virtual prototyping for power diode and igbt development...diode and igbt development maria...

34
Virtual prototyping for power diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30 th Working Group Bipolar

Upload: others

Post on 30-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Virtual prototyping for power diode and IGBT development

Maria Cotorogea Peter Türkes Andreas Groove

30th Working Group Bipolar

Page 2: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Outline

Introduction

Virtual Prototyping Approach

Compact modelling for power devices

Assessment of Model Precision

Electro-thermal co-simulation in SPICE

1

2

3

4

5

2 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Summary and Outlook 6

Page 3: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Outline

Introduction

Virtual Prototyping Approach

Compact modelling of power devices

Assessment of Model Precision

Electro-thermal co-simulation in SPICE

1

2

3

4

5

3 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Summary and Outlook 6

Page 4: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Introduction

4 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

› IGBTs and power diodes are bipolar devices

› Losses are dominated by stored charges

› Development target: higher power density higher switching frequencies

› IGBT-modules:

• Chip development • Package development

› Virtual Prototyping Group in Munich

› Why virtual prototyping in IGBT-module development?

• Reduce development costs and time by reducing learning cycles

› Target: accurately predict switching behavior

› Strategy: rollout on technology and package projects

› Model requirements:

• physics based models for IGBTs and diodes

• knowledge of parasitic elements and couplings

• fast model implementation and simulation

Page 5: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Introduction

5 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Outcome of VP activities

Provide interfaces between different simulation levels (device simulation circuit simulation system simulation)

Evaluate and enhance today’s modeling precision of compact models to describe switching behavior of bipolar devices within SOA

Consider electrical parasitics due to package design

Assess current distribution in modules with several devices in parallel

Investigate effect of manufacturing process tolerances in FE and BE

Consider thermal couplings in modules and propose an electro-thermal co-simulation as full circuit-simulation approach

Not in focus

Device triggered oscillation mechanisms

Failure mechanisms

Device reliability

Page 6: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Outline

Introduction

Virtual Prototyping Approach

Compact modelling of power devices

Assessment of Model Precision

Electro-thermal co-simulation in SPICE

1

2

3

4

5

6 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Summary and Outlook 6

Page 7: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Virtual Prototyping Approach Virtual chip-module development flow

7 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Chip layout

POR Process simulation

Device model Device simulation

Device

compact

model

Virtual chip development

Virtual module development

CAD

layout

FEM Model

FEM Simulation

Parasitics

compact

model

Virtual

data sheet

Application

circuits

Module switching characteristics Design / Process

simulation

Circuit System-level

models

Page 8: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

8 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Switching

behavior

• switching conditions

• power circuit & driver

• power devices & packages

Conside-

rations

• short time scale: high du/dt & di/dt

• large time scale: self-heating

Simulation

needs

• appropriate electro-thermal models for IGBTs and diodes

• electrical and thermal parasitics models

• modeling techniques accounting for 2D or 3D geometrical design

• tools capable of facilitating a rapid iterative virtual design process

inherent electrical & thermal

couplings

Virtual Prototyping Approach General Concept behind the Idea

Page 9: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Virtual Prototyping Approach

9 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

PAC

PDC

2D-TCAD

3D-FEM

Physics-based device

compact model

Electrical parasitics compact model

Thermal network as compact model

Circuit

simulation

Au

tom

ate

d m

od

el g

en

erati

on

Man

ual m

od

el

gen

erati

on

an

d c

ali

brati

on

Min

imum

loss o

f pre

cis

ion!

Page 10: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Outline

Introduction

Virtual Prototyping Approach

Compact modelling of power devices

Assessment of Model Precision

Electro-thermal co-simulation in SPICE

1

2

3

4

5

10 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Summary and Outlook 6

Page 11: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Compact modelling of power devices Description of charge dynamics in the drift region

n+ n- p+ n

SCR

Determined by implicit equation,

derived from Poisson-Equation

0

Charge dynamics in the base is described by the ambipolar diffusion equation (ADE):

Solution Methods for the local charge distribution:

Fourier Transformation

Kraus-Approximation using hyperbolic Functions

Finite Element Method (FEM)

Finite Difference Method (FDM)

Approximation as a pure 1D problem!

