimated84. Given the form of the log law of the wall (Dingman,1984), the componentof the error in to due to the uncertaintyin d84 from the visual estimatedependsessentiallyon theratio of depthto d84 (Figure8). Excludingtheeffectsof theerroron waterdepthandflowvelocitycalculations,theerroronto inducedby thevisualtechniqueis under7 percentfor depthgreaterthanten timesd84. Sincethe critical shearstress(tc) is proportionalto surfacelayer d50 (Dingman,1984)theirpercentageerrors will be of the samemagnitude(i.e. 15 per cent). An exampleof sedimenttransportcalculationis given to illustrate the propagationof errorsin this case.The analysisbelow of courseonlyaccountsfor the error directly relatedto the input of uncertaingrain size variablesin existing transportmodels.Otherimportanterrorsin modelspecificationalsoneedto beconsidered.

Onauniformbedsurfaceareawith d50 of 32mm,waterdepthof 1 m,meanvelocityof 1�5 m sÿ1, theshearstresscomputedby depthaveragevelocity method(Wilcock, 1996)with z0 basedon local d84 of 64mm is21�93� 1�19Pa.The transportrate estimatedby Einstein–Brownformula (Chang,1992) is 16�2 g msÿ1.Given the uncertaintieson to (5�4 per cent) and d50 or tc (15 per cent) involved by using the visualcharacterizationtechnique,thesedimenttransportrateestimationvariesbetween3�0 and68�8 g msÿ1. Theseuncertaintiesremainconsiderable.However,taking into accountthe spatialvariability of grain size in asedimenttransportmodel can yield useful insights into lateral and longitudinal variability of sedimenttransportrate,a major issuein modellinggravel-bedriver evolution.

CONCLUSION

The visual surfacesubstratecharacterizationtechniqueproposedin this papercan efficiently and rapidlyprovideestimatesof thed16, d50 andd84 overa 1 m2 bedsurfaceareaandcanbeappliedon bothsubmergedand emergentsites. The technique is relatively simple, but requires adequateoperator training for

Figure6. Sortingindex of thesurfacesubstratesizecalculatedusingthevisual characterizationtechnique

Copyright# 2001JohnWiley & Sons,Ltd. Earth Surf.Process.Landforms26, 307–318(2001)

VISUAL CHARACTERIZATION TECHNIQUE FOR GRAVEL RIVER BEDS 315

Page 10: Visual characterization technique for gravel-cobble river

reproducibility.Trainedoperatorscandevelopindividualcalibrationequationsto relatetheirvisualestimatesof thed16, d50 andd84 to resultsfor identicalpercentilesobtainedby grid samplingtechnique.Becausethistechniqueis relativelyfastandreasonablyprecise,high-densitylocalestimatescanbegatheredonariver bedandtheimportantlateralandlongitudinalvariability of sedimentsizedistributionof agravel-bedriver canbecharacterizedmoreaccurately.

Figure7. Map of bedroughnessusingthe d50 obtainedby thevisual characterizationtechniqueandManning–Stricklerformula

Figure8. Percentageof error in to dueto d84 uncertaintywithin thevisualcharacterizationtechniqueandtherelationshipwith depth(H)

Copyright# 2001JohnWiley & Sons,Ltd. Earth Surf.Process.Landforms26, 307–318(2001)

316 C. LATULIPPE ET AL.

Page 11: Visual characterization technique for gravel-cobble river

Spatially interpolatedmapsof the threepercentilesof the grain sizesdistribution(d16, d50 andd84) canyield usefulinsightinto severalgeomorphologic,hydrologicor biologic factors.Analysisof thesefactorswillbe improvedconsiderably,becauseof the ability to take into accountthe sedimentvariability within thereach. With the developmentof the two- and three-dimensionalhydrodynamic modelling of riverenvironment,the importanceof characterizingthe spatial variability of sedimentsize parametersat thereachscalebecomesa major issue.

ACKNOWLEDGEMENTS

Fundingfor this projectwasprovidedby theNaturalSciencesandEngineeringResearchCouncilof Canada(CollaborativeSpecialProjects),theFondationdela FauneduQuebec,theGovernmentof Quebec(Ministerede l’Environnementet de la faune),Governmentof Canada(Economicdevelopment)and the financialpartnersof CIRSA Inc. (Corporationdesoutienaux initiativesderecherchesur le saumonAtlantique).Theauthorsare indebted to the many studentscoming from McGill University, Montreal University andSherbrookeUniversitywho workedon thecollectionof thedata.

