virtual sugarcane biorefinery report 2011

198
Technological Assessment Program (PAT) The Virtual Sugarcane Biorefinery (VSB) 2011 Report Antonio Bonomi Adriano Pinto Mariano Charles Dayan Farias de Jesus Henrique Coutinho Junqueira Franco Marcelo Pereira Cunha Marina Oliveira de Souza Dias Mateus Ferreira Chagas Otávio Cavalett Paulo Eduardo Mantelatto Rubens Maciel Filho

Upload: brazilian-bioethanol-science-and-tech-laboratory

Post on 18-Apr-2015

306 views

Category:

Documents


3 download

DESCRIPTION

Direct Download (without Scribd log in): goo.gl/SNZJo

TRANSCRIPT

Page 1: Virtual Sugarcane Biorefinery Report 2011

Technological Assessment Program (PAT)

The Virtual Sugarcane Biorefinery (VSB)

2011 Report

Antonio Bonomi

Adriano Pinto Mariano

Charles Dayan Farias de Jesus

Henrique Coutinho Junqueira Franco

Marcelo Pereira Cunha

Marina Oliveira de Souza Dias

Mateus Ferreira Chagas

Otávio Cavalett

Paulo Eduardo Mantelatto

Rubens Maciel Filho

Tassia Lopes Junqueira

Terezinha de Fátima Cardoso

Campinas, 2012

Page 2: Virtual Sugarcane Biorefinery Report 2011

Executive Summary

The Brazilian Bioethanol Science and Technology Laboratory (CTBE) is a Brazilian national laboratory founded by the Ministry of Science, Technology and Innovation (MCTI). Its main objective is to improve the Brazilian sugarcane production chain, including bioethanol and chemicals, through research, development and innovation.

One of CTBE’s programs is the Technological Assessment Program (PAT), through which the development level of different technologies for sugarcane processing is assessed. For this purpose, the Virtual Sugarcane Biorefinery (VSB) is being constructed under the PAT. It is a computational tool based on simulation platforms for the evaluation of different technologies through assessment of their sustainability indicators (economical, environmental and social).

This report concerns the main activities carried out for the construction of the VSB in 2011, as well as the most important results obtained so far, including:

procedures and adopted approaches for the VSB development; evaluation of economic and environmental indicators of the sugarcane

agricultural stage; basic and optimized autonomous and annexed first generation sugarcane

processing plants (production of sugar, first generation ethanol and electricity); production flexibility of annexed sugarcane distilleries (production of sugar, first

generation ethanol and electricity); first generation harvest extension using sweet sorghum; integrated first and second generation ethanol production from sugarcane –

different technological levels for the biochemical route (production of first and second generation ethanol and electricity);

comparison between stand-alone second generation ethanol plant and integrated first and second generation facilities (biochemical route);

second generation ethanol production (biochemical route) integrated in a sugar mill (production of sugar, second generation ethanol and electricity);

production of butanol in the sugarcane distillery using sugarcane juice or pentoses from the lignocellulosic fraction (production of sugar, first and second generation ethanol, electricity, butanol and acetone).

The data used in the analyses have, so far, been collected from the literature, based on information provided by specialists (from CTBE, industry or academia) or obtained in the industry (for first generation only). One of the goals of PAT consists on validating all the results generated in the simulations through the use of data obtained in the industry and on the CTBE’s pilot plant, which will provide data for second generation ethanol production using various technologies. It is expected that some of the data generated in the pilot plant will be available for evaluation in the VSB during 2012.

2

Page 3: Virtual Sugarcane Biorefinery Report 2011

Summary

Executive Summary...........................................................................................................2

List of Figures....................................................................................................................6

List of Tables.....................................................................................................................9

Abbreviations..................................................................................................................12

Glossary...........................................................................................................................13

1. Introduction.................................................................................................................15

2. The Virtual Sugarcane Biorefinery (VSB)..................................................................18

2.1 Objectives..............................................................................................................19

2.2 Scope.....................................................................................................................19

2.2.1 The agricultural sector....................................................................................20

2.2.2 The industrial sector.......................................................................................21

2.2.3 The usage sector.............................................................................................22

2.2.4 Stages of development....................................................................................22

2.3 Modeling and Simulation Net...............................................................................23

3. Construction of the Virtual Sugarcane Biorefinery.....................................................25

3.1 Sugarcane agricultural phase.................................................................................25

3.1.1 General description of the sugarcane production system...............................25

3.1.2 Canasoft Model..............................................................................................30

3.1.3 Agricultural databank and validation process................................................32

3.2 Sugarcane quality..................................................................................................33

3.3 Industrial phase – first generation.........................................................................37

3.4 Industrial phase – second generation.....................................................................38

3.5 Simulation using Aspen Plus.................................................................................39

3

Page 4: Virtual Sugarcane Biorefinery Report 2011

3.5.1 Validation process of the virtual sugarcane biorefinery for production of first

generation bioethanol..............................................................................................44

3.6. Sustainability indicators.......................................................................................46

3.6.1 Economic indicators.......................................................................................46

3.6.2 Environmental indicators................................................................................48

3.6.3 Social indicators.............................................................................................49

4. Results.........................................................................................................................50

4.1 Sugarcane agricultural phase.................................................................................50

4.1.1 Scenarios description......................................................................................50

4.1.2 Environmental assessment..............................................................................51

4.1.3 Economic assessment.....................................................................................52

4.2 Industrial phase - First generation.........................................................................54

4.2.1 Main parameters of the sugarcane processing facility...................................54

4.2.2 Investment data...............................................................................................63

4.2.3 Basic and optimized plants.............................................................................69

4.2.4 Flexibility in the annexed plant......................................................................77

4.2.5 Results of the validation procedure for first generation.................................80

4.2.6 Harvest extension using sweet sorghum.........................................................86

4.3 Industrial phase - second generation: biochemical route......................................90

4.3.1 Process description - Second generation........................................................91

4.3.2 Investment data - Second generation..............................................................93

4.3.3 Integrated first and second generation............................................................95

4.3.4 Stand-alone second generation.....................................................................100

4.3.5 Second generation integrated in a sugar mill...............................................103

4.4 Sugarchemistry route – butanol production........................................................104

4

Page 5: Virtual Sugarcane Biorefinery Report 2011

5. Final remarks.............................................................................................................112

5.1 Obtained results...................................................................................................112

5.2 Planned activities for 2012..................................................................................115

5.3 Implementation of the network of institutions....................................................116

5.4 Good practices identification and assessment.....................................................117

5.5 Megaexperiment..................................................................................................117

6. References.................................................................................................................118

5

Page 6: Virtual Sugarcane Biorefinery Report 2011

List of Figures

Figure 1. Representation of CTBE’s Programs interaction.............................................15

Figure 2. General concept of the VSB.............................................................................19

Figure 3. Basic principles of a biorefinery (Kamm and Kamm, 2004)...........................20

Figure 4. Aggregated flowchart of main operations used in the sugarcane production

system..............................................................................................................................26

Figure 5. Illustration of the Controlled Traffic Structure................................................30

Figure 6. Canasoft Model scheme...................................................................................31

Figure 7. Sugarcane plant parts (Hassuani et al., 2005)..................................................33

Figure 8. Block flow diagram of the production of sugar, ethanol and electricity from

sugarcane.........................................................................................................................38

Figure 9. Block-flow diagram of the integrated 1st and 2nd generation ethanol production

process from sugarcane...................................................................................................39

Figure 10. Example of an Aspen Plus flowsheet for the integrated first and second

generation ethanol production process from sugarcane..................................................40

Figure 11. Unit operations that represent distillation step...............................................41

Figure 12. Unit operations envolved in the second generation process..........................41

Figure 13. Scheme of the interactions between each main block of the simulation of the

integrated first and second generation production process..............................................42

Figure 14. Relative environmental impacts of different scenarios of sugarcane

production........................................................................................................................52

Figure 15. Simplified scheme of the distillation columns...............................................61

Figure 16. Main results for basic and optimized autonomous and annexed plants.........70

Figure 17. Investment and IRR of the basic and optimized autonomous and annexed

plants................................................................................................................................71

Figure 18. Comparative environmental impact scores for ethanol production in base and

optimized scenarios of annexed plants and autonomous distilleries...............................72

6

Page 7: Virtual Sugarcane Biorefinery Report 2011

Figure 19. Comparative environmental impacts breakdown for ethanol production in the

E50-B...............................................................................................................................73

Figure 20. Comparative environmental impact scores for ethanol production in base and

optimized scenarios of annexed plants and autonomous distilleries considering only the

industrial processing stage...............................................................................................73

Figure 21. Comparison of the IRR of optimized distilleries considering average prices

for the past 10 years and 2010 prices..............................................................................75

Figure 22. Impact of changes in prices and costs on the IRR for basic and optimized

autonomous and annexed plants......................................................................................76

Figure 23. Ethanol and sugar production in the annexed plants with different fractions

of sugarcane juice diverted to sugar production..............................................................78

Figure 24. Investment and IRR for different configurations of the annexed plants.......78

Figure 25. Impact of changes on ethanol and sugar prices on the IRR of the Flex 70:70

and E50............................................................................................................................79

Figure 26. Comparative environmental impact scores for ethanol production in E50 and

Flex 70:70 considering only the industrial processing stage...........................................80

Figure 27. Ethanol and electricity production in the optimized autonomous first

generation (1G) and scenarios for sweet sorghum..........................................................88

Figure 28. Impact of ±15% changes on sweet sorghum prices in the IRR of the scenarios

evaluated with harvest extension.....................................................................................89

Figure 29. Simplified scheme illustrating lignocellulosic material use, energy and

ethanol production in scenarios 1 through 4....................................................................96

Figure 30. Anhydrous ethanol and electricity production in the scenarios evaluated for

the integration of second generation ethanol production in an optimized autonomous

distillery...........................................................................................................................97

Figure 31. Investment and IRR in the scenarios evaluated for the integration of second

generation ethanol production in an optimized autonomous distillery...........................97

Figure 32. Ethanol production costs in the scenarios evaluated......................................98

7

Page 8: Virtual Sugarcane Biorefinery Report 2011

Figure 33. Comparative environmental impact indicators of the different scenarios.....98

Figure 34. Sensitivity analyses for Global Warming Potential (GWP) (a),

Eutrophication Potential (EP) (b) and Human Toxicity Potential (HTP) (c) for scenario

4 (integrated first and second generation ethanol production from sugarcane, using

advanced hydrolysis technologies and pentoses fermentation).....................................100

Figure 35. Ethanol and electricity production in the scenarios evaluated to compare

stand-alone 2nd generation (2G), the equivalent stand-alone plant including the first

generation producing lignocellulosic material (1G + 2G) and the integrated 1st and 2nd

generation (1G2G) plant................................................................................................101

Figure 36. Simplified scheme illustrating lignocellulosic material use, energy and

ethanol production in the stand-alone second generation plant.....................................102

Figure 37. IRR and investment for each scenario in the evaluation of stand-alone second

generation plants............................................................................................................102

Figure 38. Ethanol, sugar and electricity production in the sugar mill coupled, or not,

with second generation ethanol production...................................................................103

Figure 39. IRR and investment for the sugar mill and the sugar mill coupled with

second generation ethanol production...........................................................................104

Figure 40. IRR for the annexed distillery (50/50: 50% of the juice for sugar production;

75/25: 25% of the juice for sugar production; RS: regular strain for butanol production;

MS: mutant strain; C: chemical market; B: biofuel market).........................................108

Figure 41. IRR for the integrated first and second generation ethanol production (ES: 1st

and 2nd generation ethanol production in the annexed distillery processing 50% of the

sugar juice for sugar production; RS: regular strain for butanol production; MS: mutant

strain; C: chemical market; B: biofuel market).............................................................109

Figure 42. Sensitivity analysis: impact of changes of +10% of the main variables on the

IRR of the first generation mill (left) and for the first generation mill with butanol

production (right)...........................................................................................................110

Figure 43. Sensitivity analysis: impact of changes of +10% of the main variables on the

IRR of the integrated first and second generation plant (left) and for the integrated

process with butanol production (right)........................................................................111

8

Page 9: Virtual Sugarcane Biorefinery Report 2011

List of Tables

Table 1. Sugarcane fiber and sucrose content adopted by several authors.....................34

Table 2. Sugarcane bagasse composition (dry basis) – normalized average values

obtained for 50 samples (Rocha et al., 2010)..................................................................34

Table 3. Sugarcane average chemical composition (Camargo, 1990)............................35

Table 4. Sugarcane composition (Mantelatto, 2005).......................................................36

Table 5. Composition of the sugarcane adopted in the Virtual Sugarcane Biorefinery.. 36

Table 6. Sugarcane production costs for the different sugarcane production scenarios

(values in US$/ha)...........................................................................................................53

Table 7. Main parameters adopted in the simulation of the sugarcane cleaning.............55

Table 8. Main parameters adopted in the simulation of the sugarcane extraction..........56

Table 9. Main parameters adopted in the simulation of the juice treatment operations..57

Table 10. Parameters of the sugar crystallization process...............................................58

Table 11. Parameters of the sugar drying........................................................................59

Table 12. Main parameters adopted in the simulation of the fermentation process........60

Table 13. Main parameters adopted in the simulation of the distillation columns..........61

Table 14. Main parameters of the dehydration processes evaluated in the VSB............62

Table 15. Main parameters of the cogeneration system..................................................63

Table 16. Distribution of investment of an autonomous distillery (Dedini, 2009).........64

Table 17. Fraction of investment of a mill/distillery (Sousa and Macedo, 2010)...........65

Table 18. Investment in equipment for annexed and autonomous distilleries (Sousa and

Macedo, 2010).................................................................................................................66

Table 19. Assumptions made for investment calculations in the VSB...........................66

Table 20. Main features of the scenarios.........................................................................67

Table 21. Investment for basic scenarios, based on Sousa and Macedo (2010).............68

9

Page 10: Virtual Sugarcane Biorefinery Report 2011

Table 22. The steam production for each scenario..........................................................68

Table 23.Investment estimate for each scenario..............................................................69

Table 24. Main characteristics of the basic and optimized plants...................................70

Table 25. Scenarios evaluated in the comparison of basic and optimized plants............70

Table 26. Prices adopted in the analysis for 2010 (CEPEA, 2011).................................75

Table 27. Sugarcane processed in August and accumulated in season – Data from Mill

A’s bulletin......................................................................................................................81

Table 28. Sugar and ethanol produced in August and accumulated in season – Data from

Mill A’s bulletin..............................................................................................................81

Table 29. Example of input data based on information from the database and processes

of the sugar mill for the sugar plant section....................................................................82

Table 30. Sample data entered based only on information from bulletins and process -

Configuration processes of distillation section................................................................82

Table 31. Comparison between the results of brix, pol and moisture, obtained for the

stage of preparation and extraction of sugarcane, with the bulletin data........................83

Table 32. Comparison between the results of RS, TRS and fiber, obtained for the

preparation and extraction of sugarcane, and data provided in the bulletin....................83

Table 33. Comparison between the results of TRS and moisture, obtained for the stage

of juice treatment, and data provided in the bulletin.......................................................83

Table 34. Comparison between the results of brix and pol, obtained for the stage of juice

treatment, with the bulletin data......................................................................................83

Table 35. Comparison between the results of brix, pol and TRS, obtained for the stage

of juice evaporation, with the bulletin data.....................................................................84

Table 36. Comparison between the obtained results and bulletin data for must.............84

Table 37. Comparison between the obtained results and bulletin data for CHP.............84

Table 38. Comparison of the results obtained for the production of alcohol from the

simulation on Aspen Plus with data from the bulletin....................................................84

10

Page 11: Virtual Sugarcane Biorefinery Report 2011

Table 39. Comparison of the results obtained for the sugar production with data from

the bulletin.......................................................................................................................85

Table 40. Comparison of the results obtained for the intermediate streams in sugar

production with data from the bulletin............................................................................85

Table 41. Comparison of yields calculated from the results of the simulation on Aspen

Plus with data from the bulletin.......................................................................................85

Table 42. Sweet sorghum main characteristics and process yield (Rossell, 2011).........87

Table 43. Sweet sorghum prices, IRR and ethanol production costs for the harvest

extension scenarios with sweet sorghum.........................................................................89

Table 44. Parameters adopted in the simulation of the 2nd generation process...............93

Table 45. Estimate of equipment investment and processing capacity of 2G plants

(CGEE, 2009)..................................................................................................................94

Table 46. Scenarios evaluated in the integrated first and second generation ethanol

production from sugarcane..............................................................................................95

Table 47. Scenarios evaluated in the integrated first and second generation ethanol

production from sugarcane............................................................................................101

Table 48. Description of the scenarios evaluated for butanol production in the VSB.. 105

Table 49. Outputs of a sugarcane biorefinery with butanol production........................106

Table 50. Butanol and acetone prices adopted in the economic analysis......................107

11

Page 12: Virtual Sugarcane Biorefinery Report 2011

Abbreviations

ADP: Abiotic depletion

AP: Acidification

1G: First generation ethanol production

2G: Second generation ethanol production

ATR: Total Recoverable Sugars

CHP: Combined Heat and Power (cogeneration system)

CTBE: Brazilian Bioethanol Science and Technology Laboratory

CTS: Controlled Traffic Structure

EP: Eutrophication

FWAET: Fresh water aquatic ecotoxicity

GHG: Greenhouse Gases

GWP: Global warming

°GL: Degree Gay Lussac (% alcohol by volume at 15°C)

HTP: Human toxicity

iLUC: indirect land use change

°INPM: Ethanol content (percent by weight)

IRR: Internal Rate of Return

LCA: Life Cycle Assessment

LCI: Life Cycle Inventory

LCIA: Life Cycle Impact Assessment

LHV: Low heating value

LM: Lignocellulosic material

LUC: land use change

MAET: Marine aquatic ecotoxicity

MEE: Multiple Effect Evaporators

ODP: Ozone layer depletion

PAT: Technological Assessment Program of CTBE

POP: Photochemical oxidation

RS: Reducing sugars

TC: Tons of sugarcane (1000 kg)

TET: Terrestrial ecotoxicity

TRS: Total reducing sugars

VSB: Virtual Sugarcane Biorefinery

12

Page 13: Virtual Sugarcane Biorefinery Report 2011

Glossary

Anhydrous ethanol: stream produced after dehydration of hydrated ethanol, containing

at least 99.3 wt% ethanol (in accord to Brazilian regulation), used as fuel in a mixture

with gasoline;

Bagasse: fibrous residue produced after extraction of juice from sugarcane. Currently

used for energy (steam and electricity) production in cogeneration systems, may be used

as feedstock for second generation ethanol production;

Construction of terrace: operation performed to avoid water flow over soil surface;

Dry leaves: old leaves of the sugarcane plant;

EMBRAPA: Empresa Brasileira de Pesquisa Agropecuária (Brazilian Agricultural

Research Corporation);

Filter cake: solid residue obtained during juice treatment that contains most of the

impurities of the sugarcane juice. Used as fertilizer in the sugarcane field;

Dedini: a company with a long history on supplying equipment and solutions for the

sugar/ethanol/energy market;

Furrow: row of planting;

Growth promoters: a combination of different compounds which can promote sugarcane

growth;

Harrowing: operation to revolve the soil;

Herbicide: agrochemical used for weeds control;

Hormones: root growth promoters;

Humic Acid: complex mixture of organic acids produced by the decomposition of

organic matter which improves root growth;

Hydrated ethanol: hydroalcoholic solution containing between 92.8 and 93.6 wt%

ethanol (in accord to Brazilian regulation), used as a fuel in neat ethanol or flex-fuel

engines;

Infield transport: operation of sugarcane removal from the field until transport;

Insecticide: agrochemical used to control plagues;

Leveling: operation to flatten the soil before the planting;

Loading: operation to put sugarcane into in field transport;

13

Page 14: Virtual Sugarcane Biorefinery Report 2011

Massecuites: intermediate stream in the sugar production process containing sugar

crystals and mother liquor;

Molasses: syrup containing remainder sugars and non sugars obtained after sucrose

crystallization. The last and more impure is so called “final molasses”;

Micronutrients: plant nutrients required in low amounts;

Nematicide: agrochemical used to eliminate soil nematodes, a specific class of plant

parasites;

No-tillage: practice without soil revolving during pre-planting sugarcane;

Phlegm: ethanol-rich streams (40 – 50 °GL) obtained during ethanol distillation, are fed

to the rectification column where hydrated ethanol is produced;

Phlegmasse: residue obtained in the rectification column, containing mostly water.

Pre-planting: all operations performed before sugarcane planting;

Plant cane: designation of the first sugarcane crop;

Plowing: operation in which the soil is substantially revolved;

Ratoon: designation of the sugarcane crops after the first harvest;

Rotation culture: practice used to break the monoculture in sugarcane fields;

Soluble solids: solids that are dissolved in a solution or stream;

Subsoiling: operation performed to decrease the soil compaction;

Sugarcane setts: sections of the stalks;

Surplus bagasse: remaining bagasse after all needs of steam and electricity of the

industrial plant have been fulfilled;

Technological pre-analysis: collection of samples to assess the level of Brix, Pol, and

other quality parameters of stalks;

Tops: green leaves of the plant;

Total solids: soluble and insoluble solids in a solution or stream;

Trash: sugarcane tops and leaves that may be used as fuel in cogeneration systems,

producing electricity. Usually it is burnt when manual harvest is used;

Vinasse: residue obtained during ethanol distillation, containing high contents of

organic compounds, suspended solids, potassium and other nutrients. Usually used for

fertirrigation in the sugarcane field;

Wine: hydroalcoholic solution obtained after fermentation of sugars.

14

Page 15: Virtual Sugarcane Biorefinery Report 2011

1. Introduction

The Brazilian Bioethanol Science and Technology Laboratory (Laboratório Nacional de

Ciência e Tecnologia do Bioetanol – CTBE) integrating the Brazilian Center of

Research in Energy and Materials (Centro Nacional de Pesquisa em Energia e Materiais

– CNPEM) was inaugurated by the Ministry of Science, Technology and Innovation

(Ministério de Ciência, Tecnologia e Inovação – MCTI) of the Brazilian Government in

2010 to contribute to the Brazilian leadership in the sectors of renewable energy sources

and chemical industry raw material production, mainly by improving the sugarcane

bioethanol production chain through research, development and innovation, along with

the productive sector and the Brazilian scientific-technology community.

CTBE was organized in five different Programs as illustrated in Figure 1, in which it is

clear the focus of its research activities in solving the agricultural and industrial

bottlenecks of the sugarcane production chain, using basic science developments and

sustainability criteria in the search for strategic solutions.

Figure 1. Representation of CTBE’s Programs interaction.

15

Page 16: Virtual Sugarcane Biorefinery Report 2011

The Technological Assessment Program (Programa de Avaliação Tecnológica – PAT),

has emerged from the need of setting a methodology to measure CTBE’s success. With

this purpose, the construction of a simulation tool was designed – the Virtual Sugarcane

Biorefinery (VSB). A plan containing the idea, objectives, scope and methodology for

the VSB construction was submitted, evaluated and approved by the bioethanol and

sugarcane community in the workshop “Virtual Sugarcane Biorefinery: Assessing

success of new technologies”.

The VSB is a simulation platform which will allow the evaluation of the integration of

new technologies (cellulosic ethanol and other products from the green chemistry in the

biorefinery concept, new agricultural strategies for sugarcane production, as well as

different strategies for ethanol use as a biofuel) with the technologies practiced today in

the whole production chain. The results obtained with the VSB will be validated against

existing plants, in order to guarantee the accuracy of the sustainability impacts

calculated with this simulation tool.

