viscoelastic damping: lecture notes 140202

47
Viscoelastic Damping Mohammad Tawfik Cairo University Aerospace Engineering Department 2 February, 2014

Upload: mohammad-tawfik

Post on 08-May-2015

675 views

Category:

Education


8 download

DESCRIPTION

Viscoelastic Damping lecture notes

TRANSCRIPT

Page 1: Viscoelastic Damping: Lecture Notes 140202

Viscoelastic Damping

Mohammad Tawfik

Cairo University

Aerospace Engineering Department

2 February, 2014

Page 2: Viscoelastic Damping: Lecture Notes 140202

Introduction

Viscoelastic Damping 2

Contents Introduction ............................................................................................................................................ 3

Classical Models ...................................................................................................................................... 3

Maxwell Model ................................................................................................................................... 3

Model Characteristics ..................................................................................................................... 4

Kalvin-Voigt Model .............................................................................................................................. 6

Zener Model ........................................................................................................................................ 8

The Area in the curve exist only when 0 ...................................................................................... 11

Golla-Hughes-McTavish (GHM) 1983 ................................................................................................ 11

Unconstrained Layer Damping .............................................................................................................. 17

Finite Element Model of Bars ........................................................................................................... 17

Composite Bar ................................................................................................................................... 18

Constrained Layer Damping .................................................................................................................. 18

Active Constrained layers damping ...................................................................................................... 27

Bibliography .......................................................................................................................................... 42

Page 3: Viscoelastic Damping: Lecture Notes 140202

Introduction

Viscoelastic Damping 3

Introduction

Objectives

• Recognize the nature of viscoelastic material

• Understand the damping models of viscoelastic material

• Dynamics of structures with viscoelastic material

What is Viscoelastic Material?

• Materials that Exhibit, both, viscous and elastic characteristics.

• The material may be modeled in many different ways. Classical models include:

– Mawxell Model

– Kalvin-Voight Model

Classical Models

Maxwell Model The Maxwell model describes the material as a viscous damper in series with an elastic stiffness

(Figure 1). When stress is applied, it is uniform through the element, in turn, we may write the total

strain of the viscoeleastic element as:

ds

Figure 1. Schematic for a viscoelastic element using the Maxwell model

According to this model, the stress is equal in both elements, which may be expressed by the

relation:

ddss CE

According to this relation, we may write:

dtCE d

d

s

s

According to this, the total strain may be expressed as:

Page 4: Viscoelastic Damping: Lecture Notes 140202

Classical Models

Viscoelastic Damping 4

Es

dtCd

Or

ds CE

Model Characteristics

When investigating the model characteristics in our context, we are interested in three aspects;

namely:

• Creep. When a material is loaded for a prolonged period of time, the strain tends to

increase, which leads, in turn, to failure. The phenomenon of the strain increase at constant

load is called creep.

• Relaxation. When materials are strained for a prolonged periods of time, the internal

stresses tend to decrease. The phenomenon of stress decrease at a constant strain value is

called relaxation.

• Storage and Loss Moduli. When the viscoelastic material is loaded harmonically, the stress-

strain relation may be presented by complex modulus of elasticity. The real part of the

complex modulus is called storage modulus while the imaginary part is called the loss

modulus.

To study the creep characteristics of the Maxwell model, we need to set the rate of change of stress

to zero in the stress-strain differential relation. Thus:

d

zero

s CE

Solving the differential equation, we get:

tCd

The resulting strain time function indicates that the strain will grow to an unbound value as time

increases!

To investigate the relaxation characteristics, the strain rate is set to be zero in the differential

relation, the resulting relation becomes:

ds CE

0

When solved, the above relation gives the stress time relation as:

Page 5: Viscoelastic Damping: Lecture Notes 140202

Classical Models

Viscoelastic Damping 5

ds CtEe

0

Where, 0 indicates the initial stress value. The above relation indicates that the stress will decrease

exponentially with time with an asymptotic value of zero.

When studying the response of the model under harmonic excitation, the excitation stress is

presented as:

tje 0

Thus, the strain response is presented as:

tje 0

Substituting in the differential equation, we get:

o

ds

dso

CjE

jCE

Giving:

o

ds

dssdo

CE

jCEEC

222

222

Separating the real and imaginary parts, we get:

o

ds

ds

ds

sdo

CE

CEj

CE

EC

222

2

222

22

Where, the storage modulus is:

222

22

'ds

sd

CE

ECE

And the loss modulus becomes:

222

2

"ds

ds

CE

CEE

The loss modulus, defines as the ratio between the storage and loss moduli, may be given as:

d

s

C

E

Now, the stress strain relation may be expressed as:

oo jE 1

Page 6: Viscoelastic Damping: Lecture Notes 140202

Classical Models

Viscoelastic Damping 6

Where the complex modulus is given by:

jEE 1*

Figure 2. The variation of the storage modulus and the loss factor with frequency according to Maxwell’s model

Figure 2 presents the variation of the storage modulus and the loss factor with frequency. Note that

according to Maxwell’s Model:

• Under static loading, the stiffness, storage modulus, is zero and the loss factor is infinity!

• For very high frequencies, the loss factor becomes zero!

Kalvin-Voigt Model The Kalvin-Voigt model describes the material as a viscous damper in parallel with an elastic stiffness

(Figure 3). When stress is applied, it is distributed through the element, while the strain in both

elements is equal.