REFERENCES

AdamsJ. 1979.GravelSizeAnalysisfrom Photographs.Journalof HydraulicsDivision 105: 1247–1255.Bray DI. 1979.Estimatingaveragevelocity in gravel-bedrivers.Journalof HydraulicsDivision 105(HY9): 1103–1122.Buffington JM, MontgomeryDR. 1999.A procedurefor classifyingtextural faciesin gravel-bedrivers.WaterResourcesResearch

35(6): 1903–1914.ChangHH. 1992.Fluvial Processesin River Engineering.Krieger; Florida.ChurchMA, McLeanDG, Wolcott JF.1987.River bedgravel:samplingandanalysis.In SedimentTransportin Gravel-bedRivers,

ThorneCR, BathurstJC,Hey RD (eds).JohnWiley & Sons:Chichester;43–88.DevriesP.1997.Riverinesalmonideggburialdepths:reviewof publisheddataandimplicationsfor scourstudies.CanadianJournalof

FisheriesandAquaticSciences54: 1685–1698.DingmanSL. 1984.Fluvial Hydrology.W.H. FreemanandCompany;New York.EinsteinHA. 1950. The bedloadfunction for sedimenttransportationin openchannels.US Departmentof Agriculture and Soil

ConservationService,TechnicalBulletin 1026.EttemaR. 1984.Samplingarmor-layersediments.Journalof HydraulicsDivision 110(7): 992–996.HeggenesJ.1996.Habitatselectionby Browntrout (Salmotrutta)andyoungAtlantic salmon(S.Salar)in streams:staticanddynamic

hydraulicmodelling.RegulatedRivers:Research& Management12: 155–169.HeggenesJ,SaltveitSJ,LingaasO. 1996.Predictingfish habitatuseto changesin waterflow: modellingcritical minimumflows for

Atlantic salmon,SalmoSalar,andBrown trout, S. trutta.RegulatedRivers:Research& Management12: 331–344.Hey RD. 1979.Flow resistancein gravel-bedrivers.Journalof HydraulicsDivision 105(HY4): 365–379.Hoey TB, FergusonRI. 1994. Numerical simulation of downstreamfining by selective transport in gravel-bedrivers: model

developmentandillustration.WaterResourcesResearch30(7): 2251–2260.InmanDL. 1952.Measuresfor describingthe sizedistributionof sediments.Journalof SedimentaryPetrology22(3): 125–145.IppenAT, Drinker PA. 1962.Boundaryshearstressesin curvedtrapezoidalchannels.Journal of the HydraulicsDivision 88(HY5):

143–179.KellerhalsR, Bray DI. 1971.Samplingproceduresfor coarsefluvial sediments.Journalof theHydraulicsDivision 97: 1165–1179.Kondolf GM, WolmanMG. 1993.Thesizesof salmonidspawninggravels.WaterResourcesResearch29(7): 2275–2285.KosterEH,RustBR,GendzwillDJ.1980.Theellipsoidalform of clastswith practicalapplicationsto fabricandsizeanalysesof fluvial

gravels.CanadianJournal of Earth andSciences17: 1725–1739.LaneEW, CarlsonEJ.1953.Somefactorsaffectingthestability of canalsconstructedin coursegranularmaterials.Proceedingsof the

Fifth Congressof the InternationalAssociationfor Hydraulic Research,Minneapolis,Minnesota,September1–4.37–48.Limerinos JT. 1970.Determinationof the manningcoefficient from measuredbed roughnessin naturalchannels.US Geological

SurveyWater-Supply,Paper1898-B.Lisle TE,MadejMA. 1992.Spatialvariationin armoringin achannelwith sedimentsupply.In Dynamicsof Gravel-bedRivers,Billi P,

Hey RD, ThorneCR, TacconiP (eds).JohnWiley & Sons:Chichester;277–293.MarcusWA, LaddSC,StoughtonJA,StockJW.1995.Pebblecountsandtheroleof user-dependantbiasin documentingsedimentsize

distribution.WaterResourcesResearch31(10): 2625–2631.Mark DM, ChurchM. 1977.On the misuseof regressionin earthscience.MathematicalGeology9(1): 63–75.McNeil WJ,Ahnell W. 1964.Successof pink salmonspawningrelativeto sizeof spawningbedmaterial.USFishandWildlife Service