We need four boundary conditions 𝜕𝑝

𝜕𝑡= −

𝑝

𝜏+ 𝐷𝑎

𝜕2𝑝

𝜕𝑥2 𝑤𝑖𝑡ℎ 𝑛 ≈ 𝑝 → 𝑅𝐵𝑎𝑠𝑒 , 𝑄𝑏𝑎𝑠𝑒

𝐼𝑡𝑜𝑡 = 𝐼𝑝(0) 𝐼𝑡𝑜𝑡 = 𝐼𝑛(𝑑)

› Advantages of FDM over Kraus-Ansatz

– FDM needs less approximations

– Resistance modulation of small base-regions can be described

– Diode: no Fit-Parameter for ratio of plasma suspension points

Example: p-i-n diode

11 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Page 12: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Compact modelling of power devices Description of charge dynamics in the drift region

n+ n- p+ n

SCR

Determined by implicit equation,

derived from Poisson-Equation

0

Charge dynamics in the base is described by the ambipolar diffusion equation (ADE):

Solution Methods for the local charge distribution:

Fourier Transformation

Kraus-Approximation using hyperbolic Functions

Finite Element Method (FEM)

Finite Difference Method (FDM)

Approximation as a pure 1D problem!

We need four boundary conditions 𝜕𝑝

𝜕𝑡= −

𝑝

𝜏+ 𝐷𝑎

𝜕2𝑝

𝜕𝑥2 𝑤𝑖𝑡ℎ 𝑛 ≈ 𝑝 → 𝑅𝐵𝑎𝑠𝑒 , 𝑄𝑏𝑎𝑠𝑒

𝐼𝑡𝑜𝑡 = 𝐼𝑝(0) 𝐼𝑡𝑜𝑡 = 𝐼𝑛(𝑑)

› Disadvantages of FDM over Kraus-Ansatz

– FDM has more unknowns and thus equations

– The SPICE code is significantly more complex!

– Convergence: Choose the correct boundary conditions

Example: p-i-n diode

12 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Page 13: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

› Discretize base into equidistant points where the carrier concentration is calculated

› Time integration directly calculated during transient analysis in SPICE › Local integration for Qbase(t) and Rbase(t) discrete sums with SPICE subcircuit

› Note: Moving SCR boundary, thus ∆x is changing with time

› High Injection at both junctions (anode & cathode):

› First 4 and last 4 points are used in Lagrange polynomials for local gradients at both junctions (anode & cathode):

… … …

𝜕𝑝𝑖

𝜕𝑡= −

𝑝𝑖

𝜏+ 𝐷𝑎

𝑝𝑖−1 − 2𝑝𝑖 + 𝑝𝑖+1

∆𝑥2 Each point one equation

Numerical Stable Boundary Conditions (BC)

𝜕𝑝0

𝜕𝑥=

1

6∆𝑥−11𝑝0 + 18𝑝1 − 9𝑝2 + 2𝑝3 =-

𝜇𝑛

𝜇𝑛+𝜇𝑝

1

𝑞∙𝐴∙𝐷 𝐼𝑡𝑜𝑡

𝜕𝑝𝑛

𝜕𝑥=

1

6∆𝑥−2𝑝𝑛−3 + 9𝑝𝑛−2 − 18𝑝𝑛−1 + 11𝑝𝑛 =

𝜇𝑝

𝜇𝑛+𝜇𝑝

1

𝑞∙𝐴∙𝐷 𝐼𝑡𝑜𝑡

Compact modelling of power devices Description of charge dynamics in the drift region

13 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Page 14: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

U11dgl_randbedIin

p1p2

p8p9

pl pr

U8relem2

P1P2

P3P4

P5P6

P7P8

P9

Vp

U7diffusion1

23

U6diffusion1

23

U5diffusion1

23

U4diffusion1

23

U3diffusion1

23

U2diffusion1

23

U1diffusion1

23

U10diffusion1

23

U9diffusion1

23

H1

11K

R1V1

U2

ou

tin

ARB1

OU

T

in3

in2

in1

boundary-conditions

dynamic charge

and resistance

ADE Submodel

integrator 2

2

11 )2()(

x

xDpppD

dt

dp iiii

red @ time green @ time + t

Compact modelling of power devices Implementation of charge dynamics model in SPICE

