vision-guided humanoid walking - concepts and experimental results · 2009. 5. 26. · 28 major...

30
1 Vision-Guided Humanoid Walking - Concepts and Experimental Results - Günther Schmidt R. Cupec J. Denk J. F. Seara O. Lorch ViGWaM Group Institute of Automatic Control Engineering Technische Universität München http://www.lsr.ei.tum.de/~vigwam SPP 1039 Autonomous Walking Project: Perception-based Walking VDI/VDE-GMA FA “Robotik”, 16. Juli 2003

Upload: others

Post on 02-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Vision-Guided Humanoid Walking- Concepts and Experimental Results -

    Günther SchmidtR. Cupec J. Denk J. F. Seara O. Lorch

    ViGWaM GroupInstitute of Automatic Control Engineering

    Technische Universität München

    http://www.lsr.ei.tum.de/~vigwam

    SPP 1039 Autonomous WalkingProject: Perception-based Walking

    VDI/VDE-GMA FA “Robotik”, 16. Juli 2003

  • 2Motivation and Objectives

    “Goal-Oriented Autonomous Walkingrequires Cognitive Abilities,

    e.g. Merging of Locomotion and Perception”

    ViGWaM: Vision Guided Walking Machine

  • 3

    BARt-UH with LSR-Guidance System

    Experimental Platform #1: 2-D Walker

    • Stabilized Walking Machine, Institute of Automatic Control (IRT) Universität Hannover

    • Pan-Tilt Stereo Camera Head and Guidance System, Institute of Automatic Control Engineering (LSR) TU München

  • 4Reactive Walking: Obstacle Avoidance Capability

    January 2002

    Video:Javier4.avi

  • 5

    Basic Scheme of Visual Guidance System

  • 6

    large

    Smooth and Free Biped Locomotionin 3D-Scenario with Obstacles

    • start and stop locomotion• change step-length• stride over small obstacles• make direction changes• step on platform, climb stairs• etc.

    Robot requires ability to autonomously

    barrier

  • 7

    large

    Step Sequence Planning: Off-line

    • start-/stop-primitive• cyclic primitive• transition primitive• obstacle primitive combination• curve primitive combination• stair primitives

    Walking Primitives:

    “Walking Primitives“for Statically or Dynamically Stable Biped Locomotion

  • 8 Hybrid Optimization based Approach

    Synthesis of WalkingPrimitives for “Step Database“pre-swing swing heel-contact

  • 9

    Strategy # 1: Formal, “Tree Search“

    Step Sequence Selection and Execution: On-line

  • 10

    Strategy # 2: Rule-based, “3-Steps-Ahead”

  • 11

  • 12

    Architecture of Visual Perception Systemcamera system inclination sensor encoders

    edge detection

    line extraction

    calculation ofcamera poserelative to SF

    dead reckoning

    object detectionand localization

    object classification

    pose estimationby

    object featuretracking

    edge map

    straight edges

    FTC

    detected objects

    3D objects in view

    Local Environment Map (LEM)

    1 image / step

    precise objectpose

    F(k)TF(k-1)

    1 im

    age

    / 33

    ms

    object base edge

    scene analysis

    VISIONSYSTEM

    WALKINGMACHINE

    Vision for Walking

  • 13

    Phase 1: Line Extraction and Obstacle Detection

  • 14

    Phase 2: Obstacle Localization

  • 15

    Phase 2: Obstacle Localization, alternative

  • 16

    Phase 2: Obstacle Localization

  • 17

    Phase 3: Obstacle Classification, preliminarye.g. Barrier or Wall

    Analysis of Obstacle Situation

    – barrier: robot can step over it– wall: robot can possibly walk around

    – stair: robot can climb on it

  • 18

    • For each 2D line - two hypotheses: – projection of a vertical 3D edge – projection of a horizontal 3D edge

    • Orientation of the camera system relative to the gravity axis:

    – pruning of vertical edge hypotheses – orientation horizontal edges

    Phase 3: Obstacle Classification, finale.g. Recognition of Rectangular Objects

    • Edge grouping Rectangular Objects

    Stairs

    Step 1

    Step 2

  • 19

  • 20

    Task-Dependent Selection of View Direction

    fi Adaptation of View Direction

    “Where to look next ?”: Intention Problem

    – Limited Field of View– Active Vision System

    StartAreaGoalAreaDesiredPathRealPathLandmarksSelf-LocalizationObjectsObstacle Avoidance

    Gaze Control

  • 21

    Entscheidungsstrategie

    Aufgabenspezifische Blickwinkelsteuerungsstragien

    Decision Strategy

    Task-SpecificGaze Control Strategy

    Agents

    Information Management

    Hybrid EKF

    Task and Situation Dependent Gaze Control

    A1 A2 A3 A4 ...

    Perception

    Dead-Reckoning

    PerceptionModel

    RobotKin. Model

    Vision for Locomotion

    ViewDirection

    Winner Selection Society

    Environment Map

    Self-Localization

    Exploration, etc. ...

    Obstacle Avoidance

  • 22Simulation Results

    Self-localizationonly

    (xS, yS, qS) = (0,3 m, 0,2 m, 0°)

    (sx, sy, sq) = (0,005 m, 0,005 m, 3°)

    14 measurements per step

    Task-SpecificGaze Control

    Obstacle Avoidanceonly

  • 23

  • 24

    Bio-inspired Guidance and Control Architecture

    Biped Robot Guidance System

  • 25

    „Intelligent“ Biped Robot Johnnie

    Experimental Platform # 2: 3-D Walker

    • Stabilized Walking Machine, Institute for Applied Mechanics (AMM) TU München

    • Pan-Tilt Stereo Camera Head and Guidance System, Institute of Automatic Control Engineering (LSR) TU München

  • 26 Obstacle Avoidance and Self-localization

    Demonstration of Perception-based Guidance Capabilities

    preplannedwithout obstaclemodified path

    modified path

  • 27 Hannover Messe, April 2003

    Video:johnnie_hannover_3.mpe

  • 28

    Major Achievements of Project• Systematic approach to vision-guided biped locomotion

    • Successful demonstration of autonomous walking based on

    – robust line based image processing techniques

    – combination of real-time scene analysis and feature tracking

    – offline planning and predictive step sequence selection

    • Reactive behavior of biped due to

    – dynamic updating of the local environment map

    – situation-dependent replanning of step sequence

    • Collection of invaluable experimental experience with developed concepts, techniques, and algorithms

    • Important contribution to progress in autonomous biped robot walking

  • 29

    More Recent References

    • Robust visual estimation using hybrid EKF technique [ICRA 2002]

    • Advanced gaze control strategies for simultaneous self-localization and obstacle avoidance [ICRA 2003] , [HRC 2003]

    • Vision-based step sequence execution by use of walking primitive data base [ICRA 2003] for - straight-ahead and curve walking along a given local path

    - striding over or walking around obstacles

    - stepping on platform or climbing stairs

    • Results of experimental evaluation [IROS 2002] , [ISER 2002] , [AMS 2003]

  • 30

    Vision-Guided Humanoid Walking- Concepts and Experiments -

    Günther SchmidtR. Cupec J. Denk J. F. Seara O. Lorch

    ViGWaM GroupInstitute of Automatic Control Engineering

    Technische Universität München

    SPP 1039 Autonomes Laufen

    http://www.lsr.ei.tum.de

    Universität Bielefeld, 3. Juli 2003