The VSB will also be used to assess the level of success reached by CTBE’s Pilot Plant

for Process Development (Planta Piloto de Desenvolvimento de Processos – PPDP) in

the development of new industrial technologies, as well as the CTBE’s Agriculture

Program innovations, using methodologies identified and developed together with the

Sustainability Program. It is an important tool for the continuous evaluation and

improvement of CTBE’s research activities, as well as to evaluate the potential of

several possible alternatives and technologies covering all aspects of the program.

Focused on the concept that “the increase of ethanol productivity per hectare (liters of

ethanol produced per hectare of used land and per year) is the combination of advances

in the two sectors of the production chain – agricultural and industrial”, two objective

macro goals related to each sector were created in order to keep CTBE’s focus linked to

developments in both areas, with substantial impacts on the sustainability of the

Brazilian sugarcane production chain:

Macrogoal 1: Research and development of an innovative agricultural model for full use

of sugarcane using no-till and precision agriculture, according to criteria of technical

viability and sustainability (economic, environmental and social) of the production

chain with a focus on productivity, quality and specificity of the raw material.

16

Page 17: Virtual Sugarcane Biorefinery Report 2011

Macrogoal 2: Research and development of processes to obtain “second generation”

(2G) ethanol, electricity and co-products derived from the green chemistry, in the

biorefineries concept, with full use of sugarcane, exploring the strategy of integration

with the “first generation” (1G) ethanol production and according to criteria of technical

viability and sustainability (economic, environmental and social) of the production

chain.

The success of these macrogoals will be measured using the VSB developed by the PAT

team, which will be constructed and validated over the next years. Thereby, these

macrogoals are focused on the development of a technology able to introduce a

productive increase in the sustainability of the whole sugarcane industry, mainly for

ethanol production.

In order to help CTBE to achieve these two macro goals, PAT defined its own two

major macrogoals:

Construction of a tool to calculate the sustainability indicators of different

agricultural and industrial technology routes within a biorefinery focused in

current CTBE’s developments – the VSB.

Periodical evaluation and comparison of stages of ethanol technology

development (1G, 2G and integrated 1G and 2G) as well as other routes within a

biorefinery, considering the average levels and good practices (performed

commercially) and the ones currently under development at CTBE and by third

parties (Megaexperiment).

The PAT macrogoals will be reached through the development of a set of well planned

projects, which will evaluate the impacts of the technologies to be implemented through

the construction and simulation of the corresponding scenarios and present the results of

periodical evaluations, by means of an annual report.

17

Page 18: Virtual Sugarcane Biorefinery Report 2011

2. The Virtual Sugarcane Biorefinery (VSB)

The mathematical modeling and simulation of the different processes and operations

included in the sugarcane production chain (agricultural, industrial and usage sectors)

will allow the estimation and optimization of the economic, social and environmental

impacts associated with the new technologies under development. These results will

allow assessing the stage of development of the new technologies, as well as the interest

in accelerating the implementation process, orienting the laboratories participating in

the development about possible optimum operating conditions, looking for their

experimental confirmation.

The development of models and the use of computational tools and specific commercial

software will make it possible to assess the impacts of the new technologies on the

Brazilian bioethanol production chain in the three areas of the sustainability concept:

Economic: required investment, profitability (internal rate of return – IRR and other

parameters), products production costs, revenues and taxes, among other parameters,

and their implications in the production chain will be evaluated using economic

engineering tools; at the same time, the sensitivity analysis of the most important

parameters included in the technologies under development, on the related costs and

investments will be performed, as well as a risk analysis related with the

implementation of the new technologies.

Environmental: energy balance (relation among the renewable energy produced and the

fossil energy consumed), greenhouse gas emissions balances, water consumption and

other environmental impacts included in the Life Cycle Assessment (LCA) such as

acidification, photo-oxidant formation, nitrification, eutrophication and human toxicity,

as well as new concepts and models introduced in the environmental analysis of

biofuels, such as land use changes (LUC and iLUC) and impacts on the biodiversity.

Social: local impacts derived from the automation, plant scale, agricultural sector

mechanization, among others, on the number and quality of created jobs (income and

scholar degree), as well as land use, social relations with the community and labor

qualification; these impacts will be estimated using the input-output and general

equilibrium methodologies; these economic models allow for the quantification of the

18

Page 19: Virtual Sugarcane Biorefinery Report 2011

changes in the activity level of each sector of the economy as a function of

modifications on demand for products of one or more sector.

Figure 2 illustrates the general concept of the VSB.

Figure 2. General concept of the VSB.

2.1 Objectives

The VSB project aims the development of an analysis tool for sugarcane biorefineries,

including the agricultural, industrial and usage sectors, which will make possible to:

optimize the concepts and processes included in a biorefinery;

assess different biorefinery alternatives referring to their sustainability

(economic, environmental and social impacts);

assess the stage of development of the new technologies included in the analysis.

2.2 Scope

The scope of the VSB is the construction/adaptation of a simulation platform aiming to

assist the modeling, optimization and socio-economic and environmental assessment of

integrated processes, major characteristic of a biorefinery, together with all the stages of

19

Page 20: Virtual Sugarcane Biorefinery Report 2011

the sugarcane production chain. This will be a tool able to identify the processes and

parameters showing major economic, social and environmental impacts, in order to help

in the prioritization of the scientific and technological researches.

Biorefinery is a facility that integrates biomass conversion processes and equipment to

produce fuels, power and chemicals from biomass. The biorefinery concept is analogous

to today’s petroleum refineries, which produce multiple fuels and products from

petroleum (NREL, 2012). Industrial biorefineries have been identified as the most

promising route to the creation of a new domestic biobased industry (Kamm et al.,

2006). Figure 3 presents a general scheme of a biorefinery.

Products Substances and Energy various,

multi product systems

Fuels, Chemical, Materials, Specialties, Commodities, Goods

Processing Technologies various,

combined

Bioprocesses, Chemical Processes, Thermo-chemical Processes, Thermal Processes, Physical Processes

Food and Feed Grains, Lignocellulosic Biomass, Forest Biomass, Municipal Solid Waste (MSW)

Feedstock(s) biological raw material

various, mixed

Figure 3. Basic principles of a biorefinery (Kamm and Kamm, 2004).

2.2.1 The agricultural sector

The VSB will represent the actual activities and also define alternatives including the

agricultural operations required to produce and make the biorefinery feedstock – the

sugarcane – available to the industry. These operations can be synthetically described

as:

20

Page 21: Virtual Sugarcane Biorefinery Report 2011

pre-planting operations;

soil preparation;

manual or mechanical planting;

cultivation – sugarcane plant and ratoon;

manual or mechanical harvesting;

sugarcane transport.

In order to evaluate the technical, socio-economic and environmental impacts of

different technological scenarios, an agricultural spreadsheet (that includes a detailed

description of the above mentioned operations), named “Canasoft”, is being

constructed, validated and integrated to the simulation tools used to represent the other

sectors of the sugarcane production chain.

2.2.2 The industrial sector

In order to make the inclusion and the sustainability assessment of several biorefinery

alternatives viable, it will be necessary to define and technically evaluate different

proposals and routes to transform biomass into products. The VSB will focus on

sugarcane as the biomass to be used and the first and second generation bioethanol as

the major product, although it will include the analysis of other products such as sugar,

electricity, other liquid fuels (obtained using the thermal and biochemical route to

convert the lignocellulosic material), materials (such as the polyhydroxyalkanoates

obtained through sugars fermentation), primers for the chemical industry (obtained from

ethanol, sugar or fractions of the lignocellulosic material), among others.

Therefore, some basic routes must be designed and technically assessed, being a basis

for the construction of the VSB:

Route 1: biorefinery producing first generation ethanol, sugar and electricity;

Route 2: biorefinery based on the utilization of the whole sugarcane, focused on

the production of the second generation bioethanol (through hydrolysis);

Route 3: biorefinery based on the utilization of the whole sugarcane, focused on

the production of liquid fuels from the gasification of excess biomass (synthesis gas –

thermochemical route);

Route 4: biorefinery focused on the alcoholchemistry route;

21

Page 22: Virtual Sugarcane Biorefinery Report 2011

Route 5: biorefinery focused on the sugarchemistry route;

Route 6: biorefinery focused on the lignin chemistry route;

Route n: other routes.

A simulation platform is used to simulate the different basic routes proposed in the

construction of the VSB. Several commercial packages oriented to process simulation

are available in the market (Aspen Plus, SuperPro Designer and EMSO are just

examples). They were developed for a large spectrum of industries: oil, petrochemicals,

pharmaceuticals, biotechnologies, fine chemistry, mineral processing, microelectronic

and effluents treatment, among others. For several reasons, which will be detailed in the

topic related to the development of the simulations of the industrial production process

in the VSB, Aspen Plus was selected as the simulation platform.

2.2.3 The usage sector

In order to complete the sugarcane production chain, the last sector to be simulated is

the one that includes the operations of commercialization and use of the different

products produced in the biorefinery. Taking, for example, ethanol as the product to be

assessed, the major operations to be considered for simulation are:

transport of ethanol to/among the commercialization agents;

mixture with gasoline (gasohol alternative);

use of ethanol in the vehicles;

deposition of the product (not in the case of ethanol).

A spreadsheet will be constructed detailing the operations involved for the use of the

different products in the biorefinery, allowing for the complete assessment of the

sugarcane production chain.

2.2.4 Stages of development

Three development versions of the VSB are defined in order to characterize the quality

and accuracy of the simulation performed during the use of the VSB for assessment

purposes. The descriptions of these versions are illustrated for the industrial sector, but

22

Page 23: Virtual Sugarcane Biorefinery Report 2011

they can be applied with minor adjustments to the other sectors of the production chain,

to know:

1) Preliminary Version: all the simulation is performed based on preliminary flow

diagrams and, in general, using data available in the literature.

2) Consolidated Version: all the simulation is performed based on a conceptual

design performed for the assessed technology or using operation description

discussed in detail with specialists, when the other sectors of the chain are

considered.

3) Validated Version: the parameters used in the simulation as well as the results

obtained are compared with data measured or obtained in commercial

operations. Generally 3 levels of validation are considered: validated against one

technology (1); validated against different technologies (2); validated against

different technologies and regional conditions (3).

2.3 Modeling and Simulation Net

The VSB will be constructed based on the scheme presented in Figure 2. The amplitude

of the scope of the present Program requires the collaboration of Research Institutions

and Companies interested in the development and use of the VSB that, in the future,

will constitute a supporting network.

The development of the Program is coordinated by CTBE that centralizes the

construction, operation and publication of the results obtained with the several versions

of the VSB, as soon as they are developed and validated, including the ones developed

together with Institutions and Companies that are already participating in its

construction.

The Modeling and Simulation Network to support the VSB construction is organized

into six sub-nets that operate in an integrated form.

Sub-Net 1: Development and utilization of simulation platforms of integrated

systems – application to biorefinery concepts.

Sub-Net 2: Development of optimization techniques for unit operations and

integrated processes.

23

Page 24: Virtual Sugarcane Biorefinery Report 2011

Sub-Net 3: Development of mathematical models of the unit operations present in

the biorefinery configurations.

Sub-Net 4: Development of the methodologies and databases to be used in

sustainability impacts calculations.

Sub-Net 5: Development of mathematical models for the agricultural and logistic

operations related to sugarcane production.

Sub-Net 6: Development of the VSB version to simulate the thermochemical route,

including the database for its construction.

24

Page 25: Virtual Sugarcane Biorefinery Report 2011

3. Construction of the Virtual Sugarcane Biorefinery

3.1 Sugarcane agricultural phase

3.1.1 General description of the sugarcane production system

Sugarcane agricultural practices may vary according to regional characteristics, soil,

water availability, slope of the field, among other factors. Furthermore, there are also

many variations depending on the agricultural management adopted, mainly on pre-

planting, planting and harvesting operations. In this report the main agricultural

operations used in South-Central region of Brazil are described. This area is responsible

for about 90% of Brazilian sugarcane production (UNICA, 2011).

The main operations impacting on sugarcane production costs are planting and

harvesting. In this context, CTBE has been leading innovative research projects on both

planting and harvesting challenges for the sugarcane sector.

This section describes the main operations (depicted in Figure 4) in the sugarcane

agricultural production system, from the soil preparation until the sugarcane delivery

into the industrial facility. This figure is aggregated and only the main operations are

shown.

Pre-planting operations

During the decision-making process in the sugarcane mills management, the plots to be

replaced are selected based on their productivity, age, and/or level of infestation from

pests and diseases. Also depending on location (logistics) and plant production

strategies, there will be incorporation of new crop areas. Therefore, a set of mechanized

operations to adapt the land are translated into the production cost difference between

current and expansion production areas.

Among operations for land use preparation are the soil conservation, construction of

terraces and roads, according to previous occupation (pasture, permanent crops, among

others). In reform areas the previous ratoon elimination can be done using physical

25

Page 26: Virtual Sugarcane Biorefinery Report 2011

(harrowing) or chemical (herbicides) techniques, depending on the management

practices to be adopted.

Figure 4. Aggregated flowchart of main operations used in the sugarcane

production system.

26

Page 27: Virtual Sugarcane Biorefinery Report 2011

Due to soil characteristics in the Central South region of Brazil (such as low base

saturation and acidity), lime is applied to correct soil acidity, increase bases saturation

and eliminate aluminum toxicity. The amount of lime and gypsum application will vary

depending on soil chemical properties.

The most common soil preparation operations are subsoiling, harrowing, plowing and

land leveling. All these operations are used to prepare the land for planting.

Planting

The planting (including field reform) of sugarcane is mainly performed in two ways:

Semi-mechanized planting: The semi-mechanized planting starts with furrow opening

along with application of NPK (N - P2O5 - K2O) fertilizer in variable amounts depending

on crop needs and availability in the soil (diagnosed by previous soil fertility analysis).

The sugarcane setts are usually harvested manually and then transported from the

nursery to the agricultural area. The furrow opening and closing is done mechanically.

The sugarcane setts distribution in the furrow and cutting of stalks is done manually.

Closing operation is usually coupled with application of insecticide, nematicide and

micronutrients, and, in some areas, other inputs can be applied such as humic acid,

hormones and growth promoters. If filter cake mud is available, it is applied after the

furrow opening.

Mechanized planting: The collection of sugarcane setts is performed with an adapted

mechanical harvester (rubberized coating of some internal parts). The sugarcane setts

are transported and discharged in mechanical planters that can be propelled or tractor

driven. These planters perform various operations including furrow opening,

fertilization, setts distribution, application of agrochemicals and furrow closing. If filter

cake mud is available, it is also applied after the furrow opening.

Cultivation

Although there are different practices for cane plant and ratoon, the main operations are:

Application of industry by-products: (a) Filter cake: residue rich in carbon,

phosphorus, nitrogen, and other nutrients. Usually its application is prioritized on

27

Page 28: Virtual Sugarcane Biorefinery Report 2011

planting (reform of sugarcane). (b) Vinasse: residue rich in organic matter,

potassium and other nutrients. It is usually applied on ratoons.

Application of agrochemicals: herbicides are applied on the soil between the rows

to control weeds. In some cases, the use of insecticides may also be necessary.

There is a high range of agrochemicals registered for sugarcane culture.

Fertilization: plant cane fertilization is usually performed during the planting

operation. In the ratoon it is performed through triple operation (subsoiling,

harrowing, fertilizing), or applied over the straw. There are multiple combinations

of NPK that can be used.

The main manual operations at this stage are: agricultural pests monitoring performed

by biological pest control, technological pre-analysis of sugarcane, weeds manual

control. The main inputs at this stage are: herbicide, maturator, conventional/biological

chemicals, and fertilizers (urea and NPK formulates).

Harvesting, loading and transport

The sugarcane harvesting is performed mainly in two ways:

Manual: Manual harvesting is usually preceded by the operation of burning the

sugarcane field, which requires preparation with firebreaks and monitoring to

prevent the fire from spreading into other areas. The practice of burning before

harvesting increases the efficiency of manual cutting and reduces the risk of attacks

by venomous animals, such as snakes and spiders. The manual green cane (without

pre harvesting burning) harvesting is unusual, being used mostly in sugarcane setts.

The harvesting operation is a very intensive operation in manpower use. After

cutting, cane stalks are placed in trucks through self-propelled machine with

mechanical claw (loader).

Mechanized: Mechanical harvesting presents a higher efficiency than manual

harvesting and it is currently used in areas with slopes up to 12%. It is an intensive

operation in machinery and fuel use in comparison to manual harvesting, but it does

not require pre harvesting burning. The loading of sugarcane harvested

mechanically is usually performed using in field transport.

Sugarcane transportation from the field to the industrial plant is mainly done in three

ways:

28

Page 29: Virtual Sugarcane Biorefinery Report 2011

“Romeu e Julieta”: a truck plus trailer with a loading capacity of 28 tons. It is

normally used in areas where manual harvesting is applied.

“Treminhão”: basically a “Romeu e Julieta” set where another trailer (Julieta) is

annexed. It has an approximate loading capacity of 45 tons. It is, along with the

“Rodotrem”, normally used in areas where mechanical harvesting is applied.

“Rodotrem”: a lorry with combination of two semi-trailers connected by a two-

axle dolly. The loading capacity in this case is of 58 tons.

Technological innovations in the sugarcane agricultural production system

No-tillage practice has been considered an alternative technique for sugarcane planting

with potential for many agronomic, economic and environmental benefits. It can

promote reduced soil tillage and lower production costs due to less agricultural

operations and, consequently, less use of machinery and fuel.

Similarly, precision agriculture is also an innovative practice in the sugarcane

production system. It has a great potential for agronomic, economic and environmental

benefits for planting and cultivation due to application of main inputs at variable rate

based in the agronomic/potential need of the plant. The development of sensors and

specialized machinery for this purpose is still a challenge to overcome.

A fundamental instrument to make available the no-tilling practice and precision

agriculture is the so called Controlled Traffic Structure (CTS, depicted in Figure 5),

innovative equipment under development at CTBE. The general concept of CTS is to

minimize the area used for tires; storage and transport harvested cane out of field;

simultaneously harvest sugarcane in two lines; significantly reduce crop losses;

minimize machinery weight; reduce materials and energy consumption and use national

standardized commercially parts.

29

Page 30: Virtual Sugarcane Biorefinery Report 2011

Figure 5. Illustration of the Controlled Traffic Structure.

Another important innovation that has been discussed in the sugarcane sector is the use

of trash (sugarcane leaves and tops) resulting from mechanical harvesting (without pre

harvesting burning) for energy purposes. The amount of trash that can be removed from

the field and used at the sugarcane mill, without compromising its agronomic function

(maintenance of moisture, maintaining the physical aspects of soil, nutrient recycling,

among others) as well as its best collection procedure (including its technology,

machinery and logistics) need further research. These important issues are also included

in the strategic objectives of CTBE.

3.1.2 Canasoft Model

Computer simulation platforms are recognized to be powerful tools to simulate, predict

and calculate mass and energy balances in industrial processes. However, there is no

similar instrument, readily available, for evaluation of agricultural production systems

due to its complexity, specificity, variability, interaction with environment and other

inherent characteristics of agricultural systems.

To overcome this lack, which in fact represents a challenge, a computational model, so

called Canasoft Model, has been developed at CTBE for simulation and measurement of

30

Page 31: Virtual Sugarcane Biorefinery Report 2011

important agricultural parameters for technical and sustainability assessment of

agricultural practices in the sugarcane production system. The framework used for

development of the Canasoft Model is presented in Figure 6.

Figure 6. Canasoft Model scheme.

In this model, the first interface contains the main parameters that define the sugarcane

production scenario such as: yield, type of planting, type of harvesting, use of fertilizers,

among others factors. These parameters are considered for the Life Cycle Assessment

Inventory calculation and also for the economic assessment. Both economic and

inventory calculation are linked to the Agricultural Machinery Databank which involves

the information about all machinery used in the sugarcane production such as weights,

costs, annual use, life span and depreciation, among others. The sugarcane production

cost is calculated in the economic analysis spreadsheet. The agricultural life cycle

inventory generated by Canasoft Model is ready to be linked to a LCA-tool such as

SimaPro or other software.

The Canasoft Model can be transferred to the sugarcane sector and used for strategic

analysis, improvement programs and optimal utilization of inputs and natural resources.

31

Page 32: Virtual Sugarcane Biorefinery Report 2011

These aspects bring positive implications on productivity gains, profitability and

competitiveness for the sugarcane industry in the short and long term. This quantitative

assessment of sustainability indicators for alternative sugarcane biorefineries can also

support new initiatives to add value and remuneration of this activity due to

environmental benefits (positive externalities) that may be produced or public policy for

valuation of carbon credits through a Clean Development Mechanism.

3.1.3 Agricultural databank and validation process

The Agricultural Databank is the database that contains all the information about the

sugarcane agricultural production process. This information includes the inputs and

outputs of different sugarcane production processes under several management

conditions in different regions of Brazil.

In the first step most of the information was collected from literature and provided by

specialists. In a second stage this information will be complemented and validated with

data from several sugarcane mills in Brazil operating under several management

practices in different regions.

It is important to mention that this validation process has already started for the

industrial data and it is expected that in the next year it will be possible to have a

portfolio of sugarcane mills to validate the Agricultural Databank. Furthermore, it will

be possible to count with EMBRAPA’s collaboration for the validation of sugarcane

production data. This collaboration will provide some biophysical, economic and

environmental models to the sugarcane agricultural production stage and will assist the

validation of the data used in the Canasoft Model.

The information about different practices will be organized in different groups

characterizing different technological, geographical and historical scenarios. These data

will be collected considering uncertainty, representativeness and consistency.

The main information of the sugarcane agricultural stage to be collected in the

Agricultural Databank and/or validated is listed below:

Sugarcane yield;

Sugarcane quality (sugar and fiber content);

32

Page 33: Virtual Sugarcane Biorefinery Report 2011

Number of cuts (crop season);

Type and main inputs and outputs for the rotation culture (e.g. soybean, peanuts);

Type and main inputs for sugarcane culture: fertilizers, limestone, agrichemicals,

others;

Type and main outputs for sugarcane culture: sugarcane stalks, trash;

Amount and use of industrial residues (vinasse, ashes and filter cake mud) that are

recycled in the sugarcane field;

Agricultural machinery and fuel consumption used for each agricultural operation;

Fraction of sugarcane with pre-harvesting burning;

Type and average distance for sugarcane transport from field to industry;

Previous land use that is now occupied with sugarcane.

3.2 Sugarcane quality

The sugarcane plant is comprised by stalks, which contain most of the sugars, tops and

leaves, included in the so-called trash, as represented in Figure 7.

Figure 7. Sugarcane plant parts (Hassuani et al., 2005).

33

Page 34: Virtual Sugarcane Biorefinery Report 2011

Sugarcane quality varies considerably according to time of planting, type of soil,

climate conditions, etc. In order to evaluate different technological alternatives

sugarcane composition must be defined. The composition of sugarcane stalks in the

Virtual Sugarcane Biorefinery was determined in order to represent values frequently

found in similar analyses, which define sugarcane stalks in terms of their fiber and

sucrose (pol) content. Some values found in the literature are shown in Table 1.

Table 1. Sugarcane fiber and sucrose content adopted by several authors.

Sugarcane fiber content (wt %)

Sugarcane sucrose content (wt %)

Reference

14.0 14.0Ensinas et al., 2007;

Ensinas, 2008

13.0 14.5 Seabra, 2008

12.9 14.0 Leal, 2005

12.7 14.2Finguerut, 2006; Macedo et

al., 2008

Data provided by Finguerut (2006) and Macedo et al. (2008) represent the average

sugarcane composition in several mills evaluated by CTC (Sugarcane Research Center)

in 2005. Based on values presented on Table 1, the VSB considers fiber and sucrose

contents of 13% and 14%, respectively.

Composition of the fibers was estimated based on sugarcane bagasse composition; 50

bagasse samples, collected from mills all over the country, during different times and

stages of the harvest season, were evaluated by Rocha et al. (2010). The normalized

average results are displayed in Table 2.