14 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Page 15: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Plasma concentration in a diode during turn-off

Unique feature of a SIMetrix model

Compact modelling of power devices Implementation of charge dynamics model in SPICE

15 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Page 16: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Outline

Introduction

Virtual Prototyping Approach

Compact modelling for power devices

Assessment of Model Precision

Electro-thermal co-simulation in SPICE

1

2

3

4

5

16 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Summary and Outlook 6

Page 17: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

17 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

› Calibration

– TCAD and compact chip models are calibrated on measurements of single chips mounted on DCBs

– Parasitics are extracted for the module and the test setup directly from the CAD layout (no C, R @ DC and L @ 100MHz)

– Parasitics of the driver are fitted from characterization measurements

› Precision assessment – DoE for dynamic characterization in test circuit varying Rg, VCC, ILoad, Tj and Ls

– Measurements and simulations for at least 24 switching conditions

– Mounting as single-chip and in module package

– Evaluation of IGBT turn on and off + diode reverse recovery

– For each switching conditions extraction of up to 68 switching parameters from simulated and measured curves

– Qualitative assessment: overlay of simulated and measured switching transients for different switching conditions

– Quantitative assessment: simulation error (deviation) of extracted parameters for single-chip and module mounting

Assessment of modelling precision Work flow

Page 18: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

18 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Assessment of modelling precision Switching curves

Rg

Rg

Ic Ic

Vce Vce

TCAD

Models

(S-Device)

Compact

models

(SIMetrix)

Turn on Turn off

Page 19: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

19 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

[W]

Assessment of modelling precision Extracted dynamic parameters

Page 20: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Outline

Introduction

Virtual Prototyping Approach

Compact modelling for power devices

Assessment of Model Precision

Electro-thermal co-simulation in SPICE

1

2

3

4

5

20 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Summary and Outlook 6

Page 21: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

21 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Electro-thermal co-simulation in SPICE Motivation

› Currently used thermal models:

– Foster model (partial-fraction network, data sheet parameters)

– Cauer model (continued-fraction network, physically correct)

– Matlab model (direct combination of step responses from FEM analysis with power signal via convolution integral)

› Serious draw back: amount of RC elements when considering thermal couplings in complex modules

› Good to have:

– thermal model that can be directly integrated in circuit simulation

– Coupling with electrical model that considers loss distribution

Page 22: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

22 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Electro-thermal co-simulation in SPICE Thermal model generation with MOR tool for ANSYS

› Generates reduced thermal model without calculation of a temperature field.

– MOR = Model Order Reduction (procedure)

– ROM = Reduced Order Model (result)

•3D-CAD

•material data

• relevant devices

•FEM network definition

•boundary conditions (convection etc.)

• load (power loss)

Page 23: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

23 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Electro-thermal co-simulation in SPICE Thermal model generation with MOR tool for ANSYS

› Generates reduced thermal model without calculation of a temperature field.

– MOR = Model Order Reduction (procedure)

– ROM = Reduced Order Model (result)

•3D-CAD

•material data

• relevant devices

•FEM network definition

•boundary conditions (convection etc.)

• load (power loss)

62mm module

Foster model with 624 Rs & Cs:

Fitting time=15.6h

Working time=23.6h

Total time = 29.2h

ROM for 180 dimensions with 6840 elements:

Working time=2.0h

Total time = 2.1h

PrimePackTM3 module

Foster model with 9408 Rs & Cs:

Fitting time=235h

Working time=262h

Total time = 410h

ROM for 1000 dimensions with 146k elements:

Working time=3h

Total time = 12h

Page 24: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

thermal network

Example:

Compact model of a PrimePackTM3 with 48 semiconductors

24 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Electro-thermal co-simulation in SPICE Electro-thermal simulations with ROM for PP3

› Electro-thermal model in SIMetrix results from merging the thermal ROM and the electrical compact model of the PP3 (semiconductor models were modified for power calculation and thermal handling)

Electro-thermal

network

Only electrical

network Output

Transient temperature and power loss

distribution in the module until thermal steady

state reached

Output Transient power loss distribution in the module

at fixed temperature

Period: 35µs

Convergence fail after 11 pulses!