Figure 3. Schematic for a viscoelastic element using the Kalvin-Voigt model

The stress strain relation may be written as:

ds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Frequency

Mo

du

lus

E

u

Page 7: Viscoelastic Damping: Lecture Notes 140202

Classical Models

Viscoelastic Damping 7

ddss CE

No we come to the studying the Kalvin-Voigt Model characteristics. To study the creep we solve the

above equation for constant stress to get:

ds CtE

s

eE

1

Which indicates that the strain will grow to a constant value as time increases!

When studying the relaxation, we set the strain rate to zero, giving:

0 sE

Which means that the stress will stay constant as time grows for the same strain!

Now, we come to investigating the Storage modulus and Loss Factor. For harmonic stress and strain

we get:

tje 0

tje 0

Resulting in the relation:

ods CjE

Figure 4. The variation of the storage modulus and the loss factor with frequency according to the Kalvin-Voigt model

Figure 4 presents the variation of the storage modulus and the loss factor with frequency. Note that

according to the Kalvin-Voigt Model:

0

2

4

6

8

10

12

14

0 2 4 6 8 10

Frequency

Mo

du

lus

E

u

Page 8: Viscoelastic Damping: Lecture Notes 140202

Classical Models

Viscoelastic Damping 8

• Under all loading, storage modulus is equal to the stiffness of the spring, and the loss factor

is zero.

• For very high frequencies, the loss factor becomes unbound!

Zener Model The Zener model describes the material as a viscous damper in parallel with an elastic stiffness and

both are in series with stiffness (Figure 5). The strain may be written as:

1 s

Figure 5. Schematic for a viscoelastic element using the Zener model

Stress-Strain relation, according to the zener model, may be written as:

11 dpss CEE

From which we may write in Laplace domain:

dps

ssCEE

1,

Or:

dps

sdp

dps sCEE

EsCE

sCEE

Back to time domain, we get:

sdpdps EsCEsCEE

From which we get the differential equation:

dspdsps CEECEEE

Or:

EE

Page 9: Viscoelastic Damping: Lecture Notes 140202

Classical Models

Viscoelastic Damping 9

Studying Zener Model characteristics, we get for the creep:

0 EE

Giving:

s

t

E

e

E

0

And for the relaxation, we get:

E

Giving:

teE 100

While for the storage modulus and loss factor we get:

oooo jEjE

Rearranging, we get:

ooo

jE

j

jE

22

2

1

1

1

1

Or:

oo

jE

2222

2

11

1

Or simply:

oo jE 1

Page 10: Viscoelastic Damping: Lecture Notes 140202

Classical Models

Viscoelastic Damping 10

Figure 6. The variation of the storage modulus and the loss factor with frequency according to the Zener model

This is more realistic for the presentation of the material characteristics, however, is does not satisfy

the detailed studies needed for analysis of complex structures. Let’s recall the harmonic relations:

ti

o

ti

o

e

e

And the differential equation

EE

Which give:

ti

o

ti

o

ti

o

ti

o eiEeEeie

Expanding the complex exponentials, we get:

titiEtitE

tititit

oo

oo

sincossincos

sincossincos

Equating the real and imaginary parts:

tEtEtt oooo sincossincos

tEtEtt oooo cossincossin

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

Frequency

Mo

du

lus

E

u

Page 11: Viscoelastic Damping: Lecture Notes 140202

Classical Models

Viscoelastic Damping 11

22'

2'2'

2'

'

''

''

'''

)(

)sin()(

sin1

cos

cossinsin

eo

oo

o

oedissipativ

edissipativ

d

elastic

eTotal

ooo

E

tEE

tEE

E

tE

tEtEt

oo

o

e

o

d

o

oed

eod

EEThis

EE

E

E

E

''

2

'

2

'

2'

2'2

2

22'

2

*2diameterminor & *2 diameter major with ellipserepresent equation

1

)(by Divide

)(

)(

Figure 7.

The Area in the curve exist only when 0

Golla-Hughes-McTavish (GHM) 1983

Simple mass+visco elastic material

Page 12: Viscoelastic Damping: Lecture Notes 140202

Classical Models

Viscoelastic Damping 12

0

0

-

- 2

0

0 0

0

0

0

0

-

-

2 0

0 0

1 0

0

02.&

01

0

02

02

21

.. )(

int

2

2

2

02

21

0

0

n

00

00

2

n

2

n

2

n

0

0

00

00

20200

00

2

2

00

2

2

2

22

2

2

22

000

22000

22

2

22

22

nnn

n

n

n

n

nn

n

n

n

nn

nnn

nn

n

nn

n

Z

Z

ZSSS

SS

SSS

systemofDEinZsubstitute

vaiableernalZ

ZZZ

ZZZ

SSZlet

SS

SSS

Complex stiffeners is given as

Page 13: Viscoelastic Damping: Lecture Notes 140202

Classical Models

Viscoelastic Damping 13

3 2S

2 2S

DOF internal Z

Z variableinternal the

1 02

21S

-:spring elastic viscoaon supported mass

prametersunknown are , ,

2

21

2

21

2

21

22

22

2

n

22

22

n

22

2*

22

2*

22

2*

nn

nn

nn

n

nn

n

nn

n

nn

n

SZZ

S

assume

SS

SS

SS

SS

SS

SSGG

SS

SS

From equation 1&2

Page 14: Viscoelastic Damping: Lecture Notes 140202

Classical Models

Viscoelastic Damping 14

0

-

- 12

0

0 0

0

0

0 -

- 1

2 0

0 0

1 0

0

02 3 .