Table 2. Sugarcane bagasse composition (dry basis) – normalized average values

obtained for 50 samples (Rocha et al., 2010).

Component Content (wt%)

Cellulose 43.38

Hemicellulose 25.63

Lignin 23.24

Ash 2.94

Extractives 4.82

34

Page 35: Virtual Sugarcane Biorefinery Report 2011

Extractives include a fraction of sucrose and organic acids from the sugarcane, that

remains after juice extraction in the mills.

Besides fibers and sucrose, sugarcane has several components on its structure, as

illustrated in Table 3.

Table 3. Sugarcane average chemical composition (Camargo, 1990).

Element Average content (wt%)

Water 74.50

Sugars 14.00

- Sucrose 12.50

- Glucose 0.90

- Fructose 0.60

Fibers 10.00

- Cellulose 5.50

- Lignin 2.00

- Hemicellulose 2.00

- Gums 0.50

Ash 0.50

- SiO2 0.25

- K2O 0.12

- P2O5 0.07

- CaO 0.02

- SO3 0.02

- Na2O 0.01

- MgO 0.01

- Cl Trace

- Fe2O3 Trace

Nitrogen compounds 0.4

- Amino acids (aspartic acid) 0.2

- Albuminoids 0.12

- Amides (asparagine) 0.07

- Nitric acid 0.01

- Ammonium Trace

Fats and waxes 0.20

Gums and others 0.20

Other acids 0.12

Free acids 0.80

35

Page 36: Virtual Sugarcane Biorefinery Report 2011

Most authors describe sugarcane composition in terms of soluble and total solids

content, as exemplified in Table 4.

Table 4. Sugarcane composition (Mantelatto, 2005).

Component Content (wt%)

Water 73 – 76

Total solids 24 – 27

Soluble solids 10 – 16

Fibers (dry basis) 11 – 16

Sugarcane composition in the Virtual Sugarcane Biorefinery was estimated based on

data provided in the previous tables. The composition included in the simulation is

shown in Table 5. The dirt (soil and solid residues that comes from the field) is taken

into account in the sugarcane received in the mill.

Table 5. Composition of the sugarcane adopted in the Virtual Sugarcane

Biorefinery.

ComponentContent (wt%) in

the sugarcane stalksContent (wt%) in the

sugarcane received in the mill

Organic acids 0.56 0.56

Glucose 0.60 0.60

Minerals 0.20 0.20

Salts 1.31 1.30

Phosphate 0.03 0.03

Dirt 0 0.60

Sucrose 14.00 13.92

Water 70.29 69.87

Fibers 13.00 12.92

- Cellulose 5.99 5.95

- Hemicellulose 3.54 3.52

- Lignin 3.21 3.19

- Ash 0.27 0.27

Based on estimates provided by specialists, the VSB assumes that 2/3 of the ash

obtained in sugarcane bagasse analyses are inherent to the fiber, and the remaining 1/3

is derived from the sugarcane stalks. Sugarcane impurities are represented by minerals,

salts and organic acids, which comprise both sugarcane stalk ash and bagasse ash.

36

Page 37: Virtual Sugarcane Biorefinery Report 2011

In addition to the components displayed in Table 5, the sugarcane plant also produces

trash; the VSB considers that 140 kg of trash (dry basis) are produced per ton of

sugarcane stalks (Seabra et al., 2010). Sugarcane trash composition was fixed as the

composition of the bagasse, except for the extractives (which were not included) and

water content (assumed as 15%).

3.3 Industrial phase – first generation

First generation ethanol production from sugarcane takes place in autonomous

distilleries or annexed plants; in the latter a fraction of the sugarcane juice is diverted

for sugar production and the remaining fraction along with the molasses (impure

solution of sugars that remains after sucrose crystallization) are used for ethanol

production. Approximately 70% of the sugarcane processing units in Brazil are annexed

plants (BNDES and CGEE, 2008). In the most common scenario annexed plant operates

using half of sugarcane juice for sugar production and the other half (plus molasses) is

used for bioethanol production. The flexibility of annexed plants to produce more

ethanol or more sugar, depending upon the market demands, is part of the reason for the

success of bioethanol production in the country. However, the range of operation of an

installed plant is somehow limited to the existing design restrictions and available

facilities.

The sugarcane processing facility is self sufficient on its energy consumption: all the

thermal and electric energy required for the production process is produced in combined

heat and power (CHP) systems using bagasse as a fuel. If sugarcane trash is recovered

from the field, it may also be used as a fuel to produce energy.

A scheme of the sugar, ethanol and electricity production process from sugarcane is

illustrated in Figure 8. In an autonomous distillery, the unit operations related to the

sugar production (left side of Figure 8) are not included in the sugarcane mill.

37

Page 38: Virtual Sugarcane Biorefinery Report 2011

Sugarcane

Anhydrous Ethanol

Cleaning

Extraction of sugars

Juice treatment

Juice concentration

Fermentation

Combined Heat and Power generation

Bagasse

Steam, ElectricityJuice treatment

Juice concentration

Crystallization

Drying

Sugar (VVHP)

Distillation and Rectification

Dehydration

Molasses

Trash

Hydrous Ethanol

Figure 8. Block flow diagram of the production of sugar, ethanol and electricity

from sugarcane.

3.4 Industrial phase – second generation

Second generation ethanol production from sugarcane bagasse and trash was evaluated

in the VSB both in integrated processes with conventional first generation ethanol and

in stand-alone second generation plants. Currently, it is considered that the surplus

bagasse and trash are pretreated through steam explosion, followed or not by an alkaline

delignification step. The pretreated material is sent to enzymatic hydrolysis, where

cellulose is converted to glucose. Following to pretreatment, delignification and

hydrolysis, a solid-liquid separation is performed. After pretreatment, the pentoses

liquor is obtained, which can be either biodigested or fermented to ethanol; after

delignification, the lignin solution obtained is acidified and solid lignin is recovered in

another solid-liquid separation system; after enzymatic hydrolysis, the unreacted

cellulose is obtained and sent to cogeneration, along with the lignin recovered and

38

Page 39: Virtual Sugarcane Biorefinery Report 2011

biogas from pentoses biodigestion. The glucose liquor is concentrated along with the

sugarcane juice (in the integrated process with 1st generation) and fermented to ethanol.

A block-flow diagram of the 2nd generation ethanol production process, integrated with

1st generation, is illustrated in Figure 9.

Figure 9. Block-flow diagram of the integrated 1st and 2nd generation ethanol

production process from sugarcane.

3.5 Simulation using Aspen Plus

The software Aspen Plus is the most utilized process simulator in the world, with

applications in both academy and industry. This simulator includes a complete

thermodynamic package and models of several unit operations. For this reason, Aspen

Plus was employed to represent industrial sector in sugarcane processing, allowing the

evaluation of different technologies. The methodology used to insert sugarcane

processing in Aspen Plus was described in a previous work (Dias et al., 2012) and is

presented below.

39

Page 40: Virtual Sugarcane Biorefinery Report 2011

Different scenarios were defined and simulated using software Aspen Plus. Since

components of the lignocellulosic material were not available in the software databank,

their properties were obtained from the databank for biofuels components developed by

the National Renewable Energy Laboratory (NREL) (Wooley and Putsche, 1996);

however, lignin structure was modified to represent sugarcane lignin, with molecular

formula C9O2.9H8.6(OCH3) and its enthalpy of formation was determined based on

enthalpy of combustion (27000 kJ/kg) given by Stanmore (2010), resulting in 25689

kJ/kg. Fiber components (cellulose, hemicellulose and lignin) were inserted as solids;

streams containing those components are defined as MIXCISLD streams in the

simulation, which represent streams with conventional inert solids – with no influence

on phase equilibrium – and a defined molecular weight (no particle distribution).

The simulation was implemented considering hierarchy blocks, used to provide

hierarchical structure to complex simulations. An example of the flowsheet developed

to represent the integrated first and second generation process is shown in Figure 10.

Inside each hierarchy block, the models required to represent the unit operations are

included. For instance, flowsheets of Aspen Plus are shown below for DISTILL (Figure

11) and 2G (Figure 12) blocks.

Figure 10. Example of an Aspen Plus flowsheet for the integrated first and second

generation ethanol production process from sugarcane.

40

Page 41: Virtual Sugarcane Biorefinery Report 2011

Figure 11. Unit operations that represent distillation step.

Figure 12. Unit operations envolved in the second generation process.

Several operations (mills, filters, settlers and adsorption column, among others) were

represented as component splitters, due to the lack of more adequate blocks in the

simulator database. In the separators, separation efficiency for each component of the

mixture was supplied in such a way that the equipment efficiency and other

41

Page 42: Virtual Sugarcane Biorefinery Report 2011

characteristics of the materials, such as composition, agreed with those found in the

literature or in the industry.

Due to the various recycle streams present in the simulation, convergence of the process

is not easily achieved. This is a consequence of the fact that the exact amount of surplus

lignocellulosic material (stream LM in Figure 10) directed for 2G process depends on

the amount of residues (CELLULIG and PENTOSES) produced in second generation

operations (represented by the block 2G) and on the entire steam consumption of the

process, which in turn depends on the amount of hydrolyzed liquor (HYDROL) sent to

fermentation with the sugarcane juice.

A scheme of the interactions between each main block of the simulation is illustrated in

Figure 13.

Figure 13. Scheme of the interactions between each main block of the simulation of

the integrated first and second generation production process.

Thus, convergence is only achieved when the energy (as steam) required by the process

is equal to the energy produced in the cogeneration system.

Stoichiometric reactors (RStoic model) were used to represent the reactors in the

process, from liming reactions in juice treatment, through biomass pretreatment (steam

explosion) and hydrolysis (reactions 1 and 2) to fermentation of sugars (reactions 3

through 5).

(C5H8O4)n +n H2O → n C5H10O5 (1)

(C6H10O5)n+ n H2O → n C6H12O6 (2)

C12H22O11 + H2O → 2C6H12O6 (3)

C6H12O6 → 2C2H5OH + 2CO2 (4)

42

Page 43: Virtual Sugarcane Biorefinery Report 2011

3C5H10O5 → 5C2H5OH + 5CO2 (5)

Reactions 1 and 2 represent hemicellulose and cellulose hydrolysis, respectively, in both

pretreatment and hydrolysis reactors (polymers were represented as their repeat unit, as

suggested by Wooley and Putsche (1996)). Reaction 3 represents sucrose hydrolysis in

the fermentation reactors; glucose and pentoses fermentation into ethanol are

represented by reactions 4 and 5, respectively.

The burner in the cogeneration section, where combustion of the components of the

lignocellulosic material takes place, leading to the production of steam and electricity,

was represented as a reactor as well; reactions 6 through 8 represent the combustion of

the main components (cellulose, hemicellulose and lignin, respectively) in the burner.

(C6H10O5)n + 6n O2 → 5n H2O + 6n CO2 (6)

(C5H8O4)n + 5n O2 → 4n H2O + 5n CO2 (7)

(C9O2.9H8.6(OCH3))n + 10. 95n O2 → 5.8n H2O + 10n CO2 (8)

Conversion of the combustion reactions was set as 100%; inefficiencies of the boiler

were represented as the loss of a fraction of the hot gases obtained at the burner.

Sugarcane bagasse LHV was calculated as 7.5 MJ/kg (50% moisture), and for sugarcane

trash (15 % moisture), a LHV of 14.9 MJ/kg was obtained; these values are in

accordance with those reported in the literature (Alonso Pippo et al., 2011; Seabra et al.,

2010).

Biodigestion reactions were inserted in a stoichiometric reactor model as well, on which

the pentoses liquor obtained after steam explosion is used as feedstock. Reactions 9 and

10 were used to represent biodigestion of the pentoses liquor (which contains both

pentoses and glucose):

C5H10O5 → 2.5CH4 + 2.5 CO2 (9)

C6H12O6 → 3CH4 + 3CO2 (10)

Most of the water in the biogas produced in the biodigestor is removed prior to biogas

burning in the burner, which was represented as the complete combustion of methane

(and the same boiler efficiency as that for solid biomass fuels).

43

Page 44: Virtual Sugarcane Biorefinery Report 2011

Distillation columns were simulated as rigorous distillation columns (Aspen Plus

RadFrac model); product purification takes place on a series of distillation and

rectification columns, representing the most common configuration of the distillation

sequence in ethanol production in Brazil (Dias et al., 2011a).

3.5.1 Validation process of the virtual sugarcane biorefinery for production of first

generation bioethanol

The methods used in the validation process of the VSB, producing sugar, ethanol and

electricity, are presented in this section.

Methodology

In order to perform the validation of VSB simulation in the commercial software Aspen

Plus, a mill located in the state of São Paulo, referenced here as Mill A, was chosen as a

partner for supplying the process data. This mill crushes about 4,000,000 tons of

sugarcane per season for production of crystal sugar, anhydrous and hydrated ethanol

and power cogeneration.

The unit operations in the processing of sugarcane in the chosen mill are comprised

basically by reception and cleaning of the sugarcane, cane preparation and juice

extraction, in which bagasse and juice are separated. Extracted juice is split in two

streams: primary juice (obtained in the first tandem, richer in sucrose and with less

impurities) diverted to sugar production, and the secondary juice (obtained after the first

tandem of the mill) to ethanol production. Both juices undergo physicochemical

treatment and juice clarification. Clarified juice intended for sugar production is

submitted to a multiple step evaporation to produce a concentrated syrup that is directed

for crystallization in fed batch “vacuums pans” (in a so called “two-boiling system”),

centrifugation and separation of sugar crystals from molasses; intermediate ones are

recycled back to the process and the final molasses is sent to ethanol production, while

sugar crystals are dried. The mud effluent of clarifiers (from juice treatment of both

sugar and ethanol production) is sent to filtration, producing filter cake that is recycled

to sugarcane plantation, while the filtrated juice is mixed to the juice destined to ethanol

production. The bagasse obtained in the mills is burnt in the boiler to produce steam.

44

Page 45: Virtual Sugarcane Biorefinery Report 2011

The clarified juice intended for ethanol production is submitted to a partial evaporation,

cooled, mixed with final molasses from the sugar plant and directed for the fermentation

step. After fermentation, the fermented wine is sent to the centrifuges where yeast is

recovered and recycled to be used in the new fermentation step. The centrifuged wine is

then sent to a set of distillation columns (A/A1/D) for ethanol stripping and after to

rectification columns (B/B1) for ethanol enrichment. At the top of column B, hydrated

ethanol is obtained. A fraction of hydrated ethanol is sent to dehydration on molecular

sieves where anhydrous ethanol is produced. Carbon dioxide effluent of the fermenters

is washed in absorption columns to recover the remaining ethanol.

The data and information collected on the mill, referring to the process described, were

subjected to several validation steps as described below:

Selection of a sugar mill partner with milling capacity greater than or equal to

2,000,000 tons per year (average milling capacity for sugar mills in Brazil);

Collection of information about the inventory of the selected sugar mill,

comprising the unit operations of sugar, ethanol and energy production;

Compilation of information about process through daily bulletins, files, local

instrumentation in the equipment and collection of data from various sections of

the plant stored in the supervisory system;

Treatment of the collected data and organization of information for each month

of the harvest season to feed an Excel spreadsheet;

Design of the process flow diagram according with the sugar mill inventory;

Development of an Excel spreadsheet to calculate the mass balance of the

process using the data previously collected in the sugar mill to define some

intermediate flows where there is no recorded process data;

Interactive adjustment of calculations to obtain rigorous agreement between the

values of the process and those from the Excel spreadsheet;

Introduction of the main values from the Excel spreadsheet to be introduced in

the Aspen Plus simulator;

Adjustment of the Aspen Plus simulations to represent accurately the inventory

of the process plant;

Calculation of the mass and energy balance using Aspen Plus.

Results of the performed validation procedure are presented in section 4.2.5.

45

Page 46: Virtual Sugarcane Biorefinery Report 2011

3.6. Sustainability indicators

3.6.1 Economic indicators

In order to provide a comparison among different technologies, in terms of economic

viability, some of the most used impacts in Engineering Economy, such as internal rate

of return (IRR) and products production costs, were calculated considering a set of

scenarios related to first and second generation sugarcane ethanol production. During

the initial construction of the VSB (reported in this version of the VSB) these impacts

were calculated only for the industrial process.

The principles for this evaluation are based on Engineering Economy, when a cash flow

is projected for each technological scenario to be evaluated, taking into account the

investment needed for the project and all expenses and revenues for an expected project

lifetime.

The main expenses and revenues come from technical parameters from process

modeling (using Aspen Plus) and from monetary values observed in the last decade,

such as sugarcane, ethanol and sugar prices. The basis for the monetary values related to

the investments were obtained from Dedini for a standard first generation autonomous

distillery and from data based on literature; an approximation method was used to

estimate the investments for specific parts of the process when it was necessary for new

evaluated technologies. A detailed description of the methodology employed to

calculate investment of first generation plants is provided in sections 4.2.2 of this report.

An evaluation of risk was conducted in some studies using a Monte Carlo approach,

assuming a normal distribution for the main economic parameters, such as the values of

total investment and prices of sugarcane, ethanol, electricity, enzymes and trash. As a

result of the assessments done, an electronic spreadsheet was developed and

implemented to calculate the internal rate of return (IRR) and production costs. Some of

the scenarios evaluated in 2011, their results and the adopted methodologies can be

found in some recent published papers (Dias et al., 2011b, Dias et al., 2012, Cavalett et

al., 2012), as well as on Chapter 4 of this report.

A short description of Internal Rate of Return (IRR) and production costs that have been

adopted in the economic viability assessments is presented below.

46

Page 47: Virtual Sugarcane Biorefinery Report 2011

Internal Rate of Return (IRR)

Internal Rate of Return (IRR) is the average interest rate paid per year for the project

evaluated, or, in other words, IRR is the interest rate that balances all operating profits

along the project life time with regard to the investment. This parameter is useful to be

compared with the opportunity cost of capital that an investor may consider. The

following mathematical expression (equation 1) shows how IRR is obtained

(considering a life time of 25 years):

(eq. 1)

Production cost excluding capital expenditures

In order to estimate total production cost, it is necessary to evaluate the capital cost

associated with the investment to be evaluated. This cost is related to the investor’s risk

perception, and, in this sense, depends on the nature of the project as well as the risks

associated with the country on which the project would take place. As this parameter

(capital cost) is crucial to calculate the total production cost, in 2012 a study will be

done to improve its evaluation when considering an investment in a sugarcane

biorefinery in Brazil, in particular taking into account second generation ethanol

production.

For this reason, the production costs estimated with respect to the scenarios evaluated

were obtained excluding returns on total investments. There are many different

approaches to obtain these costs when an industry  produce more than one product;

among then, a classical methodology is to allocate all the expenses (including capital

depreciation) proportionally with respect  to each revenue of the products.  Therefore,

the costs associated to the biorefinery products were estimated reducing   their

respective average market prices at the same proportion until IRR reached zero.

3.6.2 Environmental indicators

In the VSB framework the environmental assessment is made by using the Life Cycle

Assessment methodology (LCA). Life Cycle Assessment is a recognized method for

determining the environmental impact of a product (or good or service) during its entire

47

Page 48: Virtual Sugarcane Biorefinery Report 2011

life cycle, from extraction of raw materials through manufacturing, logistics, use and

final disposal or recycling.

In LCA substantially broader environmental aspects can be covered, ranging from GHG

emissions and fossil resource depletion to acidification, toxicity, water and land use

aspects, among others; hence, it is an appropriate tool for quantifying environmental

impacts of a product system. The method consists of four main steps: goal and scope

definition, inventory analysis, impact assessment and interpretation (ISO 2006a;

2006b).

Life Cycle Inventory modeling

Life cycle inventory (LCI) is the methodological step where an overview is given of the

environmental interventions (energy use, resource extraction or emission to an

environmental compartment) caused by or required for the processes within the

boundaries of the studied system.

Using the VSB framework, data used for the Life Cycle Inventory modeling are

obtained from different sources. Agricultural data are obtained from the Canasoft Model

that generates a comprehensive inventory for the agricultural sugarcane production

system. The inventories of the sugarcane industrial biorefinery alternatives are based on

the mass and energy balances calculated using computer simulation platforms (e.g.

Aspen Plus). Emission data for use of ethanol, co-products and derivates are obtained

from literature, ongoing research at CTBE and consults to specialists.

Emissions from background processes used in the sugarcane production,

industrialization and use chain can be obtained also from Swiss Center of Life Cycle

Inventories (Ecoinvent database, 2009) after a careful update to the Brazilian reality.

Life Cycle Impact Assessment – SimaPro

With the translation of the product system's environmental flows from the Life Cycle

Inventory phase (LCI) into scores that represent their impacts on environment, Life

Cycle Impact Assessment (LCIA) is essential for the interpretation of the results in

relation to the questions posed in the goal definition (Finnveden et al., 2009). The

challenge of LCIA is to evaluate the potential impact of the emitted substances by using

a procedure that is ideally simple, applicable consistently to all substances, that uses a

48

Page 49: Virtual Sugarcane Biorefinery Report 2011

common unit of measure, and that gives results that are comparable between impact

categories.

The software package SimaPro (PRé Consultants B.V.) and the CML 2 Baseline 2000

v2.05 method (Guineé et al., 2002) have been used as tools for the environmental

impact assessment in the VSB framework. However, it is intended in the future to use

other Life Cycle Impact Assessment methods to evaluate other aspects in the VSB

framework such as energy balance, water and land uses. In the CML method, the

environmental impacts are categorized into ten environmental categories: Abiotic

Depletion (ADP) measured in kg of Sbeq.; Acidification (AP) measured in kg of SO2eq.;

Eutrophication (EP) measured in kg of PO4-3

eq.; Global Warming Potential (GWP)

measured in kg of CO2eq.; Ozone Layer Depletion (ODP) measured in kg of CFC-11eq.;

Human Toxicity (HTP) measured in kg of 1,4 DBeq. (dichlorobenzene); Fresh Water

Aquatic Ecotoxicity FWAET) measured in kg of 1,4 DBeq; Marine Aquatic Ecotoxicity

(MAET) measured in kg of 1,4 DBeq.; Terrestrial Ecotoxicity (TET) measured in kg of

1,4 DBeq.; and Photochemical Oxidation (POP) measured in kg of C2H4eq.

3.6.3 Social indicators

Social indicators are one of the three pillars of sustainability. However, social issues are

quite qualitative and, therefore, more difficult to be measured and used for scenario

comparison. Some social indicators such as direct and indirect job creation, wages and

other socioeconomic aspects will be evaluated using the Input-Output Analysis in the

VSB framework. Up to this stage of the development, the social indicators were not

considered in the assessment.

49

Page 50: Virtual Sugarcane Biorefinery Report 2011

4. Results

In this section the main results obtained so far (up to 2011) with the VSB are presented

in details.

4.1 Sugarcane agricultural phase

These results are from the first assessments of different sugarcane production scenarios

using the VSB framework. The study concerned different technologies for sugarcane

planting and harvesting that are currently used in Brazil with focus on changes in

mechanization. Economic and environmental analyses were performed using the

Canasoft Model for detailing all operations used in the three sugarcane production

scenarios evaluated. The Canasoft Model allowed characterization and quantification of

all the inputs such as fertilizers, machinery, diesel, manpower, among others; and

outputs such as products and emissions. The model calculates and organizes the

information producing complete inventories for economic and environmental

assessment. The basic information required to conduct this study was obtained through

literature, internet and personal communication, being organized in different scenarios

after a careful analysis of its representativeness. Results were then used to identify the

processes with critical environmental and economic impacts and, therefore, pointed out

as focus for further research on technological development.