Estimated analysis time for 10ms: 140.3h

Estimated analysis time for 100s: 160y

Period: 35µs

Convergence fail after 48 pulses!

Estimated analysis time for 10ms: 37.8h

Estimated analysis time for 100s: 43y!

Transient multi-pulse simulation

Page 25: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

25 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Electro-thermal co-simulation in SPICE Approach

› Transient multi-pulse electro-thermal simulation: not viable because of analysis time and convergence stability

› Next approach: perform separated, but coupled iterative simulations with pure electrical and pure thermal model

simulate stationary temperature and power loss distribution in the module at thermal steady state in a DC/DC converter

simulate transient temperature and power loss distribution in the module during thermal ramp up with sinusoidal current load (emulates inverter operation)

Page 26: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

26 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Electro-thermal co-simulation in SPICE Approach

P_IH

P_DH

P_DL

VD

25

vjDH11

25

vjIH11

25

vjDH8

25

vjIH8

25

vjDL8

25

vjIL8

25

vjIL4

25

vjDL4

25

vjDL3

25

vjIL3

25

vjIH4

25

vjDH3

25

vjDH4

25

vjDH5

25

vjDH6

25

vjIH6

25

vjIH5

25

vjIL1

Vge

IC

Vce

IH8IH7

IL8

DH8DH7

DL8

IL7

DL7

IH4IH3

IL4

DH4DH3

DL4

IL3

DL3

DL9

IL9

DL10

DH9 DH10

IL10

IH9 IH10{rgint}

R22

{rgint}

R23

{rgint}

R24

{rgint}

R25

{rgint}

R18

{rgint}

R19

{rgint}

R20

{rgint}

R21

{rgint}

R14

{rgint}

R15

{rgint}

R16

{rgint}

R17

{rgint}

R9

{rgint}

R8

{rgint}

R6

{rgint}

R4

FF1400R12IP4_RdcLac100MHz

U1

WechslerPlus

MinusHG2

HG1IGBT2_62W

IGBT2_61WIGBT2_52W

IGBT2_51WIGBT2_42W

IGBT2_41WIGBT2_32W

IGBT2_31WIGBT2_22W

IGBT2_21WIGBT2_12W

IGBT2_11WIGBT1_62W

IGBT1_61WIGBT1_52W

IGBT1_51WIGBT1_42W

IGBT1_41WIGBT1_32W

IGBT1_31WIGBT1_22W

IGBT1_21WIGBT1_12W

IGBT1_11WHE1

Diode2_62WDiode2_61W

Diode2_52WDiode2_51W

Diode2_42WDiode2_41W

Diode2_32WDiode2_31W

Diode2_22WDiode2_21W

Diode2_12WDiode2_11W

Diode1_62WDiode1_61W

Diode1_52WDiode1_51W

Diode1_42WDiode1_41W

Diode1_32WDiode1_31W

Diode1_22WDiode1_21W

Diode1_12WDiode1_11W

IGBT1_62PIGBT1_61P

IGBT1_52PIGBT1_51P

IGBT1_42PIGBT1_41P

IGBT1_32PIGBT1_31P

IGBT1_22PIGBT1_21P

IGBT1_12PIGBT1_11P

HC1Diode1_62P

Diode1_61PDiode1_52P

Diode1_51PDiode1_42P

Diode1_41PDiode1_32P

Diode1_31PDiode1_22P

Diode1_21PDiode1_12P

Diode1_11PIGBT2_62M

IGBT2_61MIGBT2_52M

IGBT2_51MIGBT2_42M

IGBT2_41MIGBT2_32M

IGBT2_31MIGBT2_22M

IGBT2_21MIGBT2_12M

IGBT2_11MHE2

Diode2_62MDiode2_61M

Diode2_52MDiode2_51M

Diode2_42MDiode2_41M

Diode2_32MDiode2_31M

Diode2_22MDiode2_21M

Diode2_12MDiode2_11M

G2_62G2_61

G2_52G2_51

G2_42G2_41

G2_32G2_31

G2_22G2_21

G2_12G2_11

G1_62G1_61

G1_52G1_51

G1_42G1_41

G1_32G1_31

G1_22G1_21

G1_12G1_11

IP2

HE1

HE2

ARB5

V(c)-V(e)