01

01

0

02

02

21

0

0

n

00

00

2

n

2

n

2

n

0

0

n00

00

2

n

20

n

00

00

2

2

2

2

2

22

2

2

2

2

n

n

n

nn

n

n

n

eqn

domaintimein

S

S

ZSS

S

SS

SSS

Page 15: Viscoelastic Damping: Lecture Notes 140202

Classical Models

Viscoelastic Damping 15

Visco elastic material has its own internal DOF =Z

In general X&Z are vectors

22

2

2

21

nnn

nn

nnSS

SS

Summary

The original system has (X ) DOF

The system+vesco elastic material has (X+Z) DOF

Entire system order has increased

X=primary DOF

Z=secondary DOF

Use static condensation method (Guyan reduction method )

I.e condensation =eliminate the secondary DOF&only maintain the primary DOF.

Static Condensation

*consider only the stiffnes matrix

01 1

1

1

-

- 11 1

1

1

1

0 -

- 1

consider

matrixstiffnesredusedF

F

F

Page 16: Viscoelastic Damping: Lecture Notes 140202

Classical Models

Viscoelastic Damping 16

redusedredusedredused

total

totalreduced

C

F

F

F

termsenergycompare

0000

0

n

00

2

n

0 -

- 12

0

0 0

0

0

01 1

0

0 -

- 1

-:follow as also obtained becan redused ""

DOF.primary ofenergy strain system entire ofenergy strain

2

1

2

1

2

1

:

Visco Elastic Material Damping

*Golla-Hughes-McTavish (GHM) model

Stiffners complex modulas (longitudinal or sheer)

22

2

*

2

21

nn

n

SS

SS

Page 17: Viscoelastic Damping: Lecture Notes 140202

Unconstrained Layer Damping

Viscoelastic Damping 17

For structure& V E M-------------system dynamics

0 -

- 12

0

0 0

0

0

0

0

n

00

00

2

n

F

**GHM model when augmented with structural model can be written as:-

1-frequency domain

2-time domain

Other Models

• Some, more accurate, models were developed to represent the behavior of viscoelastic

material

• The greatest concern was paid for the modeling in the time domain.

• The most famous models are:

– Golla-Hughes-McTavish

– Augmented Temperature Field

Fractional Derivative

Unconstrained Layer Damping

• The most common way of using viscoelastic material in damping is by

bonding it to the surface of the structure!

• The viscoelastic material will be strained with the structure resulting in

energy losses in the surface layer

Finite Element Model of Bars

• Recall the stiffness and mass matrices of a bar:

• It is possible, in the above model, to superimpose more than one

element!

Page 18: Viscoelastic Damping: Lecture Notes 140202

Constrained Layer Damping

Viscoelastic Damping 18

21

12

6&

11

11 ALM

L

EAK

Composite Bar

• The effect of each part of the bar may be added to the other part

linearly incorporating the effect of both materials

21

12

6

11

11

LAA

M

L

AEAEK

VVBBC

VVBBC

Homework #9

• Use the datasheet of the DYAD606 viscoelastic material to calculate the

bar response with modulus of elasticity varying with frequency

Constrained Layer Damping

• When the viscoelastic layer is covered, constrained, from the top side,

sheer stresses are generated between the different surfaces.

• Viscoelastic materials are characterized by having much higher losses in

the case of sheer than in the case of axial strain.

Constrained Layer Damping

Page 19: Viscoelastic Damping: Lecture Notes 140202

Constrained Layer Damping

Viscoelastic Damping 19

Sheer Stresses

Page 20: Viscoelastic Damping: Lecture Notes 140202

Constrained Layer Damping

Viscoelastic Damping 20

2hx

x

uE

2

22

2

2

hEx

u

1

0

22

*

2

2

h

uu

hE

G

x

u

Axial Displacement

• The axial displacement relation becomes:

1

0

22

*

2

2

h

uu

hE

G

x

u

02

2

*

122 uux

u

G

hhE

02

2* uu

x

uB

• The axial displacement relation becomes:

• Solving:

xuuB xx 0

*

xB

xCha

B

xShau 0*1*1

*

*

*

0

2B

lCh

B

xShB

xu

Sheer Strain

Page 21: Viscoelastic Damping: Lecture Notes 140202

Constrained Layer Damping

Viscoelastic Damping 21

1

0

1

0

h

xu

h

uu

*

*

*

0

2B

lCh

B

xShB

Lost Energy

2/

2/

*2

*2

1

2*22/

2/

2

12

l

l

o

l

l

dxBxShBlChh

BGdxGhW

Note that

tan )1cos()tan1cos()sin(cos

)2/sin(l

)2/cos(

)cos()(

)2/cos()sin()2/sin()(4

)2/1(

*

221

0

00

0

21

2

02

v

ass

iGGiGG

G

EhhlA

Ach

Ash

llhh

W

Example

''28.3*28.3

''110

10*01.*01.