4.1.1 Scenarios description

In this study it was considered that the sugarcane production takes five harvesting

seasons per cycle, with distinct potential yield for each harvest. Scenario 1 represents

the production system where the planting of sugarcane is semi-mechanized (which

involves manual operations such as harvesting of sugarcane setts, setts distribution and

chopping of stalks; and mechanical operations such as opening and closing furrow) and

manual harvesting with the previous burning of the sugarcane trash. This production

system has been abandoned in recent years, mainly due to a state mandate and a

voluntary protocol to control and phase out pre-harvesting burning in São Paulo State.

50

Page 51: Virtual Sugarcane Biorefinery Report 2011

Nowadays several production units are adopting mechanical harvesting, with significant

changes in the production system. This situation is evaluated in Scenario 2. In this case

planting is also semi-mechanized, but the harvest is done mechanically without pre-

harvesting burning.

Scenario 3 represents the most modern sugarcane production system employed in the

industry, where both planting and harvesting are done mechanically, without pre-

harvesting burning, with effective decrease in labor use.

4.1.2 Environmental assessment

The environmental assessment is performed using the Life Cycle Assessment. Some

environmental indicators from CML Life Cycle Impact Assessment method were

selected for this evaluation (Guineé et al., 2002). Figure 14 shows the relative

environmental impacts of different scenarios of sugarcane production. Environmental

impact assessment results showed that options with higher level of mechanization

(Scenarios 2 and 3) showed better results in the global warming and photochemical

oxidation indicators in comparison to the scenario with manual planting and harvesting

(Scenario 1). This is due to elimination of the pre-harvesting burning operation of

sugarcane, which significantly reduces emissions of greenhouse gases (CO2, N2O and

CH4) in Scenarios 2 and 3. In the other environmental impact indicators (abiotic

depletion, acidification, eutrophication, ozone layer depletion and ecotoxicities) it was

not possible to observe significant differences between evaluated scenarios. However,

Scenario 1 presented slightly better results than scenarios with higher mechanization

level (Scenarios 2 and 3) because lower inputs are required for manual harvesting and

planting.

Results show that gradual change presented in recent years by the sugarcane production

system has positive impacts on an environmental standpoint. However, they can and

should be maximized because there are many bottlenecks to be solved such as: reduce

tillage in mechanical operations, increase quality of sugarcane setts in mechanical

planting, reduction of soil compactation, and increase the amount of agricultural

residues that are available to be used in the industrial process for energy production,

among others. All these challenges are included in the scientific agenda of CTBE in

51

Page 52: Virtual Sugarcane Biorefinery Report 2011

order to maximize the sustainability of sugarcane production and industrialization in

Brazil.

0%10%20%30%40%50%60%70%80%90%

100%

ADP AP EP GWP ODP TET POP

Scenario 1 Scenario 2 Scenario 3

Figure 14. Relative environmental impacts of different scenarios of sugarcane

production.

Note: ADP: Abiotic Depletion; AP: Acidification; EP: Eutrophication; GWP: Global Warming; ODP:

Ozone Layer Depletion; TET: Terrestrial Ecotoxicity; POP: Photochemical Oxidation.

4.1.3 Economic assessment

The breakdown of sugarcane production costs are presented in Table 6, in which values

for each sugarcane production stage according to the three proposed scenarios are

shown, considering the average of five harvesting seasons. These costs are distributed

according to the main stages of the production system.

The average total cost (considering weighted average of five harvests) calculated in this

work is 22.45 US$/TC in Scenario 1; 22.55 US$/TC in Scenario 2; and 22.90 US$/TC

in Scenario 3. It is possible to notice increasing production costs with increasing

mechanization level. Additionally, manual operations in Scenario 1 corresponded to

33.9% of the total production cost, whereas in Scenarios 2 and 3 these figures were only

7.5% and 3.1%, respectively. Therefore, there is no doubt that manual harvesting is the

operation that requires more manpower (also overcoming the planting) since in Scenario

2 manual operations accounted for a significant smaller fraction of the total costs than in

Scenario 1.

52

Page 53: Virtual Sugarcane Biorefinery Report 2011

Table 6. Sugarcane production costs for the different sugarcane production

scenarios (values in US$/ha).

Operation Scenario 1 Scenario 2 Scenario 3

Pre planting 17.77 17.76 17.76

Correction of soil 25.23 25.23 25.23

Adapt the use of land 1.54 1.54 1.54

Soil preparation 29.57 29.57 29.57

Semi mechanized planting 286.53 286.53 0.00

Mechanized planting 0.00 0.00 285.15

Plant cane cultivation 37.28 37.28 37.28

Ratoon sugarcane cultivation 310.23 293.99 293.99

Manual harvesting 365.51 0.00 0.00

Mechanized harvesting 0.00 337.36 331.44

Sugarcane transportation 261.76 313.92 313.92

Land cost 435.25 435.25 435.25

Total cost 1770.68 1778.45 1771.15

Taxes (2.5% income) 84.13 84.13 84.13

Total cost 1854.82 1862.59 1855.28

Total cost (US$/TC) 22.45 22.55 22.90

Price paid per ATR (US$/kg) a 0.28 0.28 0.28

Income 3365.34 3365.34 3365.34

Profit 1510.57 1502.75 1510.05

On the other hand, mechanized operations costs represented 25.6% of the total

production costs in Scenario 1, 51.3% in Scenario 2 and 54.1% in Scenario 3. These

values indicate that harvesting and loading are the operations that require greatest

amount of economic resources among all the mechanized operations in the sugarcane

production system. Regarding raw materials use, they accounted for 40.5% of the total

production costs in Scenario 1, 41.2% in Scenario 2 and 42.8% in Scenario 3. This

difference can be explained by the higher amount of sugarcane setts required in

mechanized planting, due to the fact that the quality of the seed stalks is severely

affected by the damage caused by the mechanical operation, compromising the

sugarcane bud. When using mechanical planting, up to ten more tons of seedlings are

required per hectare to ensure a good number of plants per unit of area. When the semi-

mechanized planting is used about 12 tons of sugarcane setts are required per hectare.

53

Page 54: Virtual Sugarcane Biorefinery Report 2011

This indicates the importance of more studies to improve quality of mechanized

planting and to reduce costs of this operation.

4.2 Industrial phase - First generation

Production of sugar, ethanol and electricity from sugarcane in a first generation plant

follows the main steps illustrated in Figure 8. However, minor variations may be found

among mills. Thus, it was necessary to define a basic configuration for the process, as

well as the main operating and process parameters. These are described below, for an

annexed plant.

4.2.1 Main parameters of the sugarcane processing facility

In the VSB, the sugarcane processing facility processes 500 metric tons of sugarcane

(TC) per hour, during 167 days/year, yielding 2 million TC/year. Different

configurations were analyzed in the VSB; the main parameters adopted in the

simulations are described in the following sections.

4.2.1.1 Sugarcane reception and cleaning

Upon reception in the factory, sugarcane must be cleaned to remove most of the dirt

carried along from the field. Sugarcane cleaning is usually carried out using wash water,

which is recycled to the cleaning process after removal of dirt and other impurities. The

main parameters employed in the simulation of sugarcane cleaning are shown in Table

7.

In the simulation, the amount of sugar lost when washing the whole sugarcane was

calculated as 25% of the losses for the mechanically harvested sugarcane washing (3.2

kg/TC) as observed by Birkett and Stein (2004) apud Rein (2007). However, usually no

washing is carried out on mechanically harvested (chopped) sugarcane due to the high

sugar losses that would occur.

Table 7. Main parameters adopted in the simulation of the sugarcane cleaning.

Parameter Value Reference

54

Page 55: Virtual Sugarcane Biorefinery Report 2011

Average flow of sugarcane wash water 2.2 m³/TC Elia Neto, 2009

Efficiency of dirt removal in sugarcane washing 90 %BNDES and CGEE,

2008

Sugar losses when washing whole sugarcane 0.8 kg/TCBirkett and Stein, 2004

apud Rein, 2007

Average amount of water dragged with sugarcane during washing

7.5 t/100 TCBirkett and Stein, 2004

apud Rein, 2007

Efficiency of solids removal during wash-water treatment

99 %

Mantelatto, 2010Water losses during wash-water treatment 2.5 %

Lime added in wash-water treatment 100 g/m³

Flocculant added in wash-water treatment 2 ppm

4.2.1.2 Sugarcane preparation and sugar extraction

After cleaning, sugarcane is fed to the cane preparation system, on which a series of

equipment (shredder, hammers, etc.) are used to cut open the sugarcane structure and

enhance sugar extraction in the following operation. Since in this step only physical

changes to the sugarcane structure occur, it was not represented in the simulation, only

its power requirement was included. After preparation, sugarcane passes over a magnet

that removes eventual metallic particles dragged along prior to entering the mills.

Sugar extraction, actually juice extraction, is usually done using crushing mills, where

sugarcane juice and bagasse are separated. Water at a rate of 28 wt% of the sugarcane

flow (imbibition water), is used to improve sugars recovery. Sugarcane juice contains

water, sucrose and reducing sugars, besides impurities such as minerals, salts, organic

acids, dirt and fiber particles, which must be removed prior to fermentation. A rotary

screen is used to remove solid particles (mostly fibers) from the juice; the fibers

obtained in this screen return to the mills for further recovery of sugars, while the juice

is sent to juice treatment. The main parameters adopted in the simulation of the sugar

extraction system are shown in Table 8.

Table 8. Main parameters adopted in the simulation of the sugarcane extraction.

55

Page 56: Virtual Sugarcane Biorefinery Report 2011

Parameter Value Reference

Amount of imbibition water (related to amount of sugarcane)

28 % Pedra Mill, 2006

Temperature of imbibition water 50 °C Ensinas, 2008

Efficiency of sugar extraction in the mills 96 % Walter et al., 2008

Fraction of bagasse in the juice 0.55 % Copersucar, 1987

Efficiency of dirt and bagasse removal in the screen 65 % Mantelatto, 2010

4.2.1.3 Juice treatment

Following extraction, juice receives a chemical treatment to remove other impurities.

This process consists of juice heating from 30 to 70 ºC, addition of phosphoric acid and

lime and a second heating operation, up to 105 ºC. Hot juice is flashed to remove

dissolved air and after addition of a flocculant polymer, impurities are removed in a

settler, where mud and clarified juice are obtained. A filter is used to recover some of

the sugars carried along with the mud, and the separated solids are recycled to the

process prior to the second heating operation; bagasse fines (bagacillo) and wash water

are used in the filter to improve recovery of sugars. The clarified juice is fed to the

screens to remove solid particles that were not removed in the clarifier.

Clarified juice contains around 15 wt% solids; clarified juice destined for sugar

production is concentrated on a 5-stage multiple effect evaporator (MEE) up to 65 wt%

solids. In the annexed distillery, a fraction of the syrup, as well as final molasses, are

used to concentrate the clarified juice destined for ethanol production up to around 22

wt% solids, which is cooled and fed into the fermenters.

The main parameters adopted in the simulation of the juice treatment operations are

shown in Table 9.

56

Page 57: Virtual Sugarcane Biorefinery Report 2011

Table 9. Main parameters adopted in the simulation of the juice treatment

operations.

Parameter Value Reference

Temperature – first juice heating 70 °C Mantelatto, 2009

Phosphate content of the juice after phosphoric acid addition

250 ppm

Mantelatto, 2010Phosphoric acid concentration 85%

Amount of lime added in liming 1.0 kg CaO/TC

Density of Ca(OH)2 added in liming 6 °Bé Copersucar, 1987

Temperature – second juice heating 105 °C Copersucar, 1989

Amount of flocculant polymer 2.5 g/TC Pedra Mill, 2006

Polymer solution concentration 0.1/0.05 % Mantelatto, 2010

Loss of reducing sugars by decomposition in the mud

1.0 % Hugot, 1986

Efficiency of settling of insoluble solids 99.7%

Mantelatto, 2010

Solids concentration in the mud 8-12%

Clarified juice temperature 98 °C

Amount of filter cake produced 35-40 kg/TC

Temperature – filter wash water 90 °C

Rotary filter solids retention 65%

Filter cake pol content 1.5 %

Filter cake moisture content 65 %

Amount of wash water related to filter cake 150 %Mantelatto, 2009

Bagasse fines added in the filter 0.6 t/100 TC

Efficiency of removal of insoluble solids in the clarified juice screen

65%

Mantelatto, 2010Concentration of insoluble solids in the impurities retained in the screens

30%

Number of effects in the multiple effect evaporation

5

Syrup soluble solids content 65 %

4.2.1.4 Sugar production

The sucrose present in the syrup as sugar crystals is separated from the solution in

equipments called vacuum pans and crystallizers, usually operated under vacuum and in

fed batch mode. The syrup is fed into the vacuum pans, where water is removed in a

similar way as in the evaporators. The mixture of sugar crystals and molasses (liquid

57

Page 58: Virtual Sugarcane Biorefinery Report 2011

part) inside the equipment is called massecuite. When the amount of material reaches

the limit of the vacuum pan (at the end of a batch), the massecuite is transferred to

crystallizers and, after an appropriate residence time, it is sent to centrifuges that

separate the crystals and the molasses. It is possible to exhaust more the molasses

(recuperating more sugar) repeating the process one or two more times.

It was assumed that crystals were separated using the two-boiling system approach,

where two types of sugar are produced: the grade “A” sugar (final product) and the

grade “B” sugar (intermediate sugar that is produced and recycled inside the process as

“B” Magma, a solid-liquid stream rich in sugar crystals). The final sugar is dried in a

rotary dryer and cooled before shipment. In the simulation it was reproduced the two-

boiling system configuration, but the processing mode was considered as continuous,

that is, several vacuum pans were represented as only one piece of equipment able to

process the proper amount of syrup. The main parameters and conditions of the

crystallization process are shown in Table 10, while parameters of the drying are

displayed in Table 11.

Table 10. Parameters of the sugar crystallization process.

Parameter Value Reference

Brix of the “A” sugar 99.0 Ribeiro, 2003

Purity of the “A” sugar (VVHP)a 99.6 % Bazico, 2010

“A” molasses (after centrifugation/dilution) 78.0 Mantelatto, 2010

Purity of “A” molasses (after centrif./dilution) 69.0 % Ribeiro, 2003

Brix of the “B” sugar 98.0 Ribeiro, 2003

Purity of the “B” sugar 88.0 % Camargo, 1990

Brix of the massecuite “B” 92.0

Mantelatto, 2010Sugar overall recovery (as “A” sugar) 76.5%

Washing water temperature (at centrifuges) 110 °C

Brix of the “B” magma 90.0 % Getaz, 1995

Washing water / sugar ratio in the centrifuges 0.0923 kg/kg CTC, 2009 a VVHP: very very high polarization

58

Page 59: Virtual Sugarcane Biorefinery Report 2011

Table 11. Parameters of the sugar drying.

Parameter Value Reference

Hot air temperature 100 °C Camargo, 1990

Humidity of the inlet air 1.9 % (dry basis) Camargo, 1990

Moisture content of the dry sugar 0.1 % (VVHP) Bazico, 2010

Humidity of the outlet air 3.6 % (dry basis) Camargo, 1990

Cooling air temperature 30 °C

Mantelatto, 2010

Temperature of the outlet sugar 35 °C

Sugar dust in the outlet air 0.8 %

Sugar recovered from the outlet air (via scrubber)

99.5 %

Brix of the scrubber outlet stream 3.0

4.2.1.5 Fermentation

A fed-batch fermentation process with cell recycle was assumed. In this process yeast

cells in a solution are fed to the fermenters, followed by the juice. During fermentation,

gases released in the fermenters are collected and sent to an absorption column where

the entrained ethanol is recovered using water. After fermentation reactions cease, the

wine is sent to the centrifuges, where cells are separated from the ethanol solution. Cells

obtained in the centrifuges are treated in a separate reactor by addition of sulphuric acid

and water, to decrease bacterial contamination. After this treatment, the cells are

recycled to be used in another batch. Wine is mixed with the alcoholic solution obtained

in the absorption process and sent to purification. The main parameters adopted in the

simulation of the fermentation process are shown in Table 12.

59

Page 60: Virtual Sugarcane Biorefinery Report 2011

Table 12. Main parameters adopted in the simulation of the fermentation process.

Parameter Value Reference

Fraction of the reactor fed with yeast solution25 %

Pedra Mill, 2006Concentration of cells in the yeast solution (wet basis)

30 %

Fermentation temperature33 °C

Conversion of sugars to ethanol a

89.5 %

Mantelatto, 2010

Formation of by-products related to ethanol – glycerol6.33 %

Formation of by-products related to ethanol – acids 3.56 %

Formation of by-products related to ethanol – yeast 5.85 %

Residual sugars related to ethanol produced 0.25 %

Ethanol content of the alcoholic solution obtained after ethanol recovery in the absorption column

3 %

Efficiency of solids retention in the centrifuges 99 %

Ethanol content in the wine fed to the distillation columns 8.5 °GL

Ethanol content of the yeast concentrated solution obtained in the centrifuges

6.5 %

Concentration of cells in the yeast concentrated solution (wet basis) 70 % Pedra Mill, 2006

Sulphuric acid addition in yeast treatment (on 100% basis) 5 kg/m³ ethanol

Rossell, 2011

a In the autonomous distillery, fermentation yields (conversion of sugar to ethanol) is higher and equal to 90%.

4.2.1.6 Distillation

Wine is sent to a series of distillation and rectification columns, producing hydrated

ethanol (HE). Distillation columns are comprised by two set of columns A, A1 and D,

and rectification columns by columns B1 and B, each located one above the other. Wine

is pre-heated in the condenser of column B (heat exchanger E) and by exchanging heat

60

Page 61: Virtual Sugarcane Biorefinery Report 2011

with the bottom of column A (heat exchanger K) before being fed into the top of

column A1. Ethanol-rich streams (phlegm) are obtained on top of column A and on

bottom of column D, then fed to column B-B1. Vinasse is produced in the bottom of

column A, while 2nd grade ethanol is obtained from the top of column D. Hydrated

ethanol is produced on top of column B and nearly pure water (phlegmasse) is obtained

on the bottom of column B1, as represented in Figure 15.

Figure 15. Simplified scheme of the distillation columns.

Fusel oil, containing most of the higher alcohols, is obtained as a side withdrawal in

column B.

The main parameters adopted in the simulation of the distillation columns are shown in

Table 13.

Table 13. Main parameters adopted in the simulation of the distillation columns.

Parameter Value Reference

Number of stages – column A 20

Mantelatto, 2010Number of stages – column A1 8

Number of stages – column D 6

Number of stages – column B-B1 60

61

Page 62: Virtual Sugarcane Biorefinery Report 2011

Vinasse ethanol content 0.02 % (v/v) Meirelles, 2006

Phlegm ethanol content (vapor and liquid) 45 a 50 °GLMantelatto, 2010

Phlegmasse ethanol content 0.005 % (v/v)

Amount of fusel oil per ethanol produced 0.2 % (v/v) Garcia, 2008

Hydrated ethanol purity 93 % (w/w) Mantelatto, 2010

Steam consumption – column A 1.7 kg/L AEHC

Steam consumption – column B-B1 0.9 kg/L AEHC

4.2.1.7 Dehydration

Simulation of the dehydration process for anhydrous ethanol (AE) production in the

VSB was carried out considering azeotropic distillation with cyclohexane or adsorption

on molecular sieves. Both processes were represented mainly in terms of steam

consumption; for azeotropic distillation, although a rigorous simulation was carried out,

the calculated steam consumption was used in the simulation of the whole process

because the convergence of azeotropic distillation process is not easily achieved in the

simulator. Parameters of the dehydration processes evaluated in the VSB are shown in

Table 14.

Table 14. Main parameters of the dehydration processes evaluated in the VSB

Parameter Value Reference

Azeotropic distillation – azeotropic column number of stages

31

Junqueira, 2010Azeotropic distillation – settler temperature 50 °C

Azeotropic distillation – recovery column number of stages

25

Azeotropic distillation – steam consumption 1.9 kg/L AE VSB result

Adsorption – number of beds 3 Pedra Mill, 2006

Adsorption – HE feed temperature 150 °C

Adsorption – steam consumption 0.6 kg/L AEMeirelles, 2006

Adsorption – steam pressure 6 bar

Adsorption – ethanol recovered in AE 81.4% Mantelatto, 2010

4.2.1.8 Cogeneration

Simulations in the VSB considered different cogeneration systems; for “basic” plants,

systems for the production of 22 bar steam were assumed, while for optimized

62

Page 63: Virtual Sugarcane Biorefinery Report 2011

distilleries boilers for the production of 65 or 90 bar steam were included. In some

scenarios, condensing steam turbines were considered as well. Direct (steam) or

electrified drivers were considered for crushing mills and other equipments. The main

parameters of these systems are shown in Table 15.

Table 15. Main parameters of the cogeneration system.

Parameter Value Reference

22 bar boiler efficiency (“basic”, LHV basis) 75 % Mantelatto, 2010Gases outlet temperature 170 °C

Steam temperature - 22 bar boiler 300 °C Seabra, 2008

Turbine isentropic efficiency – high pressure 72 %

Ensinas, 2008

Turbine isentropic efficiency – intermediate pressure 81 %

Direct drives isentropic efficiency 55 %

Generator efficiency 98 %

Condensing steam turbine efficiency 70 %

Electric energy demand of the process (with direct drivers)

12 kWh/TC

Mechanical energy demand of the process (with direct drivers)

16 kWh/TC

Electric energy demand of the process (with electric drivers)

30 kWh/TC Seabra, 2008

Process steam pressure 2.5 bar Ensinas, 2008

Condensing pressure 0.11 bar Seabra, 2008

Deaerator pressure 1.4 bar Lamonica, 2010

Deaerator temperature 105 °C Prieto, 2003

Condensate losses 5 %Seabra, 2008

Fraction of bagasse for start-ups of the plant 5 %

90 bar boiler efficiency – LHV basis 87 %Mantelatto,

201090 bar steam temperature 520 °C

Gases outlet temperature 160 °C

63

Page 64: Virtual Sugarcane Biorefinery Report 2011

4.2.2 Investment data

This topic describes the data and assumptions used to develop the investment estimates

for the first generation production plant. The main sources of information were Dedini

(2009), and some recent literature (Sousa and Macedo, 2010).

Data from Dedini (autonomous distillery)

According to Dedini (2009), a preliminary estimate of the investment in an autonomous

distillery could be based on the value of R$ 150 per ton of processed sugarcane (TC)

during the season (2009 values). Thus, for a distillery that processes 2,000,000 TC per

season the investment would be R$ 300 million. At the time of this assessment, the

same kind of estimate was not provided for the annexed distillery case.

According to Dedini, this autonomous distillery uses boilers for the production of 21 bar

steam and the process to produce anhydrous ethanol is based on azeotropic distillation

using cyclohexane.

Table 16 shows the distribution of the investment among the different areas of the plant.

Table 16. Distribution of investment of an autonomous distillery (Dedini, 2009).

Area of the process Fraction (%)

Sugarcane reception, preparation and juice extraction 15

Treatment and concentration of juice, fermentation, distillation and storage of ethanol

17

Steam generation, electricity and industrial power system 30

Buildings, industrial laboratories, maintenance workshop, water treatment

5

Control and automation systems, thermal insulation, process interconnections

7

Products transportation and packing 3

Civil works, mechanical assembly 20

Spare parts, supervision, commissioning, project management, engineering, general services, etc.

3

In order to take into account alternative technologies and improvements on the base

plant (distillery processing 2 million TC/year, R$ 300 million - 2009 price), the

following figures represent the necessary increase of investment (Dedini, 2009):

64

Page 65: Virtual Sugarcane Biorefinery Report 2011

Increase of 30% in the item “Steam generation, electricity and industrial power

system” when 65 bar boilers are used;

Increase of 40% in the item “Steam generation, electricity and industrial power

system” when 90 bar boilers are used;

Increase of 40% in the item “Treatment and concentration of juice, fermentation,

distillation and storage of ethanol” when, instead of azeotropic distillation,

molecular sieves are used to produce anhydrous ethanol.