c

e

OUT

ARB4

V(g)-V(he)

g

he

OUT

1.4k

I1

IGBT1_62PSubstrat 6Diode2_62M

G2_61 G2_62

IGBT2_62W

IGBT2_61M IGBT2_62M

Diode2_62WDiode2_61W

IGBT2_61W

Diode2_61M

Diode1_62P

IGBT1_62W

Diode1_62WDiode1_61W

IGBT1_61P

IGBT1_61W

G1_61 G1_62

Diode1_61PDiode1_51P

G1_52G1_51

IGBT1_51W

IGBT1_51P

Diode1_51W Diode1_52W

IGBT1_52W

Diode1_52P

Diode2_51M

IGBT2_51W

Diode2_51W Diode2_52W

IGBT2_52MIGBT2_51M

IGBT2_52W

G2_52G2_51

Diode2_52M

Substrat 5IGBT1_52P

IGBT1_42P

Substrat 4

Diode2_42M

G2_41 G2_42

IGBT2_42W

IGBT2_41M IGBT2_42M

Diode2_42WDiode2_41W

IGBT2_41W

Diode2_41M

Diode1_42P

IGBT1_42W

Diode1_42WDiode1_41W

IGBT1_41P

IGBT1_41W

G1_41 G1_42

Diode1_41P

IGBT1_22P

IGBT2_61W

IGBT2_41W

IGBT2_21W

IGBT1_61W

IGBT1_41W

IGBT2_62W

IGBT2_42W

IGBT2_22W

IGBT1_62W

IGBT1_42W

Diode1_32P

Diode1_52P

IGBT1_31P

IGBT1_51P

Diode1_31W

Diode1_51W

Diode2_31W

Diode2_51W

IGBT2_52M

IGBT2_32M

Diode2_51M

Diode2_31M

G2_51

G2_31

G1_51

G1_31

G1_42

G1_62

G2_42

Diode2_32M

IGBT2_31M

IGBT2_51M

Diode2_62W

Diode2_42W

Diode1_62W

Diode1_42W

IGBT1_62P

IGBT1_42P

HC1

Diode1_51P

Diode1_31P

IGBT1_22W

IGBT1_21P

Diode2_21W Diode2_22W

IGBT1_22P

IGBT2_21M

Diode2_22M

G2_21

G1_22

Substrat 2

Diode2_22M

G2_21 G2_22

IGBT2_22W

IGBT2_21M IGBT2_22M

Diode2_22WDiode2_21W

IGBT2_21W

Diode2_21M

Diode1_22P

IGBT1_22W

Diode1_22WDiode1_21W

IGBT1_21P

IGBT1_21W

G1_21 G1_22

Diode1_21P

HG1

IGBT2_11M

Diode2_12M

Diode2_11W

Diode1_12W

IGBT1_11W

IGBT1_11P

Lastspule

Wechsler

170n

L2

1.0

R2

HE2

Pulse(-15 15 10u 110n 110n 387u 669u)