0

3

7

0

optimumL

22

**2/

2/

*2 lBlSh

BdxBxSh

l

l

Page 22: Viscoelastic Damping: Lecture Notes 140202

Constrained Layer Damping

Viscoelastic Damping 22

For unconstrained layer damping

1

)(

2

0

''

11

2

0

''

11

Lhh

dissipatedenergytotalW

hhWd

In the constrained case

2''

11

2/

2/

2

1

2/

2/

2''

1

2/

2/

''

)(

o

l

l

nedunconstrai

dconstraine

l

l

l

l

dconstraine

Lhh

dxGhh

W

W

dxGhhWdW

''' '''

1''''

1''''

*

*

GG

ii

iGiGGG

Page 23: Viscoelastic Damping: Lecture Notes 140202

Constrained Layer Damping

Viscoelastic Damping 23

3/1''

''

3

''

3

'G''G'

3

'G'

0.5, VEMfor

ratio spoisson' 12

''

G

G

1000124.0*10*1*3

2

10G

1

45 1

124.0coscosh

2/cossin2/sin

sin

coscosh

2/cossin2/sin

sin3

2

3

1

4

42

1

2

o

2

1

2

2/

2/

2

2

R

h

h

Ash

l

Ash

lGh

h

dxlW

WRatio

v

o

o

l

louncon

con

Summary

*constraining the VEM makes it deforms in sheer & results in significantly high

energy dissipation characteristics

Notes

The plunkett & Lee analysis assumes:-

1-quasi-static analysis (satisfied by the force that the constraining layer

thickness is small (its inertia can be neglected)

Page 24: Viscoelastic Damping: Lecture Notes 140202

Constrained Layer Damping

Viscoelastic Damping 24

2-A general base structure

3-longitudinal vibration

beam

0max

2

2

2

2

.max

tan

tcons

wM

wdofVEM

For the beam:-

Energy dissipated

Page 25: Viscoelastic Damping: Lecture Notes 140202

Constrained Layer Damping

Viscoelastic Damping 25

2/

2/

2

2222

1

*1

*

*

0

2/

2/

2''

1

2/

2/

*)/(

*)/(*''

2

-

)(

l

l

xx

l

l

l

l

dconstraine

dxlch

shWdGhhW

lchh

sh

dxGhhWdW

Exercise

Show that the above composite has

1

2

e

1

2

1

2

1

*

2*

e

*

*

23*

11

r

)1()1(r :

1)1(31

h

hr

iriwhere

rr

rrrrr

h

e

he

he

rhe

tt

Page 26: Viscoelastic Damping: Lecture Notes 140202

Constrained Layer Damping

Viscoelastic Damping 26

And show that:-

24232

4232

4641)1(

2463

hehehehehe

hehehhe

rrrrrrrrrr

rrrrrrrr

Take;-

2

2

4

1

2

00519.0

00502.0

10*585.3

1

e

h

r

h

hr

Kinematics of CLD

2

3113

33

21

)2

()(

2

2

h

UUW

Whh

UUUU

Wh

UU

Wh

UU

Ax

xA

x

x

Page 27: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 27

Wh

h

h

UU

h

Whhh

UU

h

WhUU

22

31

2

31

31

2

2

)22

()(

Active Constrained layers damping

Page 28: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 28

0X

U 2/

*

2212*

0

2*

L

G

hh

UU

Solution procedure

*solve for U

*determine γ

2

2'' hGW

Compute *

WdxW Compute *

*put in dimensionless form η

Page 29: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 29

For ACLD

activepassive

If controller fails---------------system still “fail-safe” because of passive damping

00 )( t

dpp

Notes (viscoelastic)

dampingelastic

iwt

o

o

iwt

ii

i

FFw

F

iweiw

eif

F

if

0'

'

0

'''

'

)1(

)1(

2'2'

/2

0

22

0

2'

0

/2

0

2'/2

0

2

2)(cos

sin

oo

o

d

dttWEnergy

tfor

dtdtdt

dxFcycleperdissipatedEnergy

capacitydampingspecificW

W

W

W

WEnergypotential

e

e

e

W2

W 2

2

1

e

2

0

'

Page 30: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 30

222

/2

0

222

/2

0

cosC

oo

o

oo

o

d

CC

dtt

dtCenergydissipatedW

CF

DampingViscous

Equivalent viscous damping to viscoelastic material

2 resonanceat

2

2

2

1

C

'

'

'

''

oC

Cratiodamping

C

2-Transeverse Vibration

Kinematics equation:

231

22

31

2h

hhh

Wh

h

h

UUx

U=longitudinal deflection of base structure

Page 31: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 31

=shear angle

Wx=slope of deflection line

1 21

21

12

hWhU

hWhU

hWUh

=F xUh 111 Force on top layer per unit width =

*

211

*

111

)(

2

GhWhh

sshearstresGUhd

dF

Wh

hG

allongitudinhlet

Wh

h

hh

G

21

*

111

2211

*

Rigidity

NOTE

Bending in beam:

0

0

0

;

)i 1()(

4*

*

2

2*

**

WW

WD

mW

WmWD

motionofEquation

DD

B

t

t

tt

Page 32: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 32

4/1*B

*

)(

0

B

)/(let

solution n propagatio one

*

mD

W

eWW

numberwavebendingwhere

t

wti B

)4/(

0

)4/()(

0

4/14/1

2/1* )

41(

) 1()/(

B

BB

eWW

eeWW

iimD

W

wti

B

t

B

22

0

)2/(2

0

2

)2

(dx

B

B

eWCenergyd

eWCCWEnergy

B

assemblylayersdconstraineEnergy

d

Energy

d

B

C

B

Energy/dx 2

2

Energy/dx

2

2v

221

*

)(

0

G' energy/dx d calculate *

*

*

; *

h

for

Wh

h

h

Gsolve

eWWput

forsolution

Bwti

C

Using the solution given in ''Damping of flexural waves by constrained layers ''

Journal of acoustic society of America, Vol 31, 7 pp952-962, 1959

Page 33: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 33

iWh

h

h

G

WiW

eeWiW

B

B

iWtiB

B

3

221

*

3*

0

3* *

equationsatisfiesitthatcheck

WG

h

ih

B

B

)(

*1

21

2*2

Summary

Loss factor for constrained layer damping during transverse vibration

W

Wfactorloss

EnergyElastic

Energydissipated

W

Wdampingspecifi

D

D

2

2-for beam in bending

Equation of motion

Page 34: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 34

0

0

0

;