Data from literature (annexed and autonomous distillery)

The bibliographic source consulted to get information about the required investment to

build sugarcane processing plants producing sugar in addition to ethanol was the book

published by UNICA in 2010 (Sousa and Macedo, 2010). In this book the estimate of

investment for the two kinds of processing facilities, sugar mills with annexed

distilleries and autonomous distilleries, are presented. This estimation is based on

investment data gathered from 29 mills/distilleries which started operation on 2008. Of

the 29 units, 25 were autonomous distilleries (15 had crushing capacity of 1.5 million

tons of sugarcane and 10 had crushing capacity of 3 million tons) and 4 were sugar

mills that produced sugar and ethanol (3 had crushing capacity of 1.5 million tons and

one had crushing capacity of 3 million tons). The data were compiled by the company

Markestrat based on information from the engineering company Procknor. The data

provided for the autonomous distillery is quite close to that provided by Dedini, so the

VSB assumes that the data available for the annexed plant is suitable as well.

According to UNICA (Sousa and Macedo, 2010), the annexed plant has an investment

of US$ 85/TC, which, considering the average 2009 exchange rate of US$ 1 = R$ 2,

leads to R$ 170/TC. The autonomous distillery has a lower investment (US$ 75/TC).

UNICA also provided estimates for the fraction of the investment in the different

sectors of the plants, as shown in Table 17.

Table 17. Fraction of investment of a mill/distillery (Sousa and Macedo, 2010).

Item Fraction of total investment (%)

Equipment 60

Electromechanical set-up 7

65

Page 66: Virtual Sugarcane Biorefinery Report 2011

Civil works 13

Electrical installations 8

Instrumentation/Automation 2

Engineering, services, thermal insulation and painting 10

The investment in equipments differs for mills with annexed plants and autonomous

distilleries, as shown in Table 18.

The data provided by UNICA was based on data of sugarcane processing facilities that

began operation in 2008. Due to the lack of more detailed descriptions about these

facilities, several assumptions were made when estimating the investment using the

VSB. Some of them are listed in Table 19.

Table 18. Investment in equipment for annexed and autonomous distilleries (Sousa

and Macedo, 2010).

Equipment

Fraction of equipment investment (%)

Mill & distillery

Autonomous plant

Steam generation system 25 20

Reception /Extraction system 20 25

Distillery 15 30

Sugar factory 15 0

Turbines, electricity generators 10 10

Other equipment 15 15

Table 19. Assumptions made for investment calculations in the VSB.

Parameter Value

Steam consumption – annexed distillery 550 kg/TC

Steam consumption – autonomous distillery 500 kg/TC

Fraction of juice diverted to sugar production – annexed distillery 50%

Days of operation 167 days/year

The impact of capacity changes was evaluated using equation 2:

(eq. 2)

66

Page 67: Virtual Sugarcane Biorefinery Report 2011

For instance, this equation was used to estimate changes on the investment in the

cogeneration system as a function of steam production in the boilers.

When a reduction on process steam consumption was assumed in the optimized

scenarios, due to thermal integration between process streams, the cost of a heat

exchanger network for energy integration was assumed: an increase of 10% in the item

that includes the distillation was considered and, for the mills, in the item that includes

the sugar production too.

When selling of surplus electricity was considered, it was assumed that the surplus

energy produced by the industrial plant would be conducted by a 40 km transmission

line to a nearby substation of the grid at a cost of R$ 480,000/km (Clemente, 2010), that

is, an overall investment on transmission lines of R$ 19.2 million.

Investment estimates for some scenarios

In order to exemplify the approach to estimate the investment, the methodology will be

used in the following four scenarios: annexed distillery with “basic” (I) and optimized

(II) technology, and autonomous distillery with “basic” (III) and optimized technology

(IV). More details of these scenarios are shown in Table 20.

For the mill with annexed plant, the processed juice was divided equally between sugar

and ethanol production.

Table 20. Main features of the scenarios.

Characteristics Scenario

I II III IV

First generation ethanol production X X X X

50% of the juice diverted to sugar production X X

22 bar boilers X X

90 bar boilers X X

Selling of surplus electricity X X

Dehydration of ethanol via azeotropic distillation X X

Dehydration of ethanol via molecular sieves X X

Heat exchanger network X X

50% of trash used X X

67

Page 68: Virtual Sugarcane Biorefinery Report 2011

Table 21 shows the distribution of investment for plants with the same technology of

basic scenarios I and III, based on data from Sousa and Macedo (2010), for a crushing

capacity of 2,000,000 TC/season.

Table 21. Investment for basic scenarios, based on Sousa and Macedo (2010).

Item Investment (million R$)

Basic annexed distillery

Basic autonomous distillery

Steam generation system 51 36

Reception /Extraction system 41 45

Distillery 31 54

Sugar factory 31 0

Turbines/electricity generators 20 18

Other equipments 31 27

Electromechanical assembly 24 21

Civil works 44 39

Electrical installations 27 24

Instrumentation/Automation 7 6

Engineering services, thermal insulation and painting

34 30

Total (R$) 340 300

The steam production for each scenario (displayed in Table 22), was calculated by

means of simulations using Aspen Plus.

68

Page 69: Virtual Sugarcane Biorefinery Report 2011

Table 22. The steam production for each scenario.

Parameter I II III IV

Steam produced by the boilers (kg/TC) 466 905 451 905

Using these values, the cost of the items “Steam generation system” and

“Turbines/electricity generators” were related to the steam production. Moreover, it was

considered, for scenarios II and IV, the cost with transmission lines, the 40% rise for the

item “Steam generation system” due to the 90 bar boilers; an increase of 40% for

“Distillery”, because of the molecular sieves; and the cost of the thermal integration as

an increase of 10% in the items “Distillery” and “Sugar factory”. The final resulting

investment figures are presented in Table 23.

69

Page 70: Virtual Sugarcane Biorefinery Report 2011

Table 23.Investment estimate for each scenario.

Item Investment (millions of R$)

I II III IV

Steam generation system 49 102 34 72

Reception /Extraction system 41 41 45 45

Distillery 31 43 54 76

Sugar factory 31 31 0 0

Turbines/electricity generators 20 29 17 26

Other equipments 31 31 27 27

Electromechanical assembly 24 24 21 21

Civil works 44 44 39 39

Electrical installations 27 27 24 24

Instrumentation/Automation 7 7 6 6

Engineering services, thermal insulation and painting

34 34 30 30

Transmission line 0 19 0 19

Heat exchanger network 0 7 0 7

Total 337 438 297 365

In 2012 an effort will be made to progressively refine all assumptions and improve the

methodology in order to produce more accurate estimates of investment, using

appropriate cost exponents and indices. Some companies, including Dedini (equipment

manufacturer) and Procknor (engineering company), will be consulted to provide

information about plant costs (total and detailed for sectors and major equipments) and

strategies to take into account the variety of factors that affect them, e.g. type, operating

pressure, and materials of construction for the major equipments.

4.2.3 Basic and optimized plants

One of the analyses carried out in the VSB concerns the optimization of the basic

autonomous distillery, aiming at increasing electricity output. Environmental and

economic analyses were carried out to compare a “base” case, which represents the

average mill existent today in Brazil, and “optimized” annexed and autonomous

sugarcane distilleries; the annexed plant considers 50% of the juice diverted to sugar

production, and the remaining 50% along with molasses are diverted for ethanol

production. The main characteristics of both configurations are shown in Table 24.

70

Page 71: Virtual Sugarcane Biorefinery Report 2011

Table 24. Main characteristics of the basic and optimized plants.

Parameter Base Configuration Optimized Configuration

Dehydration process Azeotropic distillation Molecular sieves

Steam consumption Value from simulation 20 % reduction

Drivers Mechanical (direct) Electric

Boilers 22 bar 90 bar

Use of trash Left in the field 50 % is used in the industry

Surplus bagasse Output (sold) Burnt for production of electricity

It is important to point out that for the studies performed using the VSB in 2011, the

values were inflation-adjusted to 2010: values for 2009 were updated to 2010

considering the inflation rate of 5.91 % in that year. Values in R$ were converted to

US$ considering the average exchange rate of US$ 1 = R$ 1.76. The scenarios

evaluated are listed in Table 25.

Table 25. Scenarios evaluated in the comparison of basic and optimized plants.

Scenarios Description

E50-B 50:50 Annexed plant with basic configuration

E100-B Autonomous distillery with basic configuration

E50 50:50 Annexed plant with optimized configuration

E100 Autonomous distillery with optimized configuration

The main technical results obtained in the simulation are shown in Figure 16.

Figure 16. Main results for basic and optimized autonomous and annexed plants.

71

Page 72: Virtual Sugarcane Biorefinery Report 2011

The investment, estimated according with data provided by UNICA (Sousa and

Macedo, 2010), and the calculated internal rate of return (IRR) are shown in Figure 17.

Figure 17. Investment and IRR of the basic and optimized autonomous and

annexed plants.

Surplus electricity is similar for optimized scenarios, due to the fact that all the bagasse

and sugarcane trash available are burnt. Investment is considerably larger for the

optimized scenarios, but gains on electricity selling leads to larger IRR values for the

optimized plants.

Figure 18 shows the comparative environmental impact scores for ethanol production in

annexed plants and autonomous distilleries, considering base and optimized scenarios.

Allocation between products is done based on their economic values. These scores give

the relative environmental impacts resulting from the LCA of ethanol production

including agricultural production process, sugarcane transport and industrial conversion

in the biorefinery. It is important to mention that differences in the agricultural process

for the different sugarcane biorefinery alternatives were considered in this study because

different amounts of residues (vinasse, ashes, and filter cake mud) are returned to the

field in each scenario and, consequently, different rates of fertilizer application,

agricultural operations and soil emissions are observed (Cavalett et al., 2012).

72

Page 73: Virtual Sugarcane Biorefinery Report 2011

Figure 18. Comparative environmental impact scores for ethanol production in

base and optimized scenarios of annexed plants and autonomous distilleries.

Note: ADP: Abiotic depletion; AP: Acidification; EP: Eutrophication; GWP: Global warming; ODP:

Ozone layer depletion; HTP: Human toxicity; FWAET: Fresh water aquatic ecotoxicity; MAET: Marine

aquatic ecotoxicity; TET: Terrestrial ecotoxicity; POP: Photochemical oxidation

Results show that, in general, a decrease of about 25% in all ethanol production

environmental impact categories is observed in the optimized scenarios for both

autonomous and annexed plants. These figures show that the optimized technologies

evaluated in this study have a great potential to significantly decrease environmental

impacts in the sugarcane biorefinery. They also indicate the importance of applying

strategies for process integration and energy savings in the current base sugarcane

biorefineries. These results are in line with those from Chouinard-Dussault et al. (2011)

that also showed in their study that mass and energy integration can lead to reduced

greenhouse gases emissions from bioenergy production systems.

Considering only base scenarios, ethanol production in the E50-B (basic annexed

plants) presented slightly better environmental impacts in comparison to E100-B (basic

autonomous distilleries) in all the categories except in the AP and EP. This is primarily

due to the fact that more vinasse is produced per ton of sugarcane processed in an

autonomous distillery. Vinasse is normally returned to the sugarcane field for

fertirrigation. Since more vinasse is available in autonomous distilleries, less external

input of fertilizer is required and, consequently, lower impacts in the AP and EP

categories are observed. The same trend in the environmental profile is observed for the

optimized scenarios.

73

Page 74: Virtual Sugarcane Biorefinery Report 2011

Figure 19 shows the comparative environmental impacts breakdown for ethanol

production in the E50-B. These results indicate that sugarcane production and transport

stages have very high environmental impacts in the ethanol production chain and,

consequently, the influence of different industrial alternatives is diluted and almost

negligible when the complete ethanol production chain is considered. For this reason,

environmental impacts for ethanol production considering only the industrial processing

stage are shown in Figure 20 for a better comparison of the differences in industrial

process alternatives for ethanol production.

Figure 19. Comparative environmental impacts breakdown for ethanol production

in the E50-B.

Figure 20. Comparative environmental impact scores for ethanol production in

base and optimized scenarios of annexed plants and autonomous distilleries

considering only the industrial processing stage.

74

Page 75: Virtual Sugarcane Biorefinery Report 2011

Considering the industrial ethanol production processes separately, optimized scenarios,

in general, presented lower environmental impacts, for both annexed and autonomous

plants, in most impact categories, including important ones such as ADP, AP, GWP,

ODP, HTP and POP. However, in the categories EP, FWAET, MAET and TET

industrial optimized scenarios showed higher environmental impacts in comparison to

the base scenarios. This is mainly due to higher impacts of zeolite production used in

molecular sieves for ethanol dehydration process in optimized industrial scenarios in

comparison to production of cyclohexane used in azeotropic distillation in base

industrial scenarios on these specific categories (EP, FWAET, MAET). Both zeolite and

cyclohexane were considered only as input processes, meaning that only the impacts of

production of these materials, and not the local emission due to the use of these different

materials, were accounted for in the assessment due the system boundaries (i.e.

emissions of use of ethanol are not included in this evaluation) and lack of consistent

available data for these emissions. Local emissions of cyclohexane are recognized as an

important source of environmental impacts at the industrial site as well as its emissions

as a contaminant in the ethanol use. Once these emissions are included, results can be

even better in favor to the use of molecular sieves instead of azeotropic distillation for

ethanol dehydration process. Nevertheless, results already indicate that dehydration

process using molecular sieves can be considered an efficient optimization practice to

save energy and reduce environmental impacts of ethanol production process in most of

the considered environmental impact categories.

Comparison of ethanol production process in autonomous distillery and annexed plants

considering base and optimized scenarios indicates that annexed plants show a slightly

better environmental performance in comparison to autonomous distillery in all

categories except in GWP and ODP categories. The higher lime use in annexed plants

for sugar production is responsible for higher impacts in these two categories (GWP and

ODP) in comparison to autonomous distilleries. Higher POP impacts in autonomous

distilleries in comparison to annexed plants are related to more ethanol production in the

distilleries and consequently more ethanol losses in the distillation process. Local

ethanol losses have a strong influence in the POP category. These results indicate that

controlling ethanol losses in the distillation process deserves attention as a point for

improvements, to ensure ethanol production sustainability. In general, LCA results

75

Page 76: Virtual Sugarcane Biorefinery Report 2011

indicate that optimization strategies have potential for a significant decrease in the

sugarcane biorefineries environmental impacts. Besides, ethanol production in annexed

plants presents lower environmental impacts in comparison to autonomous distilleries in

most of the environmental impacts categories evaluated in this study.

4.2.3.1 Average prices in 2010

In 2010, the average prices for the main sugarcane products (sugar and ethanol) in

Brazil changed considerably due to several factors, such as the increase on sugar

demand, climate issues that considerably affected sugarcane production, etc. An

analysis of the impact of changes in the prices on the IRR was carried out; the prices

adopted in the analysis are shown in Table 26.

Table 26. Prices adopted in the analysis for 2010 (CEPEA, 2011).

Product Average prices (past 10 years)

2010 average prices

Sugar (US$/kg) 0.43 0.60

Anhydrous ethanol (US$/L) 0.60 0.61

Hydrated ethanol (US$/L) 0.54 0.53

The IRR of optimized distilleries was calculated considering the 2010 prices; results are

shown in Figure 21, along with the results obtained using the average prices for the past

10 years.

Figure 21. Comparison of the IRR of optimized distilleries considering average

prices for the past 10 years and 2010 prices.

76

Page 77: Virtual Sugarcane Biorefinery Report 2011

Sugar prices in 2010 were quite higher than the average prices for the past 10 years in

Brazil; thus, if this trend was to occur for the entire project lifetime, the annexed plant

would be much more advantageous than the autonomous distillery, contrary to the

results obtained when average prices are used.

4.2.3.2 Sensitivity analyses

Sensitivity analyses to assess the impact of changes in prices of the products (ethanol

and sugar), costs of raw materials (sugarcane and trash) and investment on the results

were carried out for both basic and optimized plants. The results considering the

average prices for the past 10 years as basis are shown in Figure 22.

Figure 22. Impact of changes in prices and costs on the IRR for basic and

optimized autonomous and annexed plants.

77

Page 78: Virtual Sugarcane Biorefinery Report 2011

Optimized plants (scenarios E50 and E100) present smaller range of variations on the

values of the IRR when prices for feedstock (sugarcane and trash), products (ethanol

and sugar) and investment change ±25%, when compared with the base scenarios (E50-

B and E100-B). Thus, the risk is smaller for the optimized plants, which present another

advantageous product – electricity – in their portfolio.

4.2.4 Flexibility in the annexed plant

In Brazil, ethanol production is based in annexed plants, which produce both sugar and

bioethanol from sugarcane, as well as autonomous distilleries producing only ethanol.

Approximately 70% of the sugarcane processing units in Brazil are annexed plants

(BNDES and CGEE, 2008). In the most common scenario, annexed plants operate using

half of the sugarcane juice for sugar production, while the remaining half (along with

final molasses obtained from sugar production process) is used for bioethanol

production. The flexibility of annexed plants to produce more ethanol or more sugar,

depending upon the market demands, is part of the reason for the success of bioethanol

production in Brazil. However, the range of operation of an installed plant is somehow

limited to the existing design restrictions and available facilities; thus, the flexibility

scaling must be carefully defined taking into account process feasibility as well as

economic and environmental considerations. Thus, the potential advantages of the

flexibility of the design of an annexed plant where evaluated in the VSB (Cavalett et al.,

2012): simulations were carried out to represent “fixed” annexed plants with different

fractions of the sugarcane juice diverted to ethanol production (from 30% - E30 to 70%

- E70), along with a flexible plant 70:70 (meaning that sugarcane juice for ethanol

production can vary between 30-70%, depending on the relative ethanol and sugar

market prices. Ethanol and sugar production for the “fixed” plants are shown in Figure

23.

The investment of the plant and the IRR were evaluated for the annexed plants E30 to

E70, and for the flexible plant 70:70 with fixed fractions of juice destined for ethanol

production (E70, 70:70 and E30, 70:70), along with the flexible plant (Flex 70:70)

which varies its sugar and ethanol production from 30:70 to 70:30 according to the

market prices. Results are shown in Figure 24.

78

Page 79: Virtual Sugarcane Biorefinery Report 2011

Figure 23. Ethanol and sugar production in the annexed plants with different

fractions of sugarcane juice diverted to sugar production.

Figure 24. Investment and IRR for different configurations of the annexed plants.

Thus, annexed plants with higher fractions of sugarcane juice destined for ethanol

production (E30) have larger profitability, taking into consideration the average sugar

and ethanol prices paid to the producers for the past 10 years in Brazil. The flexible

plant has about the same IRR as the fixed E50 plant but its investment is considerably

larger. The investment of the flexible plant was calculated assuming that the investment

of the distillery is that required to process 70% of the sugarcane to ethanol, and the

sugar production is equal to that required to process 70% of the sugarcane to sugar

production. In order to verify potential gains that could be obtained with the flexibility,

the impacts of changes in anhydrous ethanol and sugar prices on the IRR for both the

79

Page 80: Virtual Sugarcane Biorefinery Report 2011

enterprises were evaluated (Figure 25). Results in Figure 25 show that the gains on the

IRR of the flexible plant (Flex 70:70) are larger for increases on ethanol and sugar

prices when compared with the fixed annexed plant (E50).

Figure 25. Impact of changes on ethanol and sugar prices on the IRR of the Flex

70:70 and E50.

It was not possible to identify significant differences between the environmental

impacts for ethanol production process in optimized annexed (E50) and flexible (Flex

70:70) scenarios when the agricultural, sugarcane transport and industrialization

inventories are considered. More steel is required for equipment production in the

flexible plant since always 40% of the plant capacity is idle in the studied scenarios;

however, as the environmental impacts of industrial equipment production have small

contribution for the environmental impacts of the entire life cycle of ethanol (because

these impacts are diluted over the plant life span), more flexibility has little influence in

these results (less than 2% in most of environmental impacts categories). However,

environmental impacts only for the industrial processing stage are shown in Figure 26

for better comparison of the differences in the industrial process alternatives. These

results indicate that flexible scenario presents lower environmental impact indicators for

ethanol production in comparison to the optimized fixed annexed plant (E50) scenario,

except on GWP and ODP categories where there is almost no difference. These results

are related to the fact that the flexible scenario produces more sugar than E50, because

of its strategy of economic profit optimization. It is important to notice that these results

80

Page 81: Virtual Sugarcane Biorefinery Report 2011

consider the economic allocation criteria used in this assessment. If profit maximization

in flexible plant is obtained producing more sugar, the share of the environmental

burden to sugar is correspondingly increased in this scenario. The conclusion from the

environmental point of view is that a production strategy of taking advantage of more

flexibility in annexed plants is an interesting alternative, reducing the environmental

impacts in the ethanol production process.

Figure 26. Comparative environmental impact scores for ethanol production in

E50 and Flex 70:70 considering only the industrial processing stage.

Note: ADP: Abiotic depletion; AP: Acidification; EP: Eutrophication; GWP: Global warming; ODP:

Ozone layer depletion; HTP: Human toxicity; FWAET: Fresh water aquatic ecotoxicity; MAET: Marine

aquatic ecotoxicity; TET: Terrestrial ecotoxicity; POP: Photochemical oxidation

4.2.5 Results of the validation procedure for first generation

In this item the main results of the validation of the simulation of the 1G ethanol

production, described in section 3.5.1, corresponding to the information collected in the

Mill A, that produces sugar and alcohol, are presented. The analysis was carried out

considering the month of August 2010, since the characteristics of this month,

concerning amount of rain and sugarcane quality, making it one of the best months for

sugarcane processing in this mill. presents the amount of processed sugarcane and TRS

for ethanol production and sugar and Table 28, the corresponding sugar and ethanol

produced.

81

Page 82: Virtual Sugarcane Biorefinery Report 2011

Table 27. Sugarcane processed in August and accumulated in season – Data from

Mill A’s bulletin.

Destination Monthly (kg) %Accumulated in the

season (kg)%

Crushed for sugar production 428,133,686.00 68.1% 1,989,658,089.00 63.6%

Crushed for ethanol production 200,401,074.00 31.9% 1,137,264,691.00 36.4%

Total crushed 628,534,760.00 100% 3,126,922,780.00 100%

TRS mass processed for sugar production

54,968,723.37 51.6% 227,387,397.02 49.0%

TRS mass processed for ethanol production

51,630,771.93 48.4% 236,960,635.81 51.0%

Total TRS processed 106,599,495.30 100% 464,348,032.83 100%

Table 28. Sugar and ethanol produced in August and accumulated in season –

Data from Mill A’s bulletin.

Destination Monthly % Accumulated in the season %

Ethanol 100% (L) 29,607,440.00 - 134,919,271.00 -

Ethanol as TRS (kg) 45,722,245.39 47.6% 208,353,441.43 49.1%

Sugar 100% (kg) 47,793,950.00 - 205,388,850.00 -

Sugar as TRS (kg) 50,309,304.51 52.4% 216,198,288.67 50.9%

From the input data of sugarcane and output data of sugar and ethanol produced, both

converted to TRS basis, coupled with supplementary data contained in the bulletin and

collected in the process, it was possible to calculate the mass balance for each unit

operation. The mass balance calculations, as cited previously, initially were

accomplished using an Excel spreadsheet, and later, after adjustments, were introduced

in the simulation in Aspen Plus. For intermediates streams, with no information

available, data from the database of CTBE, previously found in the literature or

estimated by experts, were used. These values have been corrected and analyzed

repeatedly, until the best agreement between the calculated values (generated in the

simulation) and the compiled values in the bulletin or process data was achieved. The

next tables provide some information that was used as input in the simulations and the

results obtained. Table 29 provides an example of additional information from other

sources used to complete the simulation in Aspen Plus. In Table 30 are exemplified the

settings of the distillation columns, A, A1, D, B, B1, using only information collected in

the process.