V2

HG2

1.3

R3

HG2

G2_12

G1_12

WechslerPlus

600

V1

Diode1_11P

G1_12G1_11

IGBT1_11W

IGBT1_12P

10

R7

HG1

-15

V3

HE1

Plus

Aufbau mit Quelle

R-L-Ersatzschaltung Aufbau 36n

L1

37.5m

R1

Ansteuerung

Minus

500u

R5

100n

L5

IGBT1_11P

Diode1_11W Diode1_12W

IGBT1_12W

Diode1_12P

Diode2_11M

IGBT2_11W

Diode2_11W Diode2_12W

IGBT2_12MIGBT2_11M

IGBT2_12W

G2_12G2_11

Diode2_12M

Substrat 1

Minus

G1_11

G2_11

HE2

Plus

IGBT1_12P

IGBT1_12W

Diode1_11P

Diode1_11W

Diode1_12P

Diode2_12W

Diode2_11M

IGBT2_12M

HE1

G1_21

G2_22

Diode2_21M

Diode1_21P

Diode1_22W

IGBT1_21W

Diode1_21W

Diode1_22P

IGBT2_22M

Diode1_41P

Diode1_61P

IGBT1_32P

IGBT1_52P

Diode1_32W

Diode1_52W

Diode2_32W

Diode2_52W

IGBT2_61M

IGBT2_41M

Diode2_62M

Diode2_52M

Diode2_42M

G2_62

G2_52

G2_32

G1_52

G1_32

G1_41

G1_61

G2_41

G2_61

Diode2_41M

Diode2_61M

IGBT2_42M

IGBT2_62M

Diode2_61W

Diode2_41W

Diode1_61W

Diode1_41W

IGBT1_61P

IGBT1_41P

Diode1_62P

Diode1_42P

IGBT1_32W

IGBT1_52W

IGBT2_12W

IGBT2_32W

IGBT2_52W

IGBT1_31W

IGBT1_51W

IGBT2_11W

IGBT2_31W

IGBT2_51W

Diode1_31P

G1_32G1_31

IGBT1_31W

IGBT1_31P

Diode1_31W Diode1_32W

IGBT1_32W

Diode1_32P

Diode2_31M

IGBT2_31W

Diode2_31W Diode2_32W

IGBT2_32MIGBT2_31M

IGBT2_32W

G2_32G2_31

Diode2_32M

Substrat 3IGBT1_32P

I(in)

ARB1

I(in)

OUT

VD

ARB3

V(A)-V(K)

OUT

k

a

I(in)

ARB2

I(in)

OUTID

IC

Vge

Vce

HC1

HE1

IP1

IP2

IP1

{rgint}

R13

{rgint}

R12

{rgint}

R11

{rgint}

R10

{rgint}

R29

{rgint}

R28

{rgint}

R27

{rgint}

R26

DL1

IL1

DL2

DH1 DH2

IL2

IH1 IH2

IH6IH5

IL6

DH6DH5

DL6

IL5

DL5

DL11

IL11

DL12

DH11 DH12

IL12

IH11 IH12

C1

1n

25

vjIL2

25

vjDL1

25

vjDL2

25

vjIH1

25

vjIH2

25

vjDH2

25

vjDH1

25

vjDL5

25

vjIL5

25

vjDL6

25

vjIL6

25

vjIL10

25

vjDL10

25

vjIL9

25

vjDL9

25

vjIH9

25

vjIH10

25

vjDH10

25

vjDH9

25

vjIH3

25

vjIL7

25

vjDL7

25

vjIH7

25

vjDH7

25

vjDL11

25

vjIL11

25

vjDL12

25

vjIL12

25

vjIH12

25

vjDH12

ID

P_IL

FF1400R12IP4_Therm_N100U2

vjIL1 vjIL2vjIL3 vjIL4vjIL5 vjIL6vjIL7 vjIL8vjIL9 vjIL10vjIL11 vjIL12vjDL1 vjDL2vjDL3 vjDL4vjDL5 vjDL6vjDL7 vjDL8vjDL9 vjDL10vjDL11 vjDL12vjIH1 vjIH2vjIH3 vjIH4vjIH5 vjIH6vjIH7 vjIH8vjIH9 vjIH10vjIH11 vjIH12vjDH1 vjDH2vjDH3 vjDH4vjDH5 vjDH6vjDH7 vjDH8vjDH9 vjDH10vjDH11 vjDH12