)i 1()(

4*

*

2

2*

**

WW

WD

mW

WmWD

motionofEquation

DD

B

t

t

tt

4/12

B*

*

tD

mWnumberwavebendingwhere

)4/(

0

)4/()(

0

4/14/1

2/1* )

41(

) 1()/(

B

BB

eWW

eeWW

iimD

W

wti

B

t

B

)2/()2/(/

2/

2/

2/2/2)(

0

2

BB

wti

B

B

B

BBB

eC

eC

energy

dxdenergy

eCeeWCCWEnergy

losseswithoutsassemblylayerdconstraineofnumberwave

3-calculate loss factor of CLD

Energy

d

B

C

Energy/dx

2

4- For 3 layers CLD

Page 35: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 35

231

22

31

2h

hhh

Wh

h

h

UUx

If U3=0 a-

hWhU

hWhU

Wh

h

h

U

2

21

22

1

Quasi-static Equilibrium

Longitudinal load on layer2=shear load

hWhU

geomtryfrom

UhU

hhG

bddbh

21

1111

1

1

1

1

;

*

)()*(

Page 36: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 36

111

2211

11211

211

*

**

*

hlet

Wh

h

hh

G

WG

hh

G

hh

GhWhh

iWh

h

h

G

WiW

eeWiW

eWW

Wh

h

h

G

B

B

iWtiB

wti

B

B

3

221

*

3*

0

3*

)(

0

221

*

*

solution n propagatio one

*

It has a solution;

equationsatisfiesitthatcheck

WG

h

ih

B

B

)(

*1

21

2*2

Page 37: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 37

2

2v G' h Energy dissipated per unit length

Energy in bending waves

)*sin(

)*cos(*

)*sin(W

)*cos(W

)*sin(W

0

2*

0

0

0

0

0

0

)(

0

*

tWW

tWW

velocityAngulertW

velocitylineartW

wtW

eWW

B

BB

B

B

wti B

00

0

3*

0

2*

)cos(*

)sin(**

WFWpower

tWDFshear

tWDWDmoment

t

tt

22

.

23

2

2

23*

3*2

0

223*23*0

2

1

)/(

2

''

2

-2

/2*

sin*cos*

g

gDh

WD

Gh

WD

powerEnergy

DWWDDW

tVlayerconst

ot

V

ot

tott

Page 38: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 38

1

0g

when Max. is

*

constr

21

2*

optimum

constr

g

parametershearG

g

NOTE

2

1

22

31

111

U

tionlong.vibrain CLD0 W

,

h

U

h

hW

h

U

if

gofmeaningphysicaltheiswhat

h

21/*

21

0*

hG

oe

h

G

Also

Page 39: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 39

1*

21

/* 21

e

o

hG

o

h

G

eU

U

eUU

22

2*

B

22*

21

2g

2

1

*

e

eB

e

let

g

G

h

lengthwaveshear

lengthgwavebending

b- if U3=0

0 F

0

&

31

333111

31

22

31

F

UhUhhavetoorderin

dependentareUUwhere

Wh

h

h

UU

Wh

hU

h

UU

hhwhere

UU

2

1

2

31

1

3

13

333111

3311

/1

0

Page 40: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 40

Whh

U

hWhU

31

3

31

231

2

21

3

31

*

*

layer topeqm.of

11

111

11

GU

GhU

h

But

Wh

h

hh

G

GWhh

2231

31

*

31

31

31

231

)(*

Follow same procedure as case of U3=0 to get

2

3

1

22

1

11

)1/)(/(

g

g

ggDh t

Vconstr

Summary

1- Longitudinal vibration

-to find optimum length of constraining layers

Page 41: Viscoelastic Damping: Lecture Notes 140202

Active Constrained layers damping

Viscoelastic Damping 41

(Following plunket &lec. paper)

lengthticcharactersEhh

GB

B

Loptimum

1**

28.3

221

*

2-comparing between CLD &un CLD

Energy dissipated in un CLD<<< CLD

Tension shear

3-transiverse vibration

A -definition

-specific damping

-loss factor

-loss factor &damping ratio selection

B-CLD with U3=0

*shear parameter g=1 for optimum

*g=ratio of bending to shear wave length

---optimum is ensured if there is balance between shear and bending

C-U3=0

Page 42: Viscoelastic Damping: Lecture Notes 140202

<Bibliography

Viscoelastic Damping 42

Bibliography A dynamic function formulation for the response of a beam structure to a moving mass. Foda, M. A.

and Abduljabbar, Z. 1998. 1998, Journal of Sound and Vibration, Vol. 210, pp. 295-306.

A HYSTERESIS MODEL FOR THE FIELD-DEPENDENT DAMPING FORCE OF A MAGNETORHEOLOGICAL

DAMPER. LEE, S.-B. CHOI AND S.-K. 2001. 2001, Journal of Sound and Vibration, p. 9.

A Review of Power Harvesting from Vibration Using Piezoelectric Materials. Sodano, Henry A.,

Inman, Daniel J. and Park, Gyuhae. 2004. 2004, The Shock and Vibration Digest, Vol. 36, pp. 197-

205. DOI: 10.1177/0583102404043275.

A Review of Power Harvesting Using Piezoelectric Materials (2003-2006). Anton, Steven R. and

Sodano, Henry A. 2007. 3, 2007, Smart Materials and Structures, Vol. 16, pp. R1-R21. DOI:

10.1088/0964-1726/16/3/R01.