82

Page 83: Virtual Sugarcane Biorefinery Report 2011

Table 29. Example of input data based on information from the database and

processes of the sugar mill for the sugar plant section.

Parameter Value Unit Reference

Pressure vacuum pan 25 in-Hg Mantelatto, 2011

Brix of A massecuite 91.69 °Brix

Mill A, 2010

Brix of B massecuite 91.09 °Brix

Brix of C massecuite 92.06 °Brix

Brix of A molasses 77.00 °Brix

Brix of B molasses 77.05 °Brix

Brix of C molasses 79.8 °Brix

Table 30. Sample data entered based only on information from bulletins and

process - Configuration processes of distillation section.

Configuration of A column

Parameter Value Unit

Number of stages 20  

Pressure on the top 139.3 kPa

Pressure in the bottom 152.5 kPa

Stage of flegma outlet 2  

Configuration of A1 column

Parameter Value Unit

Number of stages 8  

Pressure on the top 136.3 kPa

Pressure in the bottom 139.3 kPa

Configuration of D column

Parameter Value Unit

Number of stages 6  

Pressure on the top 133.8 kPa

Pressure in the bottom 136.3 kPa

Configuration of B, B1 columns

Parameter Value Unit

Number of stages 60  

Pressure on the top 116 kPa

Pressure in the bottom 145.42 kPa

Feed stage of vapor/liquid phlegm/ alcoholic solution 22  

Stage of fusel oil output 54  

Stage of hydrated alcohol output 2  

Feed stage of the heavy phase recovered from fusel oil separator 22  

83

Page 84: Virtual Sugarcane Biorefinery Report 2011

Tables 31-37 show the comparison between results from simulation and bulletin data.

Table 31. Comparison between the results of brix, pol and moisture, obtained for

the stage of preparation and extraction of sugarcane, with the bulletin data.

  Brix Pol Moisture

Stream Bulletin Aspen Deviation Bulletin Aspen Deviation Bulletin Aspen Deviation

Total Cane 0.1790 0.1790 0.00% 0.1546 0.1546 0.00% 0.6870 0.6870 0.00%

Bagasse A 0.0221 0.0221 0.00% 0.0165 0.0165 0.00% 0.5145 0.5145 0.00%

Bagasse B 0.0255 0.0255 0.15% 0.0193 0.0193 0.00% 0.5084 0.5084 0.00%

Primary juice A 0.1967 0.1944 -1.17% 0.1738 0.1743 0.29% - - -

Secondary juice A 0.1384 0.1366 -1.28% 0.1188 0.1182 -0.48% - - -

Primary juice B 0.2054 0.2031 -1.10% 0.1826 0.1831 0.28% - - -

Secondary juice B 0.1299 0.1303 0.34% 0.1119 0.1114 -0.45% - - -

Table 32. Comparison between the results of RS, TRS and fiber, obtained for the

preparation and extraction of sugarcane, and data provided in the bulletin.

  RS TRS Fiber

Stream Bulletin Aspen Deviation Bulletin Aspen Deviation Bulletin Aspen Deviation

Total Cane 0.0058 0.0058 0.00% 0.1696 0.1685 -0.63% 0.1340 0.1340 0.00%

Bagasse A - - - 0.0191 0.0191 0.00% 0.4634 0.4634 0.00%

Bagasse B - - - 0.0216 0.0216 0.00% 0.4661 0.4661 0.00%

Table 33. Comparison between the results of TRS and moisture, obtained for the

stage of juice treatment, and data provided in the bulletin.

  TRS Moisture

Stream Bulletin Aspen Deviation Bulletin Aspen Deviation

Clarified juice for sugar 0.1780 0.1827 2.63% - - -

Clarified juice for alcohol 0.1081 0.1084 0.32% - - -

Filter cake 0.0214 0.0215 0.40% 0.7114 0.7113 -0.01%

Table 34. Comparison between the results of brix and pol, obtained for the stage of

juice treatment, with the bulletin data.

  Brix Pol

Stream Bulletin Aspen Deviation Bulletin Aspen Deviation

Clarified juice for sugar 0.1834 0.1834 0.02% 0.1634 0.1684 3.05%

Clarified juice for alcohol 0.1135 0.1135 0.04% 0.0979 0.0992 1.28%

Filtered juice 0.0799 0.0796 -0.36% 0.0653 0.0666 2.00%

Filter cake - - - 0.0184 0.0184 0.08%

84

Page 85: Virtual Sugarcane Biorefinery Report 2011

Table 35. Comparison between the results of brix, pol and TRS, obtained for the

stage of juice evaporation, with the bulletin data.

  Brix Pol TRS

Stream Bulletin Aspen Deviation Bulletin Aspen Deviation Bulletin Aspen Deviation

Pre-evaporated juice for sugar

0.2594 0.2594 0.00% 0.2312 0.2381 2.99% 0.2434 0.2583 6.13%

Pre-evaporated juice for alcohol

0.1599 0.1599 0.00% 0.1380 0.1396 1.19% - - -

Syrup 0.5623 0.5614 -0.16% 0.5038 0.5154 2.29% 0.546 0.5591 2.40%

Table 36. Comparison between the obtained results and bulletin data for must.

  BRIX TRS

Stream Bulletin Aspen Deviation Bulletin Aspen Deviation

Must 0.1956 0.1956 -0.01% 0.1829 0.18 -1.57%

Table 37. Comparison between the obtained results and bulletin data for CHP.

Stream Unit Bulletin Aspen Deviation

Energy produced kWh 21,437,200 21,437,200 0.00%

Energy consumed kWh 8,885,950 8,885,949 0.00%

Energy exported kWh 12,553,490 12,551,251 -0.02%

Production of 65 kgf/cm² steam kg steam/kg bagasse 2.10 2.10 0.01%

Production of 22 kgf/cm² steam kg steam/kg bagasse 1.80 1.80 0.00%

Deaerator steam kg/h 5000 5000 0.00%

In Table 38 the main results of alcohol production are compared, and from its analysis it

is possible to verify that the differences between the simulation and the bulletin data are

very small in terms of volumetric flow. The specification of these alcohols (in terms of

°INPM) is in agreement with the alcohol that is produced in Mill A, although much

information about the distillation columns process had not been provided.

Table 38. Comparison of the results obtained for the production of alcohol from

the simulation on Aspen Plus with data from the bulletin.

Stream Unit Bulletin Aspen Deviation

Hydrated ethanol m3/h 15.46 15.59 0.88%

Anhydrous ethanol m3/h 25.03 24.88 -0.63%

Absolute alcohol m3/h 39.79 40.05 0.65%

Hydrated ethanol °INPM 93.39 92.74 -0.70%

Anhydrous ethanol °INPM 99.82 99.82 0.00%

85

Page 86: Virtual Sugarcane Biorefinery Report 2011

Table 39. Comparison of the results obtained for the sugar production with data

from the bulletin.

Stream Unit Bulletin Aspen Deviation

Sugar kg/h 64,441.73 66,147.12 2.65%

Sugar 100% kg/h 64,172.92 65,641.28 2.29%

Table 40. Comparison of the results obtained for the intermediate streams in sugar

production with data from the bulletin.

  Brix Pol

Stream Bulletin Aspen Deviation Bulletin Aspen Deviation

Massecuite A 0.9169 0.9169 0.00% 0.8213 0.8583 4.51%

Massecuite B 0.9109 0.9109 0.00% 0.7494 0.8064 7.61%

Massecuite C 0.9206 0.9206 0.00% 0.6856 0.6949 1.36%

Magma B 0.9023 0.9824 8.87% 0.8555 0.9392 9.79%

Magma C 0.8676 0.9327 7.50% 0.8210 0.8139 -0.86%

Molasses A 0.7700 0.7750 0.65% 0.6167 0.6658 7.96%

Molasses B 0.7705 0.7705 0.01% 0.5204 0.5816 11.77%

Final molasses 0.7980 0.7981 0.02% 0.4629 0.5200 12.34%

Sugar - - - 0.9969 0.9924 -0.46%

The main results of sugar production (Table 39, for the final products, and Table 40 for

intermediate streams) are compared, and from its analysis it is possible to verify that the

sugar flow from the simulation is in agreement with the data from the bulletin. Some

intermediate streams showed some deviations compared to the bulletin data, but these

differences can be explained by the fact that the sugar production step in the Mill A is

very complex and not many details were provided in the bulletin. Because of this lack of

data, some assumptions had to be made, so these deviations were expected and,

therefore, these results can be considered satisfactory.

On Table 41 the main yields of the mill are displayed.

Table 41. Comparison of yields calculated from the results of the simulation on

Aspen Plus with data from the bulletin.

Yield on TRS base Bulletin Aspen Deviation

Total 89.92% 91.28% 1.51%

Sugar Plant 91.49% 93.82% 2.54%

Alcohol Session 86.57% 87.11% 0.62%

86

Page 87: Virtual Sugarcane Biorefinery Report 2011

Table 41 indicates that the yields calculated from simulation results were very similar to

those given in the bulletin, but presenting a positive deviation. It is important to point

out that the agreement between the values is satisfactory, taking into account the level

of details of the simulation and the lack of information of the plant bulletins.

Conclusions – validation procedure of the first generation plant

Calculation of the mass balance of the Mill A has faced some difficulties, since the

bulletin provided by the mill does not contain sufficient information about the

parameters required for its realization. Furthermore, the fact that the bulletin does not

present information concerning the flowsheet of the process, combined with recycles

that are present, generated an additional difficulty in performing the mass balance. The

parameters that were not found in the bulletin were estimated, based on data from the

database developed by the VSB and assessed by CTBE specialists, or provided by the

mill. The simulation was constructed on the basis of existing simulations within VSB

and modified to represent the process of the chosen mill.

Both the results obtained in the simulation as well as those obtained in the mass balance

present small discrepancies in relation to data contained in the bulletin. Such differences

were already expected, since several assumptions were made and various parameters

were estimated for the calculation of the mass balance, as well as for the development of

the simulation. However, it turns out that these discrepancies are of relatively small

magnitude and serve with good precision the purposes of this validation.

4.2.6 Harvest extension using sweet sorghum

Since the sugarcane processing plant operates only during the harvest season (roughly 6

to 7 months per year), equipment are idle during several months, what leads to higher

investment costs associated with the production of ethanol. An alternative to the current

situation found in the Brazilian sugarcane industry would be the use of a drop-in

feedstock for ethanol production during those months where sugarcane is not harvested;

sweet sorghum (Sorghum bicolor L) can be such feedstock, since its TRS can be

converted to ethanol and it is cultivated in different times of the year. Therefore, VSB

was also used to evaluate the impact of extending the operation of the sugarcane plant

using sweet sorghum as feedstock for ethanol production in an autonomous distillery.

87

Page 88: Virtual Sugarcane Biorefinery Report 2011

Despite some sparse research, there are several uncertainties regarding sweet sorghum,

since it is not yet produced in large scale in Brazil, or used as feedstock for ethanol

production. Estimates where done in the VSB considering data provided by specialists

(Rossell, 2011); different scenarios where constructed to assess the potential

improvement of the sorghum quality and its processing technology, which will naturally

occur if it is going to be used as feedstock for ethanol production, just as happened for

sugarcane decades ago. The main characteristics of the sorghum composition and

process yield adopted in each scenario are shown in Table 42.

Table 42. Sweet sorghum main characteristics and process yield (Rossell, 2011).

Parameter Scenario 1 Scenario 2 Scenario 3

Sorghum TRS (kg/t) 125 137.5 150

Sorghum fiber (kg/t) 138.5 142.0 145.4

Sorghum bagasse moisture (%) 52 50 50

Global yield (%) 78.34 81.24 83.89

An optimized first generation autonomous distillery was evaluated (90 bar boilers,

adsorption on molecular sieves, juice concentration on multiple effect evaporators,

reduced steam consumption, recovery of 50% of sugarcane trash, electric drivers,

condensing-extracting steam turbines), processing 2 million tons of sugarcane (plus

50% of the trash, during 167 days/year) and 0.72 million tons of sweet sorghum (which

corresponds to 500 tons/h of sweet sorghum during 60 days/year), producing anhydrous

ethanol and electricity.

The same equipment used in the autonomous sugarcane distillery was used for ethanol

production from sweet sorghum; thus, no increase on investment was assumed for

harvest extension in all assessed scenarios.

The following technical assumptions were made in this analysis:

sweet sorghum fibers composition is the same of the sugarcane fibers (cellulose,

hemicellulose and lignin content);

boiler efficiency is the same for both sweet sorghum and sugarcane bagasse

burning;

equipment may work with different efficiencies depending on the feedstock; for

instance, extraction efficiency for sugarcane is 96%, while in scenario 1,

88

Page 89: Virtual Sugarcane Biorefinery Report 2011

extraction efficiency for sweet sorghum is equal to 92%;

no sweet sorghum trash is recovered and used in the industry for production of

energy;

since the steam and electricity generation during the 60 days the plant operates

with sweet sorghum is much smaller than during the 167 days the plant operates

with sugarcane and trash, only part of the cogeneration system (for instance,

only one boiler instead of two) would be used while processing sweet sorghum;

electricity consumption in sweet sorghum processing is proportional to the

amount of sweet sorghum processed, and equal to that adopted in sugarcane

processing (30 kWh/t).

Concerning the economic analysis, the following assumptions were made:

sweet sorghum price was calculated as the same price of the sugarcane on a TRS

basis; an analysis of the impact of ±15% variation in the price was made;

no changes on labor costs and equipment investment were considered;

inputs costs were calculated as a proportion of the amount of ethanol produced.

Sugarcane cost of R$ 40.91/TC was considered; since its TRS content is 152 kg/TC, the

calculated TRS price is R$ 0.27/kg TRS. Thus, each scenario has a different price for

sweet sorghum. The results obtained for ethanol and electricity production for the

autonomous distillery processing sugarcane (scenario 1G) and processing sweet

sorghum with different quality and yields (scenarios 1-3) during 60 days of the

sugarcane off-season are shown in Figure 27.

Figure 27. Ethanol and electricity production in the optimized autonomous first

generation (1G) and scenarios for sweet sorghum.

89

Page 90: Virtual Sugarcane Biorefinery Report 2011

In the economic analysis, IRR and production costs were calculated for Scenarios 1 – 3

considering the integrated process (using sugarcane and sweet sorghum). Calculated

sorghum prices, IRR and ethanol production costs are shown in Table 43.

Table 43. Sweet sorghum prices, IRR and ethanol production costs for the harvest

extension scenarios with sweet sorghum.

Parameter 1G Scenario 1 Scenario 2 Scenario 3

Sweet sorghum price (US$/t) - 19.06 20.96 22.87

IRR (% per year) 15.0% 17.9 % 18.5% 18.9%

Ethanol production cost (US$/L) 0.37 0.36 0.36 0.36

Due to the uncertainties on sweet sorghum price, sensitivity analyses were carried out to

evaluate the impact of changes of ±15% on its price; results are shown in Figure 28.

Figure 28. Impact of ±15% changes on sweet sorghum prices in the IRR of the

scenarios evaluated with harvest extension.

Therefore, even with an increase of 15% in sweet sorghum price and considering the

worst situation (Scenario 1, which has the poorest sorghum quality and lowest

processing yields), sugarcane harvest extension in an autonomous distillery using sweet

sorghum provides more gains (IRR higher than 17%) that those obtained with no

harvest extension (IRR of 15%).

90

Page 91: Virtual Sugarcane Biorefinery Report 2011

4.3 Industrial phase - second generation: biochemical route

From the beginning the major efforts in the VSB construction were devoted to the

simulation of the second generation ethanol production, having in mind that the

development of this technology is one of the major goals of the Brazilian Bioethanol

Science and Technology Laboratory – CTBE (Dias et al., 2011b and Dias et al., 2012).

In the Brazilian sugarcane industry, large amounts of lignocellulosic materials

(sugarcane bagasse and trash) are produced during sugar and ethanol production.

Sugarcane bagasse is currently used as fuel, supplying the energy required for the plant,

while sugarcane trash, previously burnt to improve the harvest procedure, is today

mostly left in the field for agricultural purposes (Alonso Pippo et al., 2011). Therefore,

banning of burning practices significantly improved the amount of sugarcane trash

available for use in the industry (Seabra et al., 2010).

Second generation bioethanol, produced from lignocellulosic materials, has been

envisioned as the biofuel with the largest potential to replace fossil derived fuels with

lower impacts than the conventional, first generation bioethanol (Martín and

Grossmann, 2011; Ojeda et al., 2011; Seabra et al., 2010). Besides being cheap and

abundant, production of lignocellulosic materials has limited competition with food

production, thus they do not compromise food security (Alvira et al., 2010; Čuček et al.,

2011). In the sugarcane industry another advantage for the use of lignocellulosic

material as feedstock for bioethanol production is clear: since they are already available

at plant site (bagasse), or close to it (trash), second generation bioethanol production

may share part of the infrastructure where first generation ethanol production takes

place (for instance concentration, fermentation, distillation, storage and cogeneration

facilities) – this alternative is the integrated first and second generation ethanol

production. In addition, potential fermentation inhibitors generated in the lignocellulosic

material pretreatment may have a minor effect on fermentation yields, since the

hydrolyzed liquor may be fermented mixed with sugarcane juice, diluting these

inhibitors. Nevertheless, the recalcitrance of lignocellulosic materials hinders the

transformation of cellulose into fermentable sugars; the second generation ethanol

production processes therefore require more sophisticated equipment and investment

than conventional first generation ethanol production (Nigam and Singh, 2011).

91

Page 92: Virtual Sugarcane Biorefinery Report 2011

Since second generation ethanol production is not yet a commercial reality, different

process configurations have been investigated in order to develop efficient conversion

processes. In the VSB different configurations of the second generation production

process, integrated or not with first generation ethanol production, where evaluated. The

configurations evaluated are described in the next sections.

4.3.1 Process description - Second generation

Second generation ethanol production requires pretreatment and hydrolysis of the

lignocellulosic material. The available lignocellulosic material is sent to the

pretreatment operation, comprised by steam explosion followed, or not, by an alkaline

delignification step (depending on the configuration). In the steam explosion, most of

the hemicellulose is hydrolyzed into pentoses, with small cellulose losses and no lignin

solubilization (Ojeda et al., 2011). The pretreated solids are separated from the obtained

pentoses liquor using a filter; pentoses are either fermented into ethanol or biodigested

(producing biogas for the cogeneration system), depending on the configuration.

In some configurations the pretreatment is followed by an alkaline delignification step,

where most of the lignin is removed from the pretreated material decreasing its

inhibitory effects on the following enzymatic hydrolysis step (Rocha et al., 2012).

The solid fraction obtained after filtration is sent to enzymatic hydrolysis. The material

produced after the enzymatic hydrolysis is separated in two fractions, the hydrolyzed

liquor, rich in glucose, and the unreacted solids (residual cellulignin); the latter is used

as fuels in the cogeneration system. In the integrated process, the hydrolyzed liquor is

mixed with sugarcane juice; thus, concentration, fermentation, distillation and

dehydration operations are shared between both processes. The same conversion of first

generation fermentation reactions (conversion of glucose to ethanol) was assumed for

the second generation process, both in the integrated and stand-alone configurations.

Three technological scenarios were created in order to evaluate second generation

ethanol production from sugarcane bagasse and trash, considering different yields,

solids loading on hydrolysis and destination of pentoses (biodigestion into biogas to be

used in the cogeneration system or fermentation into ethanol). Two levels for hydrolysis

were considered: current technology (low yield, low solids loading) and a second level,

potentially available in 2015 (higher yields and solids loading, lower investment and

92

Page 93: Virtual Sugarcane Biorefinery Report 2011

lower enzyme cost). In both scenarios steam explosion is the pretreatment method, but

in the 2015 technology scenario it is followed by an alkaline delignification step, which

leads to higher yields on the subsequent enzymatic hydrolysis step due to removal of

lignin (Yin et al., 2011). Pentoses produced during pretreatment are either biodigested,

producing biogas for use as a fuel, increasing the amount of surplus lignocellulosic

material, or fermented into ethanol. Fermentation of pentoses into ethanol is assumed to

be available only at the most futuristic scenarios (possible scenario in 2015 – 2020)

because conventional microorganisms employed in industrial fermentation processes are

not able to ferment pentoses. Gírio et al. (2010) provided an extensive review on the

processes through which hemicellulose may be converted into ethanol. Fermentation

yields of 95% have been reported, but several problems (microorganism tolerance to

ethanol and other inhibitors and low productivity among them) remain to be solved in

order for those high yields to be achieved at industrial operations. In the VSB a

conversion of 80% of pentoses to ethanol was adopted in the scenarios where pentoses

fermentation is assumed.

A block flow diagram of the integrated first and second generation ethanol production

from sugarcane evaluated in the VSB was previously shown in Figure 9. The main

parameters adopted in the VSB for the different configurations of the 2nd generation

ethanol production process (current and 2015 – 2020 technologies) are shown in Table

44.

93

Page 94: Virtual Sugarcane Biorefinery Report 2011

Table 44. Parameters adopted in the simulation of the 2nd generation process.

Parameter Value

Pretreatment – hemicellulose conversion 70 %

Pretreatment – cellulose conversion 2 %

Pretreatment – temperature 190 °C

Pretreatment – reaction time 15 min

Alkaline delignification – lignin solubilization (2015 technology) 90 %

Alkaline delignification – temperature (2015 technology) 100 °C

Alkaline delignification – reaction time (2015 technology) 1 h

Alkaline delignification – solids loading (2015 technology) 10 %

Alkaline delignification – NaOH content (2015 technology) 1 % (m/V)

Hydrolysis – cellulose conversion (current/2015 technology) 60 / 70 %

Hydrolysis – hemicellulose conversion (current/2015 technology) 60 / 70 %

Hydrolysis – solids loading (current/2015 technology) 10 / 15 %

Hydrolysis – reaction time (current/2015 technology) 72 / 48 h

Pentose biodigestion – chemical oxygen demand (COD) removal 70 %

Pentose fermentation to ethanol conversion 80 %

Filters – efficiency of solids recovery 99.5 %

Filters – soluble solids losses 10 %

Electricity consumption 24 kWh/t LMa

a LM: lignocellulosic material for second generation (wet basis)

4.3.2 Investment data - Second generation

In the Brazilian scenario, where part of the potential feedstock for 2G ethanol

production, i.e. sugarcane bagasse, is already available at conventional 1G production

plants, an integrated 1G and 2G production process seems to be an immediate option as

the latter may share part of the infrastructure already available in the 1G ethanol plant

(for instance, concentration, fermentation, distillation, storage and cogeneration

facilities). So, the first step to make a good estimate about the investment cost of the 2G

ethanol plant is to prepare a good estimate of 1G plants (annexed and autonomous

plants). With these figures it is possible to complete the computational simulation of the

process and carry out economic evaluation of different technological scenarios, for

example, comparing their internal rate of return or the production cost of

ethanol/electricity.

94

Page 95: Virtual Sugarcane Biorefinery Report 2011

For the second generation ethanol production plant, two investment figures were

considered; these were estimated by CGEE (2009), who evaluated the investment for a

second generation ethanol production plant using sugarcane bagasse as feedstock,

integrated with a conventional first generation ethanol production unit processing

sugarcane. The investment includes the equipment required for bagasse collection,

storage area, conveying, cleaning, classification, transportation, pretreatment and

hydrolysis operations; the hydrolyzed liquor is concentrated and fermented in a mixture

with sugarcane juice. The additional investment on concentration, fermentation,

distillation and ethanol storage for the first generation plant is included in the second

generation investment figures, and utilities are provided by the first generation plant

(CGEE, 2009).