SpecialScientific Report;Fisheries469.Meyer-PeterE, Muller R. 1948.Formulasfor Bed-LoadTransport.PaperNo. 2, Proceedingsof theSecondMeeting. IAHR; 39–64.Milne JA. 1982.Bed-materialsizeandthe riffle-pool sequence.Sedimentology29: 267–278.Moir H, SoulsbyC,YoungsonA. 1996.GeomorphologicalandhydrauliccontrolsonAtlantic salmonspawninghabitatin atributaryof

Copyright# 2001JohnWiley & Sons,Ltd. Earth Surf.Process.Landforms26, 307–318(2001)

VISUAL CHARACTERIZATION TECHNIQUE FOR GRAVEL RIVER BEDS 317

Page 12: Visual characterization technique for gravel-cobble river

theRiverDee,Scotland.In Proceedingsof thesecondIAHR SymposiumonHabitatsHydraulics,Ecohydraulics2000,LeclercM, etal. (eds).INRS-Eau:Quebec;B3–B14.

MorantzDL, SweeneyRK, Shirvell CS,LongardDA. 1987.Selectionof microhabitatin summerby juvenileAtlantic salmon(Salmosalar).CanadianJournalof Fisheries andAquaticScience44: 120–129.

Mosley MP, TindaleDS. 1985.Sedimentvariability andbedmaterialsamplingin gravel-bedrivers. Earth SurfaceProcessesandLandforms10: 465–482.

MuotkaT, PetaysAM, Kreivi P.1996.Spatialrelationsbetweenlotic fishes,benthicmacroinvertebratesandthestreamhabitat:towardaGIS-assistedapproach.In Proceedingsof thesecondIAHR SymposiumonHabitatsHydraulics,Ecohydraulics2000,LeclercM, etal.: (eds).INRS-Eau:Quebec;B45–B54.

PayneBA, LapointeMF. 1997.Channelmorphologyandlateralstability: effectson distributionof spawningandrearinghabitatforAtlantic salmonin a wanderingcobble-bedriver. CanadianJournalof FisheriesandAquaticSciences54(11): 2627–2636.

ParkerG. 1990.Surface-basedbedloadtransportrelationfor gravelrivers.Journalof Hydraulic Research28(4): 417–436.RichardsKS. 1982.Rivers:FormandProcessin Alluvial Channels.Methuen:New York.RoodK, ChurchMA. 1994.Modified freeze-coretechniquefor samplingthepermanentlywettedstreambed.NorthAmericanJournal

of FisheriesandManagement14: 852–861.ScherrerB. 1984.Biostatistique.Gaetanmorin editeur: Chicoutimi.SearDA. 1996.Sedimenttransportprocessesin pool-riffle sequences.Earth SurfaceProcessesandLandforms21: 241–262.SimonsDB, Senturk F. 1992. SedimentTransportTechnology.Water and SedimentDynamics.Water ResourcesPublications:

Colorado.SokalRR, Rohlf FJ.1981.Biometry (secondedition).W.H. FreemanandCompany:New York.WalkottenWJ. 1973.A improvedtechniquefor freezing-samplingstreambedsediments.USDA, ForestServicePacific Northwest

ForestandRangeExperimentStation:Portland,Oregon.ResearchNotePNW-281.WentworthCK. 1922.A scaleof gradeandclasstermsfor clasticsediments.Journalof Geology30: 377–392.Whiting PJ,Dietrich WE. 1990.Boundaryshearstressandroughnessover mobile alluvial beds.Journal of Hydraulic Engineering

116(12): 1495–1511.Wiberg PL, SmithJD. 1991.Velocity distributionandbedroughnessin steepstreams,WaterResourcesResearch27(5): 825–838.Wilcock PR.1996.Estimatinglocal bedshearstressfrom velocity observations.WaterResourcesResearch32(11): 3361–3366.Wohl EE, AnthonyDJ,MadsenSW,ThompsonDM. 1996.A comparisonof surfacesamplingmethodsfor coarsefluvial sediments.

WaterResourcesResearch32(10): 3219–3226.WolmanMG. 1954.A methodof samplingcoarseriver-bedmaterial.Transactionsof theAmericanGeophysicalUnion 35(6): 951–

956.Zar JH. 1984.BiostatisticalAnalysis(secondedition).PrenticeHall: New Jersey.

Copyright# 2001JohnWiley & Sons,Ltd. Earth Surf.Process.Landforms26, 307–318(2001)

318 C. LATULIPPE ET AL.