A Review of the State of the Art in Magnetorheological Fluid Technologies - Part I: MR fluids and MR

fluid models. Goncalves, Fernando D., Koo, Jeong-Hoi and Ahmadian, Mehdi. 2006. 3, 2006, The

Shoack and Vibration Dijest, Vol. 38, pp. 203-219. DOI: 10.1177/0583102406065099.

A.V. Srinivasan, D. Michael McFarland. 2001. Smart Structures analysis and design. Cambridge :

Press Syndicate Of The University Of Cambridge, 2001.

Aero-Thermo-Mechanical Characteristics od Shape Memory Alloy Hybrid Composite Panels with

Geometric Imperfections. Ibrahim, H., Tawfik, M. and Negm, H. 2008. Cairo : s.n., 2008. 13th

International Conference on Applied Mechanics and Mechanical Engineering. 27-29 May 2008, Cairo,

Egypt.

Application of the theory of impulsive parametric excitation and new treatments of general

parametric excitation problems. Hsu, C. S. and Cheng, W. H. 1973. 1973, Journal of Applied

Mechanics, Vol. 40.

Benedetti, G. A. 1973. Transverse vibration and stability of a beam subject to moving mass loads.

Civil Engineering, Arizona State University. 1973. PhD Dissertation.

Coussot, Philippe. 2005. RHEOMETRY OF PASTES,SUSPENSIONS AND GRANULAR MATERIALS. s.l. :

John Wiley & Sons, Inc., 2005.

Dave, Dr. 2004. Dr. Dave's Do It Yourself MR Fluid. s.l. : Lord Corporation, 2004.

Dynamic behavior of beam structures carrying moving masses. Saigal, S. 1986. 1986, Journal of

Applied Mechanics, Vol. 53, pp. 222-224.

Dynamic deflection of cracked beam with moving mass. Parhi, D. R. and Behera, A. K. 1997. 1997,

Proceeding of the Institution of Mechanical engineering, Vol. 211, pp. 77-87.

Page 43: Viscoelastic Damping: Lecture Notes 140202

<Bibliography

Viscoelastic Damping 43

Dynamic Modeling of Semi-Active ER/MR Fluid Dampers. Xiaojie Wang, Faramarz Gordaninejad.

2001. Reno, NV : s.n., 2001. Wang, X. and Gordaninejad, F., “Dynamic Modeling of Semi-Active

ER/MR Fluid Dampers,”. p. 10.

Dynamic Stability and Response of a beam subject to deflection dependent moving load. Katz, R., et

al. 1987. 1987, Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 109, pp. 361-365.

Dynamic stability of a beam carrying moving masses. Nelson, H. D. and Conover, R. A. 1971. 1971,

Journal of Applied Mechanics, Vol. 38, pp. 1003-1006.

Dynamic stability of a beam excited by a sequence of moving mass particles. Makhertich, S. 2004.

2004, Journal of the Acoustical Society of America, Vol. 115, pp. 1416-1419.

Dynamic stability of a beam loaded be a sequence of moving mass particles. Benedetti, G. A. 1974.

1974, Journal of Applied Mechanics, Vol. 41, pp. 1069-1071.

Dynamic Stability of Stepped Beams Under Moving Loads. Aldraihem, O. J. and Baz, A. 2002. 2002,

Journal of Sound and Vibration, Vol. 250, pp. 835-848.

Dynamics and Stability of Gun-Barrels with Moving Bullets. Wagih, A., et al. 2008. Cairo : s.n., 2008.

13th International Conference on Applied Mechanics and Mechanical Engineering. 27-29 May 2008,

Cairo, Egypt.

Dynamics and Stability of Stepped Gun-Barrels with Moving Bullets. Tawfik, M. 2008. 2008,

Advances in Acoustics and Vibration, Vol. 2008. Article ID 483857, 6 pages.

doi:10.1155/2008/483857.

—. Tawfik, Mohammad. 2008. Article ID 483857, 2008, Advances in Acoustics and Vibration, Vol.

2008, p. 6 pages. doi:10.1155/2008/483857.

Efficient computation of parametric instability regimes in systems with large number of degrees-of-

freedom. Kochupillai, J., Ganesan, N. and Padnamaphan, C. 2004. 2004, Finite elements in Analysis

and Design, Vol. 40, pp. 1123-1138.

Elmy, Amed O. 2007. Application of MR fluids in Vibration Damping. Engineering and Material

Science, German University in Cairo. 2007. BSc Thesis.

Energy conservation in Newmark-based time integration algorithms. Krenk, Steen. 2006. 2006,

Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp. 6110-6124.

Energy Harvesting from a Backpack Instrument with Piezoelectric Shoulder Straps. Granstorm,

Jonathan, et al. 2007. 5, 2007, Smart Materials and Structures, Vol. 16, pp. 1810-1820. DOI:

10.1088/0964-1726/16/5/036.

Experimental and Spectral Finite Element Study of Plates with Shunted Piezoelectric Patches. Tawfik,

M. and Baz, A. 2004. 2, 2004, International Journal of Acoustics and Vibration, Vol. 9, pp. 87-97.

Finite element analysis of elastic beams subjected to moving dynamic loads. Lin, Y. H. and

Trethewey, M. W. 1990. 1990, Journal of Vibration and Acoustics, Vol. 112, pp. 323-342.