Two technological levels were evaluated by CGEE (2009): 2015 and 2025,

representing, for example, the reduction of the reaction time and the fermentation of

pentoses. The investment in equipments and processing capacity are presented on Table

45.

Table 45. Estimate of equipment investment and processing capacity of 2G plants

(CGEE, 2009).

Parameter2015

Technology2025

Technology

Investment (million R$) 124 133

Processed bagasse (thousand tonnes/year) 268 426

The first value, 2015 technology, was used to calculate the investment required on the

current hydrolysis technology scenario, while the second, 2025 technology, represents

the expected hydrolysis technology. This reduction on the investment required for the

hydrolysis plant is estimated based on the improvements of the technology over the

years, mainly due to the decrease on the hydrolysis reaction time (from 72 to 48 h),

which decreases the size of the hydrolysis reactors and thus the equipment costs (CGEE,

2009). The capacity-ratio exponent of 0.6 was considered for estimating the investment

variation for different processing capacities, calculated in each scenario.

It is important to highlight that the investment data provided by CGEE (2009) considers

the following aspects:

95

Page 96: Virtual Sugarcane Biorefinery Report 2011

the 2G process is integrated to a 1G autonomous distillery which processes

12,000 TC/day (500 TC/h);

the values presented include the installation costs;

the 2G unit is composed by: a system to collect, store and transport the bagasse,

mineral impurities removal, material classification, pretreatment and hydrolysis;

separated hydrolysis and fermentation;

utilities are provided by the 1G facility;

enzymes are purchased from a supplier (in-house production is not considered);

the calculated investment for the 2G plant takes into account the necessary

investment to increase the capacity of some areas of the 1G plant, for example:

fermentation, distillation, dehydration, vinasse treatment and ethanol storage.

4.3.3 Integrated first and second generation

The second generation ethanol production process was evaluated in an integrated

process with an optimized first generation autonomous distillery (90 bar boilers,

adsorption on molecular sieves, juice concentration on multiple effect evaporators,

reduced steam consumption, recovery of 50% of sugarcane trash, electric drivers,

condensing-extracting steam turbines), processing 2 million tons of sugarcane and 50%

of the trash produced in the field, during 167 days/year. The scenarios evaluated are

illustrated in Table 46.

Table 46. Scenarios evaluated in the integrated first and second generation ethanol

production from sugarcane.

Process 1 2 3 4

Optimized 1st generation X X X X

“Current” 2nd generation technology X

“Future” 2nd generation technology X X

Pentoses biodigestion X X

Pentoses fermentation X

Simplified schemes illustrating the fraction of lignocellulosic material destined for

cogeneration or second generation ethanol production, energy and ethanol produced in

the four scenarios are shown in Figure 29.

96

Page 97: Virtual Sugarcane Biorefinery Report 2011

Figure 29. Simplified scheme illustrating lignocellulosic material use, energy and

ethanol production in scenarios 1 through 4.

97

Page 98: Virtual Sugarcane Biorefinery Report 2011

As indicated, in Scenario 1, all the bagasse and trash available are burnt for production

of steam and electricity. Steam demand is relatively different on each scenario, and is

higher for Scenario 2 – solids’ loading in this scenario is the lowest among the

evaluated configurations. More material is hydrolyzed in Scenario 3 than in Scenario 4,

due to the fact that biogas is available for use as a fuel. Ethanol production from

pentoses in Scenario 4 increases the steam demand of the process, thus contributing to

an increase on the fraction of lignocellulosic material destined for cogeneration when

compared with Scenario 3.

Overall ethanol and electricity surplus on each scenario are shown in Figure 30.

Investment, IRR and ethanol production costs are presented on Figure 31 and Figure 32.

Figure 30. Anhydrous ethanol and electricity production in the scenarios evaluated

for the integration of second generation ethanol production in an optimized

autonomous distillery.

Figure 31. Investment and IRR in the scenarios evaluated for the integration of

second generation ethanol production in an optimized autonomous distillery.

98

Page 99: Virtual Sugarcane Biorefinery Report 2011

Figure 32. Ethanol production costs in the scenarios evaluated.

Scenario 2, which represents the integrated first and second generation ethanol

production with the current hydrolysis technology, has the largest investment among the

studied scenarios. The use of advanced hydrolysis technologies in the integrated process

improves ethanol production (Scenarios 3 and 4), but only when pentoses fermentation

takes place (Scenario 4) the IRR is larger than that of the optimized first generation

autonomous distillery (Scenario 1). In addition, ethanol production cost in Scenarios 3

and 4 are lower than scenario 1 (optimized1st generation plant).

Figure 33 compares the environmental impact indicators obtained for the evaluated

scenarios. These scores give the comparison of environmental impact resulting from the

LCA of ethanol production including agricultural production process, transport of

sugarcane, raw-materials, consumables and industrial residues recycled to the field and

industrial conversion in the biorefinery.

Figure 33. Comparative environmental impact indicators of the different

scenarios.

99

Page 100: Virtual Sugarcane Biorefinery Report 2011

Results show that integrating first and second generation processes using current

technology for second generation ethanol production and pentoses biodigestion

(Scenario 2) presents the best environmental indicators for most categories among all

the evaluated alternatives. Higher environmental impacts presented in the future second

generation ethanol scenarios (3 and 4) are mainly related to high sodium hydroxide

consumption for alkaline delignification prior to hydrolysis. These results show that

technological improvements are necessary in this process for improving environmental

sustainability of the future second generation ethanol production; if sodium hydroxide

recycling or other methods of delignification using environmental friendly solvents are

employed, the advanced second generation ethanol production considered in this study

will present lower environmental impacts. It is also important to highlight that the

database used in this assessment was updated with Brazilian sodium hydroxide

production data, which presents environmental impacts remarkably lower than

European and American production processes according to preliminary update of these

life cycle inventories performed at CTBE.

A sensitivity analysis was performed to assess the impact of selected environmental

impact categories as well. In this analysis Scenario 4 was selected because it presented

the best results in the economic evaluation. Three important environmental impact

categories were selected: Global Warming Potential (GWP), Eutrophication Potential

(EP) and Human Toxicity Potential (HTP) (Figure 34). Quantity variation in five

important process inputs were evaluated: sodium hydroxide, zeolite and equipment

weight (steel) for the ethanol industrial process; and nitrogen fertilizer and diesel used

in the agricultural operations for sugarcane growing and harvesting. As expected by the

results already discussed in this study, sodium hydroxide is the most impacting

parameter in GWP, EP and HTP. Nitrogen fertilizers and diesel used in the agricultural

operations also play an important role in the three environmental impacts evaluated

while zeolite and equipment used in the industrial process have minor influence in the

ethanol production environmental impacts. These conclusions were confirmed by the

sensitivity analysis performed (Figure 34).

Based on the sensitivity analysis, scenarios 3 and 4 were evaluated considering that all

the sodium hydroxide is recovered in the industrial production process (no sodium

hydroxide is considered as input to the process; however, no addition processes for

100

Page 101: Virtual Sugarcane Biorefinery Report 2011

sodium hydroxide recovery is included in the inventory). Results indicate that ethanol

production in scenario 4 presents the lowest environmental impacts among the

evaluated scenarios, if no sodium hydroxide is consumed in this process.

Figure 34. Sensitivity analyses for Global Warming Potential (GWP) (a),

Eutrophication Potential (EP) (b) and Human Toxicity Potential (HTP) (c) for

scenario 4 (integrated first and second generation ethanol production from

sugarcane, using advanced hydrolysis technologies and pentoses fermentation).

4.3.4 Stand-alone second generation

Ethanol production from lignocellulosic materials is often conceived considering

independent, stand-alone production plants; the VSB analyzed this configuration of the

101

Page 102: Virtual Sugarcane Biorefinery Report 2011

second generation ethanol production process from sugarcane bagasse and trash as well.

This plant receives feedstock (surplus bagasse and trash) from an optimized first

generation autonomous distillery, which produces only the amount of steam required to

run the process (back-pressure steam turbines are employed). In order to evaluate this

configuration, different scenarios were simulated; their characteristics are shown in

Table 47.

Table 47. Scenarios evaluated in the integrated first and second generation ethanol

production from sugarcane.

Process 1G 1G-LM 2G 1G2G

Optimized 1st generation X X X

Sell of surplus lignocellulosic material X

“Future” 2nd generation technology X X

Pentoses fermentation X X

An additional scenario (1G+2G) was evaluated to represent the real stand-alone plant,

including the first generation plant producing the feedstock and the stand alone second

generation plant. This scenario represents separate first and second generation plants

and is compared with the integrated first and second generation process (1G2G)

described in the previous section (scenario 4).

Results for ethanol and electricity production are shown in Figure 35.

Figure 35. Ethanol and electricity production in the scenarios evaluated to

compare stand-alone 2nd generation (2G), the equivalent stand-alone plant

including the first generation producing lignocellulosic material (1G + 2G) and the

integrated 1st and 2nd generation (1G2G) plant.

102

Page 103: Virtual Sugarcane Biorefinery Report 2011

The equivalent stand-alone plant (1G+2G) has about the same ethanol and electricity

outputs as the integrated first and second generation process (1G2G). The first

generation plant selling surplus lignocellulosic material (1G-LM) has the same ethanol

output as the optimized first generation plant (1G), but the electricity production is

much smaller since only the amount of lignocellulosic material required to produce

steam to meet the process demand is burnt.

The scheme for the stand-alone second generation process is shown in Figure 36.

Figure 36. Simplified scheme illustrating lignocellulosic material use, energy and

ethanol production in the stand-alone second generation plant.

Investment and IRR of each scenario are shown in Figure 37.

Figure 37. IRR and investment for each scenario in the evaluation of stand-alone

second generation plants.

As illustrated in Figure 37, the 2G stand-alone plant has the lowest IRR among the

evaluated scenarios. The equivalent stand-alone process with the first generation plant

103

Page 104: Virtual Sugarcane Biorefinery Report 2011

producing lignocellulosic material (1G+2G) has a higher IRR, but still it is much

smaller than the one of the integrated first and second generation plant (1G2G). This is a

consequence of the higher investment of scenario 1G+2G, which is the highest among

all the alternatives: because this process has two separate units for ethanol fermentation,

distillation and cogeneration, its investment is much larger than that of the integrated

process. It is important to notice that the cost of the feedstock (lignocellulosic material)

is calculated as the equivalent opportunity price in the scenario 1G-LM to reach the

same profitability obtained selling electricity in scenario 1G (the IRR of both scenarios

is the same).

4.3.5 Second generation integrated in a sugar mill

Another analysis concerning second generation integrated in a sugarcane facility

considered the integration with a sugar mill, a plant that produces only sugar and no

ethanol, selling molasses as a by-product. In the integrated process, the future

technology for second generation was considered, including pentoses fermentation to

ethanol. Therefore, sugars derived from cellulose and hemicellulose, as well as

molasses, are used as feedstock for ethanol production in the integrated process (sugar

mill + 2G).

Ethanol, sugar and electricity production for each scenario is shown in Figure 38.

Figure 38. Ethanol, sugar and electricity production in the sugar mill coupled, or

not, with second generation ethanol production.

104

Page 105: Virtual Sugarcane Biorefinery Report 2011

Economic analysis was carried out as well. The average price for the past 10 years (US$

0.11/kg) (IBGE, 2011) was adopted for sugarcane molasses in the evaluation of the

sugar mill. Results of the economic analysis are illustrated in Figure 39.

Figure 39. IRR and investment for the sugar mill and the sugar mill coupled with

second generation ethanol production.

As shown in Figure 39, the IRR of the sugar mill increases significantly (from around

16 to 18.5% per year) when a second generation plant is included, producing ethanol

from the lignocellulosic fraction of the sugarcane as well as from sugar molasses.

4.4 Sugarchemistry route – butanol production

The sugarchemistry route was first developed in the VSB through the creation of a

product portfolio, based on three major references in the literature: the Brazilian

“Química Verde no Brasil” (CGEE, 2010), the Dutch Brew Project (Patel, 2006) and a

report by the USDOE (PNNL and NREL, 2004). Chemicals derived from sugars are

ranked in each of these references according to different categories, such as number of

patents, technology level, feedstock type and costs, potential of replacing fossil derived

chemicals, etc. Among the most important chemicals listed in these references are the

acetic, lactic, polylactic, itaconic, glutamic, succinic and citric acid, 1,3-propanediol,

sorbitol, and butanol.

105

Page 106: Virtual Sugarcane Biorefinery Report 2011

A first configuration of the sugarchemistry route was developed in the VSB,

considering butanol production from sugarcane. Different scenarios were evaluated,

considering butanol production from sugarcane juice or from pentoses liquor obtained

after lignocellulosic material pretreatment, using either regular (wild strain) or mutant

microorganisms (with increased butanol yield) in a conventional batch fermentation

process. Along with butanol, acetone and ethanol are also obtained during fermentation

(so called ABE fermentation). The scenarios evaluated are indicated in Table 48.

Table 48. Description of the scenarios evaluated for butanol production in the

VSB.

Scenario Description

1G E50Optimized first generation annexed plant with 50% of the juice diverted to ethanol production, 50% to sugar production

1G E75Optimized first generation annexed plant with 75% of the juice diverted to ethanol production, 25% to sugar production

1G Butanol(RS)Optimized first generation annexed plant with 50% of the juice diverted to ethanol production, 25% to sugar production and 25% to butanol production – regular microorganism strain

1G Butanol(MS)

Optimized first generation annexed plant with 50% of the juice diverted to ethanol production, 25% to sugar production and 25% to butanol production – mutant microorganism strain (improved butanol yield)

1G2GIntegrated first (E50) and second generation with pentoses biodigestion (current hydrolysis technology)

1G2G Butanol(RS)Integrated first (E50) and second generation with butanol production from pentoses using regular microorganism strain

1G2G Butanol(MS)Integrated first (E50) and second generation with butanol production from pentoses using mutant microorganism strain (improved butanol yield)

Ethanol, sugar, electricity, butanol, and acetone productions were obtained in the VSB

for each scenario. Results are shown in Table 49.

106

Page 107: Virtual Sugarcane Biorefinery Report 2011

Table 49. Outputs of a sugarcane biorefinery with butanol production.

1G E751G Butanol

(RS)1G Butanol

(MS)1G2G

1G2G Butanol (RS)

1G2G Butanol (MS)

Ethanol (MML/year)

134 94.3 94.7 141.5 133.2 132.7

Sugar (MMton/year)

51 51 51 102 102 102

Electricity (kWh/TC)

169 169 169 88.7 90.1 90.1

Butanol (MML/year)

- 16.4 26.1 - 8.9 14.7

Acetone (MML/year)

- 5.9 6.5 - 4.4 3.7

The mutant microorganism strain, evaluated in scenarios Butanol(MS), increases

significantly butanol production, when compared with the regular strain (scenarios

Butanol(RS)), while acetone production is not raised. When second generation ethanol

is produced, and ABE fermentation is carried out using pentoses as feedstock (scenarios

1G2G Butanol), overall ethanol production does not decrease significantly, as opposed

to the cases where sugarcane juice is used as substrate in the ABE fermentation.

Economic analysis was carried out to evaluate the impacts of integrating butanol

production to the different configurations of the sugarcane distillery; average prices for

the 2008-2011 period were considered (anhydrous ethanol: R$1.05/L; sugar: R$0.87/kg;

sugarcane: R$41.68/t; electricity: R$100/kWh). Two market scenarios were evaluated:

(1) butanol as a chemical, considering its current price (MDIC, 2011), and (2) butanol

as an automotive fuel, whose price was calculated to be equivalent to that of ethanol but

proportional to its energy content. Acetone price changed accordingly to scenarios (1)

and (2), and its price was set to the currently value practiced in Brazil when butanol was

taken as a chemical (scenario 1). On the other hand, a 50% drop in acetone price was

considered in the case in which butanol production aims the fuel market. The acetone

price drop assumption is reasonable taking into account that an annual production of

billions of liters of butanol to the transportation fuel market would generate

significantly more acetone than the chemical market can absorb, depressing world

acetone prices. Butanol and acetone prices are shown in Table 50.

107

Page 108: Virtual Sugarcane Biorefinery Report 2011

Table 50. Butanol and acetone prices adopted in the economic analysis.

Product “Chemical” price (R$/kg) “Fuel” price (R$/kg)

Butanol 2.64 1.63

Acetone 1.63 0.83

For the mutant strain, a license for the use of the microorganism is required; the price

for the license is estimated as R$0.027/L butanol (an educated guess based on Humbird

et al., 2011).

The investment was estimated based on data provided by Sousa and Macedo (2010), for

the first generation plants; CGEE (2009) for the second generation plant and Roffler et

al. (1987) for the ABE plant.

A sensitivity analysis was conducted on the following key parameters: investment costs

of the annexed plant and of the butanol plant, and prices of raw materials and products.

In relation to the baseline values, these parameters were varied by ±10% according to a

factorial design (Plackett–Burman design), which was used to determine, via the

software Statistica® (Statsoft Inc., v. 7.0), the effects of the economic parameters on

IRR.

Monte Carlo simulations were used to evaluate the risk, considering normal distribution

of the variables for which a historical record was available (ethanol, sugar, sugarcane

and butanol prices). In this case, most probable value is the 6-year moving average of

prices (Dec 2011 values) from January 2003 to December 2011. For other variables, a

triangular distribution was considered with variations of ±10% for electricity price and

±25% for investment cost.

Results for the 95% confidence interval of the IRR of first generation mills coupled

with butanol production are shown in Figure 40. The standard annexed plant with 50%

of the sugarcane juice processed for sugar production is illustrated along with first

generation scenarios indicated in Table 49.

108

Page 109: Virtual Sugarcane Biorefinery Report 2011

Figure 40. IRR for the annexed distillery (50/50: 50% of the juice for sugar

production; 75/25: 25% of the juice for sugar production; RS: regular strain for

butanol production; MS: mutant strain; C: chemical market; B: biofuel market).

Results in Figure 40 show that butanol production from sugarcane juice has a higher

IRR than the first generation plant only when a microorganism with enhanced butanol

yield is available and when butanol is produced aiming the chemical market; for all the

other scenarios, the IRR obtained when butanol production is included is lower than that

of the first generation process. An important fact that must be taken into consideration is

the size of the chemical market for butanol; the Brazilian market for butanol in 2010

was of 60 kton (ABIQUIM, 2011). Considering the amount of butanol produced in the

first generation mill coupled with butanol production using the mutant strain – 1G

Butanol (MS) – three industrial plants would meet the internal demand for this

chemical. Therefore, unless butanol market is significantly expanded, what could occur

if it was used as a biofuel, not many sugarcane mills would include butanol production,

as a significant price change would happen due to the excess of supply. If butanol price

falls and reaches a similar value to that of ethanol on a LHV basis, butanol production

from sugarcane juice leads to a lower IRR than the first generation.

Results for the integrated first and second generation process with butanol production

from pentoses are shown in Figure 41.

109

Page 110: Virtual Sugarcane Biorefinery Report 2011

Figure 41. IRR for the integrated first and second generation ethanol production

(ES: 1st and 2nd generation ethanol production in the annexed distillery processing

50% of the sugar juice for sugar production; RS: regular strain for butanol

production; MS: mutant strain; C: chemical market; B: biofuel market).

In this case, butanol production using as feedstock the pentoses released during

pretreatment of the lignocellulosic material in the integrated first and second generation

bioethanol production process is more advantageous than pentoses biodigestion in all

the scenarios evaluated (regular or mutant microorganism strain, chemical or biofuel

market). Thus, since pentoses fermentation to ethanol is not yet feasible using

commercial technologies, pentoses fermentation to butanol seems to be an attractive

option to increase the feasibility of second generation ethanol production. In addition, in

the integrated process butanol production considering a decrease on its price (similar

value to that of ethanol on a LHV basis) is advantageous, as opposed to the first

generation scenario.

Sensitivity analyses were also carried out to determine which variables have the most

important impacts on the revenues of the process. Results for the first generation

process are shown in Figure 42.

110

Page 111: Virtual Sugarcane Biorefinery Report 2011

Figure 42. Sensitivity analysis: impact of changes of +10% of the main variables on

the IRR of the first generation mill (left) and for the first generation mill with

butanol production (right).

Therefore, changes on sugarcane and ethanol prices and on the investment on the

ethanol-sugar plant (ES plant investment) have the larger impacts on the IRR of the

mill. In the plant including butanol production, it was verified that changes of +10% on

the investment of the butanol plant, acetone price and on the price for the

microorganism (for the mutant strain) have minor effects on the IRR. Changes on

sugarcane trash price have little effect on the IRR on both situations.

Sensitivity analyses were carried out for the integrated first and second generation

process as well. Results are shown in Figure 43.

111

Page 112: Virtual Sugarcane Biorefinery Report 2011

Figure 43. Sensitivity analysis: impact of changes of +10% of the main variables on

the IRR of the integrated first and second generation plant (left) and for the

integrated process with butanol production (right).

The same trends observed for the first generation mill can be noticed in Figure 43:

sugarcane, ethanol and investment on the ethanol-sugar plant have the most significant

impacts on the IRR. In this case, however, sugar price plays a more important role,

since sugar production is larger in these scenarios (when compared with the E75

scenario). Enzyme prices have little effect on the IRR, in addition to sugarcane trash, in

both scenarios (with and without butanol production).

112

Page 113: Virtual Sugarcane Biorefinery Report 2011

5. Final remarks

5.1 Obtained results

Focusing on the PAT’s macrogoals, the most important results obtained up to 2011 in

the construction of the VSB are listed below.

(1) Construction of the first generation (1G) VSB, with the following highlights:

technical, economic and environmental assessment of the autonomous plants

(producing only ethanol and electricity) and annexed plants (producing ethanol,

electricity and sugar). It was considered in this analysis a standard configuration

representing the majority of 1G plants in Brazil and an optimized one using trash

(transported from the field to the plant), reducing steam demand and using a

more efficient cogeneration system, to produce steam and electricity;

assessment of technical, economic and environmental impacts of annexed

distilleries designed with flexibility for sugar and ethanol production;

assessment of technical, economic and environmental impacts of different

electric energy cogeneration systems;

validation of the results of the simulation of 1G sugar and ethanol production,

with data obtained in an operating sugarcane plant in the state of São Paulo –

Brazil;

preliminary technical and economic assessment of different scenarios of

operation extension in sugarcane plants using sweet sorghum as an additional

feedstock;

beginning of the consolidation of the energy optimization of 1G sugarcane

plants;

beginning of the assessment about the use of other feedstock, for the extension

of 1G sugarcane plants operation;

beginning of the assessment of vinasse biodigestion incorporation in 1G plants.

113

Page 114: Virtual Sugarcane Biorefinery Report 2011

(2) Construction of second generation (2G) VSB, with the following highlights:

preliminary technical, economic and environmental assessment of present and

future scenarios for the production of 2G ethanol from sugarcane;

technical, economic and environmental assessment of independent 2G ethanol

plants, compared with the ones integrated with 1G plants;

technical, economic and environmental assessment of 2G ethanol plants

integrated to autonomous 1G sugar plants;

beginning of the construction (together with CTBE’s Industrial Program) of the

conceptual design of the “basic CTBE’s route” for the production of second

generation ethanol, developed to be use as base for comparison with other

technologies in technical, economic and environmental assessments.

(3) Construction of the VSB for other routes, with the following highlights:

preliminary technical and economic assessment of the butanol production from

sugarcane (through the sugarchemistry route);

initial planning of the alcoholchemistry route in the VSB;

initial planning of the thermochemical route in the VSB.