Page 44: Viscoelastic Damping: Lecture Notes 140202

<Bibliography

Viscoelastic Damping 44

Finite element vibration analysis of rotating Timoshenko beams. Rao, S. and Gupta, R. 2001. 2001,

Journal of Sound and Vibration, Vol. 242, pp. 103-124.

Finitel element analysis of an elastic beam structure subjected to a moving distributed mass train.

Rieker, J. R. and Trethewey, M. W. 1999. 1999, Mechanical Systems and Signal Processing, Vol. 13,

pp. 31-51.

G. Magnac, P. Meneroud, M.F. Six, G. Patient, R. Leletty, F. Claeyssen. CHARACTERISATION OF

MAGNETO-RHEOLOGICAL FLUIDS. Meylan, France : s.n.

G. Yang, a B.F. Spencer,a Jr., J.D. Carlsonb and M.K. Sainc. Large-scale MR fluid dampers: modeling,

and dynamic performance considerations. Indiana, USA : s.n.

Gravatt, John W. 2003. Magneto-Rheological Dampers for Super-Sport Motorcycle Applications. 8th

MAY 2003.

Guangqiang Yang, B.S., M.S. 2001. LARGE-SCALE MAGNETORHEOLOGICAL FLUID DAMPER FOR

VIBRATION. December 2001.

Impulsive parametric excitation: Theory. Hsu, C. S. 1972. 1972, Journal of Applied Mechanics, Vol.

39, pp. 551-558.

Instability of vibration of a mass that moves uniformly along a beam on a periodically

inhomogeneous foundation. Verichev, S.N. and Metrikine, A.V. 2003. 2003, Journal of Sound and

Vibration, Vol. 260, pp. 901-925.

Instability of vibration of a moving-train-and-rail coupling system. Zheng, D. Y. and Fan, S. C. 2002. 2,

2002, Journal of Sound and Vibration, Vol. 255, pp. 243-259.

Kallio, Marke. 2005. The elastic and damping properties of magnetorheological elastomers.

Vuorimiehentie : JULKAISIJA – UTGIVARE – PUBLISHER, 2005.

Kelly, S. G. 2000. Fundamentals Of Mechanical Vibrations. s.l. : Mc-Graw-Hill Higher Education, 2000.

Lai, W H Liao and C Y. 2002. Harmonic analysis of a magnetprheological da,per for vibration control.

Shatin, NT, Hong Kong : s.n., 5th April 2002.

Li Pang, G. M. Kamath, N. M. Werely. ANALYSIS AND TESTING OF A LINEAR STROKE

MAGNETORHEOLOGICAL DAMPER. Maryland, USA : s.n.

Linear Dynamics of an elastic beam under moving loads. Rao, G. V. 2000. 2000, Journal of Vibration

and Acoustics, Vol. 122, pp. 281-289.

MAGNETO-RHEOLOGICAL FLUID DAMPERS MODELING:NUMERICAL AND EXPERIMENTAL. N. Yasreb,

A. Ghazavi, M. M.Mashhad, A. Yousefi-koma. 2006. Montreal, QC, Canada : s.n., 2006. The 17th

IASTED International Conference MODELLING AND SIMULATION. p. 5.

Malkin, Alexander Ya. Rheology Fundamentals. Moscow : ChemTec Publishing.

Page 45: Viscoelastic Damping: Lecture Notes 140202

<Bibliography

Viscoelastic Damping 45

Moving-Loads-Induced Instability in Stepped Tubes. Aldrihem, O. J. and Baz, A. 2004. 2004, Journal

of Vibration and Control, Vol. 10, pp. 3-23.

Non-Linear dyanmics of an elastic beam under moving loads. Wayou, A. N. Y., Tchoukuegno, R. and

Woafo, P. 2004. 2004, Journal of Sound and Vibration, Vol. 273, pp. 1101-1108.

Nonlinear Panel Flutter with Temperature Effects of Functionally Graded Material Panels with

Temperature-Dependent Material Properties. Ibrahim, H. H., Tawfik, M. and Al-Ajmi, M. 2,

Computational Mechanics, Vol. 41. DOI:10.1007/s00466-007-0188-4.

Norris, James A. Behavior of Magneto-Rheological Fluids Subject to Impact and Schock Loading.

OPTIMAL DESIGN OF MR DAMPERS. Henri GAVIN, Jesse HOAGG and Mark DOBOSSY. 2001. Seattle

WA : s.n., 2001. U.S.-Japan Workshop on Smart Structures for Improved Seismic Performance in

Urban Regions. p. 12.

P.Edwards. Mass-Spring-Damper Systems.

Phenomenological Model of a Magnetorheological Damper. B.F. Spencer Jr., S.J. Dyke, M.K. Sain

and J.D. Carlson. 1996. 1996, ASCE Journal of Engineering Mechanics, p. 23.

Phenomenological Model of a Magnetorheological. Spenser, Jr., B. F. 1996. 1996, Journal of

Engineering Mechanics, Vol. 23.

Poynor, James. Innovative Designs for Magneto-Rheological Dampers.

Random Response of Shape Memory Alloy Hybrid Composite Plates Subject To Thermo-Acoustic

Loads. Ibrahim, H. H., Tawfik, M. and Negm, H. M. 2008. 3, 2008, Journal of Aircraft, Vol. 44. DOI:

10.2514/1.32843.

Rashaida, Ali A. 2005. FLOW OF A NON-NEWTONIAN BINGHAM PLASTIC FLUID OVER A ROTATING

DISK. 2005.

Response of periodically stiffened shells to moving projectile propelled by internal pressure wave.

Ruzzene, M. and Baz, A. 2006. 2006, Mechanics of Advanced Materials ans Structures, Vol. 13, pp.

267-284.

Semi-analytic solution in time domain for non-uniform multi-span Bernoulli-Euler beams transversed

by moving loads. Martinez-Castro, A. E., Museros, P. and Castillo-Linares, A. 2006. 2006, Journal of

Sound and Vibration, Vol. 294, pp. 278-297.

Singh, V. P. 1997. Mechanical vibrations. Delhi : DHANPAT RAI & CO., 1997.

Solution of the moving mass problem using complex eigenfunction expansions. Lee, K. Y. and

Renshaw, A. A. 2000. 2000, Journal of Applied Mechanics, Vol. 67, pp. 823-827.

Stochastic Finite Element Analysis of the Free Vibration of Functionally Graded Material Plates.

Shaker, A., et al. 2008. 3, 2008, Computational Mechanics, Vol. 44, pp. 707-714. DOI

10.1007/s00466-007-0226-2.

Page 46: Viscoelastic Damping: Lecture Notes 140202

<Bibliography

Viscoelastic Damping 46

Stochastic Finite Element Analysis of the Free Vibration of Laminated Composite Plates. Shaker, A., et

al. 2008. 4, 2008, Computational Mechanics, Vol. 41, pp. 493-501. DOI:10.1007/s00466-007-0205-7.

The Structural Response of Cylindrical Shells to Internal Moving Pressure and Mass. Baz, A., Saad

Eldin, K. and Elzahabi, A. 2004. Cairo : s.n., 2004. Proceeding of 11th International Conference on

Applied Mechanics and Mechanical Engineering (AMME). pp. 720-734.

The use of finite element techniques for calculating the dynamic response of structures to moving

loads. Wu, J-J, Whittaker, A. R. and Cartmell, M. P. 2000. 2000, Computer and Structures, Vol. 78,

pp. 789-799.

Thermal Buckling and Nonlinear Flutter Behavior of FunctionallyGraded Material Panels. Ibrahim, H.

H., Tawfik, M. and Al-Ajmi, M. 2007. 5, 2007, Journal of Aircraft, Vol. 44, pp. 1610-1618.

DOI:10.2514/1.27866.

Thermal post-buckling and aeroelastic behaviour of shape memory alloy reinforced plates. Tawfik,

M., Ro, J-J. and Mei, C. 2002. 2, 2002, Smart Materials and Structures, Vol. 11, pp. 297-307.

doi:10.1088/0964-1726/11/2/313.

Transient vibration analysis of high-speed feed drive system. Cheng, C. C. and Shiu, J. S. 2001. 3,

2001, Journal of Sound and Vibration, Vol. 239, pp. 489-504.

Vibration analysis of beams with general boundary conditions transveresed by a moving force. Abu

Hilal, M. and Zibdeh, H. S. 2000. 2, 2000, Journal of Sound and Vibration, Vol. 229, pp. 377-388.

Vibration analysis of continuous beam subjected to moving mass. Ichikawa, M., Miyakawa, Y. and

Matsuda, A. 2000. 3, 2000, Journal of Sound and Vibration, Vol. 230, pp. 493-506.

Vibration and stability of axially loadded beams on elastic foundation under moving harmonic loads.

Kim, Seong-Min. 2004. 2004, Engineering Structures, Vol. 26, pp. 95-105.

Vibration Attenuation in A Periodic Rotating Timoshenko Beam. Alaa El-Din, Maged and Tawfik,

Mohammad. 2007. Cairns : s.n., 2007. ICSV14.

Vibration Attenuation in Rotating Beams with Periodically Distributed Piezoelectric Controllers. Alaa

El-Din, Maged and Tawfik, Mohammad. July 2006. Vienna, Austria : s.n., July 2006. 13th

International Congress on Sound and Vibration.

Vibration Characteristics of Periodic Sandwich Beam. Badran, H., Tawfik, M. and Negm, H. 2008.

Cairo : s.n., 2008. 13th International Conference on Applied Mechanics and Mechanical Engineering.

27-29 May 2008, Cairo, Egypt.

Vibration Control of Tubes with Internally Moving Loads Using Active Constrained Damping. Ro, J-J,

Saad Eldin, K. and Baz, A. 1997. Dallas, TX : s.n., 1997. ASME Winter Annual Meeting.

Vibration Control Using Smart Fluids. Sims, Neil D., Stanway, Roger and Johnson, Andrew R. 1999.

3, 1999, The Shock and Vibration Dijest, Vol. 31, pp. 195-203. DOI:10.1177/058310249903100302.

Villarreal, Karla A. EFFECTS OF MR DAMPER PLACEMENT ON STRUCTURE VIBRATION PARAMETERS.

Tokyo, Japan : s.n.

Page 47: Viscoelastic Damping: Lecture Notes 140202

<Bibliography

Viscoelastic Damping 47

Wave attenuation in periodic helicopter blades. Tawfik, M., Chung, J. and Baz, A. 2004. Amman,

Jordan : s.n., 2004. Jordan International Mechanical engieering Confernce.

What Makes a Good MR Fluid? Carlson, J. David. 2002. 4, 2002, Journal of Intelligent Material

Systems and Structures, Vol. 13, pp. 431-435. DOI: 10.1106/104538902028221.

Zhang, G Y Zhou and P Q. 2002. Investigation of the dynamic mechanical behavior of the double-

barreled configuration in a magnetorheological fluid damper. Hefei, Anhui, China : s.n., 5th April

2002.