(4) Construction of the VSB – Agricultural phase, with the following highlights:

construction of a computational tool, incorporating operation models of the

agricultural phase of the sugarcane production for technical, economic and

environmental assessment; integration with the other operations in the sugarcane

production chain: sugarcane transport, industrial processing and use of the

biorefinery products;

technical, economic and environmental assessment of several agricultural

scenarios of sugarcane production, using the developed tool.

(5) Sustainability indicators, with the following highlights:

database adaptation for the Life Cycle Inventory of the main inputs in the

sugarcane production chain, considering the Brazilian conditions;

improvement of the methodologies employed for the economic and

environmental assessments;

114

Page 115: Virtual Sugarcane Biorefinery Report 2011

introduction of the Input-Output methodology for evaluation of economic,

environmental and social impacts in the VSB;

beginning of the construction of a computational tool for the assessment of the

commercialization and use of the main products in the sugarcane production

chain.

(6) Software integration and Databases construction, with the following

highlights:

integration of the simulation tools constructed to assess the different phases in

the sugarcane production chain;

beginning of the construction of a database with the technical parameters for a

real sugarcane industrial plant;

collaboration with equipment producers and engineering companies, to start the

construction of a database to evaluate the required investments for different

industrial plants in the biorefinery concept.

(7) Publications:

Dias, M. O. S., Cunha, M. P., Jesus, C. D. F., Scandiffio, M. I. G., Rossell, C. E.

V., Maciel Filho, R., Bonomi, A.. Simulation of ethanol production from

sugarcane in Brazil: economic study of an autonomous distillery. Computer

Aided Chemical Engineering, 28, 733-738, 2010.

Dias, M. O. S., Cunha, M. P., Jesus, C. D. F., Rocha, G. J. M., Pradella, J. G. C.,

Rossell, C. E. V., Maciel Filho, R., Bonomi, A.. Second generation ethanol in

Brazil: can it compete with electricity production? Bioresource Technology 102,

8964-8971, 2011.

Dias, M. O. S., Cunha, M. P., Maciel Filho, R., Bonomi, A., Jesus, C. D. F.,

Rossell, C. E. V.. Simulation of integrated first and second generation bioethanol

production from sugarcane: comparison between different biomass pretreatment

methods. Journal of Industrial Microbiology & Biotechnology, 38, 955-966,

2011.

115

Page 116: Virtual Sugarcane Biorefinery Report 2011

Cavalett, O., Cunha, M. P., Junqueira, T. L., Dias, M. O. S., Jesus, C. D. F.,

Mantelatto, P. E., Cardoso, T. F., Franco, H. C. J., Maciel Filho, R., Bonomi, A..

Environmental and economic assessment of bioethanol, sugar and bioelectricity

production from sugarcane. Chemical Engineering Transactions, 25, 1007-1012,

2011.

Junqueira, T. L., Dias, M. O. S., Jesus, C. D. F., Mantelatto, P. E., Cunha, M. P.,

Cavalett, O., Maciel Filho, R., Rossell, C. E. V., Bonomi, A.. Simulation and

evaluation of autonomous and annexed sugarcane distilleries. Chemical

Engineering Transactions, 25, 941-946, 2011.

Dias, M. O. S., Junqueira, T. L., Jesus, C. D. F., Cavalett, O., Cunha, M. P.,

Mantelatto, P. E., Maciel Filho, R., Bonomi, A.. The Virtual Sugarcane

Biorefinery (VSB) – An Innovative Tool to Evaluate Sugarcane Production and

Processing.  In: XIX International Symposium on Alcohol Fuels, 2011.

Galdos, M., Cavalett, O., Seabra, J., Bonomi, A.. Trends in global warming and

human health impacts related to Brazilian sugarcane ethanol production

considering black carbon emissions. In: XIX International Symposium on

Alcohol Fuels, 2011.

Dias, M.O.S., Junqueira, T.L., Cavalett, O., Cunha, M.P., Jesus, C.D.F., Rossell,

C.E.V., Maciel Filho, R., Bonomi, A.. Integrated versus stand-alone second

generation ethanol production from sugarcane bagasse and trash, Bioresource

Technology, 103, 152-161, 2012.

Cavalett, O., Junqueira, T. L., Dias, M. O. S., Jesus, C. D. F., Mantelatto, P. E.,

Cunha, M. P., Franco, H. C. J., Cardoso, T. F., Maciel Filho, R., Rossell, C. E.

V., Bonomi, A.. Environmental and economic assessment of sugarcane first

generation biorefineries in Brazil. Clean Technologies and Environmental Policy

14, 399-410, 2012.

5.2 Planned activities for 2012

The most important steps to be pursued in 2012 for the construction of the VSB are the

following:

116

Page 117: Virtual Sugarcane Biorefinery Report 2011

validation of the results of the simulation of 1G industrial operation, with data

obtained in several operating sugarcane plants, representing different

technological stages;

simulation of 2G alternatives using parameters obtained through the conceptual

design and data from CTBE’s pilot plant;

development of new VSB versions including simulation of new biorefinery

routes;

validation of data, parameters and results of the computational tool for the

agricultural phase of the sugarcane production;

introduction of the technical, economic and environmental assessment of

different logistic strategies for sugarcane trash collection and delivery to the

biorefinery;

improvement of methodologies for sustainability impacts evaluation;

execution of the first stages of the projects to assess “good practices” in the

sugarcane production chain and the “megaexperiment” to assess experiments

and developments underway at CTBE and other partner Institutions.

5.3 Implementation of the network of institutions

The activities related to the constitution of the Network on the Mathematical Modeling

started with the identification of researchers developing relevant work in specific areas.

In order to do that a search for related works was carried out in the main Universities

and Research Institutes in Brazil. The starting point, of course, was to make use of the

knowledge of the contribution for science and technology trough the scientific papers

and research projects published and executed or in execution.

In this exercise more than three dozens of University’s representatives were contacted

and a workshop was organized. The Network was organized in sub-themes aiming to

reflect the need to elaborate more specific projects in subjects considered the necessary

ones to have an effective interdisciplinary working group. Six main sub-areas were

identified. After the workshop, the leaders of each area were identified and formally

invited to act as coordinators. Further action involved the invitation for each member to

117

Page 118: Virtual Sugarcane Biorefinery Report 2011

write a simplified but comprehensive proposal, which was carefully analyzed either to

avoid overlaps or to guarantee that important areas would be properly covered.

Researchers from each sub-area presented drafts of projects and the proposals were

organized in such way that it served as a basis for the elaboration of an edictal or call for

projects to be submitted to CNPq. This was carried out and the exercise was quite

important to have an actual knowledge of the potential partners in the Network.

Further actions are under development to overcome possible delays due to the lack of

specific financial support through other ways to integrate the network members.

5.4 Good practices identification and assessment

The production chain and final use of sugarcane ethanol present recognized average

values for the majority of the parameters and indicators that can be considered for the

assessment of this industrial sector. Even so, behind these average values, many good

examples of technical, economic, environmental and social actions (good practices) can

be identified and, after a careful evaluation, introduced in the majority of the ethanol

plants. In 2012, CTBE, through the PAT, will plan a project aiming at identifying good

practices in the three major sectors of the sugarcane production chain: agricultural,

industrial and commercialization and usage sectors. After identifying those good

practices, their assessment will be performed, in order to evaluate their technical,

economic, environmental and social importance.

5.5 Megaexperiment

Annually, the Technological Assessment Program will coordinate a procedure for the

assessment of the ethanol technological development stage (1G, 2G, integrated 1G2G

and other routes within a biorefinery), considering ongoing developments at CTBE, as

well as developments by third parties (Megaexperiment). Although the megaexperiment

will assess the whole sugarcane production chain, including the variety of potential

products, the major focus of this coordinated effort will be the ethanol production. The

megaexperiment will assess process and operation alternatives derived from potential

118

Page 119: Virtual Sugarcane Biorefinery Report 2011

alternatives based on specialist information and, experimental results obtained at

laboratory, pilot and demonstration scale.

119

Page 120: Virtual Sugarcane Biorefinery Report 2011

6. References

ABIQUIM (Associação Brasileira da Indústria Química) (2011). Anuário da Indústria

Química Brasileira. São Paulo, ABIQUIM.

Alonso Pippo, W., Luengo, C.A., Alonsoamador Morales Alberteris, L., Garzone, P.,

Cornacchia, G., 2011. Energy recovery from sugarcane-trash in the light of 2nd

generation biofuels. Part 1: current situation and environmental aspects. Waste Biomass

Valor, 2, 1–16.

Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J., 2010. Pretreatment

technologies for an efficient bioethanol production process based on enzymatic

hydrolysis: A review. Bioresource Technology, 101, 4851-4861.

Bazico, 2010. Sugar [Açúcar] (in Portuguese). Available online at

<www.bazico.com.br/produto/com_acucar.htm>.

BNDES and CGEE (Coord.), 2008. Sugarcane bioethanol – energy for sustainable

development [Bioetanol de cana-de-açúcar – Energia para o Desenvolvimento

Sustentável] (in Portuguese), Rio de Janeiro: BNDES.

Camargo, C.A. (coord.), 1990. Energy conservation in the sugar and ethanol industry –

handbook of recommendations [Conservação de energia na indústria do açúcar e do

álcool – Manual de recomendações] (in Portuguese). São Paulo: IPT.

Cavalett, O., Junqueira, T.L., Dias, M.O.S., Jesus, C.D.F., Mantelatto, P.E., Cunha,

M.P., Franco, H.C.J., Cardoso, T.F., Maciel Filho, R., Rossell, C.E.V., Bonomi, A.,

2012. Environmental and economic assessment of sugarcane first generation

biorefineries in Brazil. Clean Technologies and Environmental Policy, 14, 399-410.

CEPEA – Center for Advanced Studies on Applied Economics, 2011. Available online

at <http://www.cepea.esalq.usp.br>

120

Page 121: Virtual Sugarcane Biorefinery Report 2011

CGEE, 2009. Bioethanol as a fuel: an opportunity for Brazil [Bioetanol combustível:

uma oportunidade para o Brasil] (in Portuguese). Campinas. Available online at

<www.cgee.org.br/atividades/redirect/5913>.

CGEE, 2010. Green chemistry in Brazil: 2010-2030 [Química verde no Brasil: 2010-

2030] (in Portuguese). Brasília, DF: Centro de Gestão e Estudos Estratégicos.

Chouinard-Dussault, P., Bradt, L., Ponce-Ortega, J.M., El-Halwagi, M.M., 2011.

Incorporation of process integration into life cycle analysis for the production of

biofuels. Clean Technology and Environmental Policy, 13, 673–685.

Clemente, E. Cogeração de energia elétrica a partir da cana de açúcar (Electricity

cogeneration from sugarcane) (in Portuguese). A Tribuna, 09/02/2010.

CONSECANA - Conselho dos Produtores de Cana, Açúcar e Álcool do Estado de São

Paulo, 2011. Price table [Tabela de preços] (in Portuguese).

www.udop.com.br/cana/tabela_consecana_saopaulo.pdf.

COPERSUCAR, 1987. Material for the course in Sugar Engineering: sugar production

process, part I [Apostila do curso de Engenharia açucareira: Processo de Fabricação de

Açúcar, parte I] (in Portuguese). Centro de Tecnologia Copersucar, Piracicaba.

COPERSUCAR, 1989. Basic course on juice treatment [Curso Básico sobre Tratamento

do Caldo] (in Portuguese). Centro de Tecnologia Copersucar, Piracicaba.

CTC, 2009. Handbook on water conservation and reuse in the sucroenergetic industry

[Manual de conservação e reuso da água na agroindústria sucroenergética] (in

Portuguese). Piracicaba.

Čuček, L., Martín, M., Grossmann, I.E., Kravanja, Z., 2011. Energy, water and process

technologies integration for the simultaneous production of ethanol and food from the

entire corn plant. Computers & Chemical Engineering, 35, 1547– 1557.

Dedini. Private communication – Investment data for autonomous distilleries. 2009.

121

Page 122: Virtual Sugarcane Biorefinery Report 2011

Dias, M.O.S., Modesto, M., Ensinas, A.V., Nebra, S.A., Maciel Filho, R., Rossell,

C.E.V., 2011a. Improving bioethanol production from sugarcane: evaluation of

distillation, thermal integration and cogeneration systems, Energy 36, 3691-3703.

Dias, M.O.S., Cunha, M.P., Jesus, C.D.F., Rocha, G.J.M., Pradella, J.G.C., Rossell,

C.E.V., Maciel Filho, R., Bonomi, A., 2011b. Second generation ethanol in Brazil: can

it compete with electricity production? Bioresource Technology 102, 8964-8971.

Dias, M.O.S., Junqueira, T.L., Cavalett, O., Cunha, M.P., Jesus, C.D.F., Rossell,

C.E.V., Maciel Filho, R., Bonomi, A., 2012. Integrated versus stand-alone second

generation ethanol production from sugarcane bagasse and trash, Bioresource

Technology, 103, 152-161.

Ecoinvent database, 2009. Swiss Centre for Life Cycle Inventories. Version 2.0.

December 2010. www.ecoinvent.ch/.

Elia Neto, A., 2009. Water use and reuse in the sugarcane industry [Uso e reuso da água

na indústria canavieira] (in Portuguese). In: Workshop on the impact of new

technologies on the sustainability of the sugarcane/bioethanol production cycle. CTBE,

Campinas.

Ensinas, A.V., Nebra, S.A., Lozano, M.A., Serra, L.M, 2007. Analysis of process steam

demand reduction and electricity generation in sugar and ethanol production from

sugarcane. Energy Conversion and Management, 48, 2978–2987.

Ensinas, A.V., 2008. Thermal integration and termoeconomic optimization applied to

the industrial process of sugar and ethanol from surgarcane [Integração térmica e

otimização termoeconômica aplicadas ao processo industrial de produção de açúcar e

etanol a partir da cana-de-açúcar] (in Portuguese). Thesis (PhD in Mechanical

Engineering), School of Mechanical Engineering. University of Campinas.

Finguerut, J., 2006. Fermentation process [Processo Fermentativo] (in Portuguese). In: I

Workshop Tecnológico sobre produção de etanol. PPPP – FAPESP, Lorena.

122

Page 123: Virtual Sugarcane Biorefinery Report 2011

Finnveden, G., Hauschild, M.Z., Ekvall, T., Guinee, J., Heijungs, R., Hellweg, S.,

Koehler, A., Pennington, D., Suh, S., 2009. Recent developments in life cycle

assessment. Journal of Environmental Management, 91, 1-21.

Garcia, V., 2008. Byproduct of fusel oil distillery: chemical composition

characterization and study of its industrial application [Subproduto de destilaria de óleo

fúsel: caracterização da composição química e estudo de sua aplicação industrial] (in

Portuguese). MSc Dissertation (Chemical and Biochemical Processes), Mauá School of

Engineering, Mauá Institute of Technology.

Getaz, M.A., Pillay, D., Julliene, L.M.S.A., 1995. The Affination of B-Sugar at

Noodsberg, Proceedings of The South African Sugar Technologists' Association.

Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R.,

2010. Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101, 4775–

4800.

Guinée JB, Gorre´e M, Heijungs R, Huppes G, Kleijn R, Koning A de, van Oers L,

Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H de; Duin R van; Huijbregts

MAJ (2002) Handbook on life cycle assessment. Operational guide to the ISO

standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific

background. Kluwer Academic Publishers, Dordrecht.

Hassuani, S.J., Leal M.R.L.V., Macedo I.C. (eds), 2005. Biomass Power Generation—

Sugarcane Bagasse and Trash. CTC and PNUD, Piracicaba.

Hugot, E., 1986. Handbook of Cane Sugar Engineering, Amsterdam: Elsevier.

Humbird, D. et al., 2011. Process Design and Economics for Biochemical Conversion

of Lignocellulosic Biomass to Ethanol - Dilute-Acid Pretreatment and Enzymatic

Hydrolysis of Corn Stover. Available online at: <www.osti.gov/bridge>.

IBGE, 2011. Annual Industry Research [Pesquisa Industrial Anual – PIA] (in

Portuguese). IBGE.

123

Page 124: Virtual Sugarcane Biorefinery Report 2011

ISO 2006a, ISO 14040 - Environmental management - Life cycle assessment -

Principles and framework, The International Organization for Standardization.

ISO 2006b, ISO 14044 - Environmental management - Life cycle assessment -

Requirements and guidelines, The International Organization for Standardization.

Junqueira, T.L., 2010. Simulation of conventional, extractive and azeotropic distillation

for bioethanol production process using nonequilibrium model and equilibrium stage

model with efficiency [Simulação de colunas de destilação convencional, extrativa e

azeotrópica no processo de produção de bioetanol através da modelagem de não

equilíbrio e da modelagem de estágios de equilíbrio com eficiência] (in Portuguese).

MSc Dissertation (Chemical Engineering), School of Chemical Engineering, University

of Campinas.

Kamm, B., Gruber, P,R., Kamm, M., 2006. Biorefineries – Industrial Processes and

Products. Volume 1, Wiley-VCH, 441p.

Kamm, B., Kamm, M., 2004. Principles of Biorefineries. Applied Microbiology and

Biotechnology, 64,137-145.

Lamonica, H.M., 2010. Determination of electric efficiency of the sugarcane Brazilian

mills for production of sugar and/or ethanol [Determinação da eficiência elétrica das

usinas brasileiras para produção exclusiva de açúcar e/ou etanol] (in Portuguese). CTC.

Leal, M.R.L.V., 2005. Techno-economic characterization of the ethanol production in

Brazil.

Macedo, I.C., Seabra , J.E.A., Silva, J.E.A.R., 2008. Green house gases emissions in the

production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a

prediction for 2020. Biomass and Bioenergy 32, 582-595.

Mantelatto, P. E., 2005. Study of the crystallization of impure sucrose solutions from

sugarcane by cooling [Estudo do processo de cristalização de soluções impuras de

sacarose por resfriamento] (in Portuguese). MSc dissertation (Chemical Engineering),

School of Chemical Engineering. Federal University of São Carlos, São Carlos.

124

Page 125: Virtual Sugarcane Biorefinery Report 2011

Mantelatto P.E., 2009. Process for juice treatment in industrial large scale plant. In:

Workshop BIOEN FAPESP on Ethanol Production, São Paulo.

Mantelatto, P.E., 2010. Information about the sugarcane industry. Private

communication.

Mantelatto, P.E., 2011. Information about the sugarcane industry. Private

communication.

Martín, M., Grossmann, I.E, 2011. Energy Optimization of Bioethanol Production Via

Hydrolysis of Switchgrass. AIChE J. (in Press), doi: 10.1002/aic.12735.

MDIC, 2011. System Information Analysis of Foreign Trade – Butanol and Acetone

prices. Available online at http://aliceweb.desenvolvimento.gov.br/

Meirelles, A.J.A., 2006. Expansion of bioethanol production and technological

improvement of alcoholic distillation [Expansão da produção de bioetanol e melhoria

tecnológica da destilação alcoólica] (in Portuguese). Workshop Produção de etanol,

Lorena. Available online at:

www.apta.sp.gov.br/cana/anexos/PPaper_sessao_4_Antonio_Meirelles.pdf

Mill A, 2010. Technical bulletin of the Mill A.

Nigam, P.S., Singh, A., 2011. Production of liquid biofuels from renewable resources.

Progress in Energy and Combustion Science, 37, 52-68.

NREL 2012. What Is a Biorefinery? Available online at:

<www.nrel.gov/biomass/biorefinery.html>

Ojeda, K., Ávila, O., Suárez, J., Kafarov, V., 2011. Evaluation of technological

alternatives for process integration of sugarcane bagasse for sustainable biofuels

production—Part 1. Chemical Engineering Research and Design, 89, 270–279.

Patel, M. (Coord.), 2006. Medium and long-term opportunities and risks of the

biotechnological production of bulk chemicals from renewable resources – the potential

125

Page 126: Virtual Sugarcane Biorefinery Report 2011

of White biotechnology. The BREW project (Final Report). Ultrecht University.

Available online at www.chem.uu.nl/brew/.

PNNL and NREL, 2004. Top Value Added Chemicals from Biomass Volume I—

Results of Screening for Potential Candidates from Sugars and Synthesis Gas. USDOE.

Available online at www1.eere.energy.gov/library/

Prieto, M.G.S., 2003. Cogeneration alternatives in the sugarcane industry – case study

[Alternativas de Cogeração na Indústria Sucro-Alcooleira, Estudo de Caso] (in

Portuguese). Thesis (PhD in Mechanical Engineering), School of Mechanical

Engineering, University of Campinas.

Rein, P., 2007. Cane Sugar Engineering, Verlag Dr Akbert Bartens KG: Berlin.

Ribeiro, P. R. (SMAR). The sugarcane industry and its automation [A usina de açúcar e

sua automação] (in Portuguese), 2ª Ed., 2003.

Rocha, G.J.M., Gonçalves, A.R., Oliveira, B.R., Olivares, E.G., Rossell, C.E.V., 2012.

Steam explosion pretreatment reproduction and alkaline delignification reactions

performed on a pilot scale with sugarcane bagasse for bioethanol production. Industrial

Crops and Products, 35, 274-279.

Rocha, G.J.M. et al., 2010. Compositional variability of raw, steam-exploded and

delignificated sugarcane bagasse. In: NIPE/UNICAMP. Congresso Internacional sobre

Geração Distribuída e Energia no Meio Rural (AGRENER GD 2010). Campinas.

Available online at <www.nipeunicamp.org.br/agrener/anais/2010/14-12/12/63.pdf>.

Roffler, S., Blanch, H.W., Wilke, C.R., 1987. Extractive Fermentation of Acetone and

Butanol: Process Design and Economic Evaluation. Biotechnology Progress, 3: 131–

140.

Rossell, C.E.V., 2011. Data for the ethanol production process. Private communication.

Seabra, J.E.A., 2008. Technical-economic evaluation of options for whole use of

sugarcane biomass in Brazil [Avaliação técnico-econômica de opções para o

126

Page 127: Virtual Sugarcane Biorefinery Report 2011

aproveitamento integral da biomassa de cana no Brasil] (in Portuguese). Thesis (PhD in

Mechanical Engineering), School of Mechanical Engineering. University of Campinas.

Seabra, J.E.A. Tao, L., Chum, H.L., Macedo, I.C., 2010. A techno-economic evaluation

of the effects of centralized cellulosic ethanol and co-products refinery options with

sugarcane mill clustering. Biomass and Bioenergy 34, 1065-1078.

Sousa, E.L.L., Macedo, I.C. (Coord.), 2010. Ethanol and Bioelectricity – Sugarcane in

the Future of the Energy Matrix [Etanol e Bioeletricidade – A cana-de-açúcar no futuro

da matriz energética] (in Portuguese). UNICA.

Stanmore, B.R., 2010. Generation of Energy from Sugarcane Bagasse by Thermal

Treatment. Waste Biomass Valor, 1, 77-89.

Pedra Sugar Mill, 2006. Data on the ethanol production process from sugarcane.

UNICA, 2011. Dados e cotações – Estatísticas (in Portuguese). Available online at:

www.unica.com.br/dadosCotacao/estatistica/

Walter, A. et al., 2008. A sustainability analysis of the Brazilian ethanol. A report

supported by UK Embassy and DEFRA. Available online at <www.unica.com.br>.

Wooley, R.J., Putsche, V., 1996. Development of an ASPEN PLUS Physical Property

Database for Biofuels Components. Report No. NREL/MP-425-20685, Golden,

Colorado: NREL. < www.p2pays.org/ref/22/21210.pdf >.

Yin, D., Jing, Q., AlDajani, W.W., Duncan, S., Tschirner, U., Schilling, J., Kazlauskas,

R.J., 2011. Improved pretreatment of lignocellulosic biomass using enzymatically-

generated peracetic acid. Bioresource Technology, 102, 5183–5192.

127