gnd

25Vtambient

244.141734692882

PIL9

243.510914717039

PIL11

0.0457366750958548

PDL1

0.0583527217828008

PDL3

246.560629722351

PIL7253.092342728174

PIL5249.779500651404

PIL3253.379714324295

PIL1

0.0639353704677629

PDL5

0.0619137081089526

PDL7

0.0573678645351192

PDL9

0.0442727672843596

PDL11

0.0207127483256967

PIH70.0204301527359044

PIH50.0202047956111984

PIH30.0198797591381681

PIH1

0.0212157919284937

PIH9

0.0221505077710705

PIH11

110.070345323269

PDH1

111.551162487456

PDH3

109.482827935673

PDH11114.578259462689

PDH9114.331689203209

PDH7113.406335506563

PDH5

vjDH7

vjIH9

vjIH5

vjDL9

vjDL5

vjIL9

vjIL5

vjDL3

vjIL1

vjDL1

vjDH1

vjIH1

vjDH3

vjIL3

vjIH3

vjDH5

vjIL7

vjIL11

vjDL7

vjDL11

vjIH7

vjIH11

vjDH9vjDH11 vjDH12

vjDH10

vjIH12

vjIH8

vjDL12

vjDL8

vjIL12

vjIL8

vjDH6

vjIH4

vjIL4

vjDH4

vjIH2

vjDH2

vjDL2

vjIL2

vjDL4

vjIL6

vjIL10

vjDL6

vjDL10

vjIH6

vjIH10

vjDH8

108.866242343757

PDH2

110.400396125383

PDH4

111.946280909337

PDH6

112.786412518265

PDH8

112.929778003241

PDH10107.488108345139

PDH120.0198589220380567

PIH20.0201882557578181

PIH4

0.0204086514234834

PIH6

0.0206984417949577

PIH8

0.0212303454981039

PIH10

0.0222155205472372

PIH12

0.0500369742007769

PDL20.0617732620971844

PDL40.0661033337570826

PDL60.0634768963893531

PDL8

246.824096071425

PIL2

244.834384910374

PIL4

247.936990677803

PIL6

242.569039417704

PIL8

0.0578156757479723

PDL100.0411749905897605

PDL12239.887128801927

PIL10240.406160611496

PIL12

script linkage

Tota

l lo

ss p

er

chip

Mean te

mpera

ture

per c

hip

› Transient multi-pulse electro-thermal simulation: not viable because of analysis time and convergence stability

› Next approach: perform separated, but coupled iterative simulations with pure electrical and pure thermal model

Electrical model: transient double-

pulse simulation at given f and D

with updated T

Thermal model: DCOP

with updated losses

simulate stationary temperature and power loss distribution in the module at thermal steady state in a DC/DC converter

simulate transient temperature and power loss distribution in the module during thermal ramp up with sinusoidal current load (emulates inverter operation)

Page 27: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

27 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Electro-thermal co-simulation in SPICE Example: PrimePackTM3

Stationary pseudo electro-thermal simulation

› Circuit: buck converter, low-side IGBT is switched

› Design: converter layout calculation for Tjmax=150°C

› Tinitial = 25°C

› Convergence criterion < 0.05°C

› 10 iteration needed

› Total analysis time: 3.3h

› Result: mean temperature of each chip in good agreement with full FEM simulation

High-side diode (DH)

Low-side IGBT (IL)

Page 28: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

28 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Electro-thermal co-simulation in SPICE Approach

P_IH

P_DH

P_DL

VD

25

vjDH11

25

vjIH11

25

vjDH8

25

vjIH8

25

vjDL8

25

vjIL8

25

vjIL4

25

vjDL4

25

vjDL3

25

vjIL3

25

vjIH4

25

vjDH3

25

vjDH4

25

vjDH5

25

vjDH6

25

vjIH6

25

vjIH5

25

vjIL1

Vge

IC

Vce

IH8IH7

IL8

DH8DH7

DL8

IL7

DL7

IH4IH3

IL4

DH4DH3

DL4

IL3

DL3

DL9

IL9

DL10

DH9 DH10

IL10

IH9 IH10{rgint}

R22

{rgint}

R23

{rgint}

R24

{rgint}

R25

{rgint}

R18

{rgint}

R19

{rgint}

R20

{rgint}

R21

{rgint}

R14

{rgint}

R15

{rgint}

R16

{rgint}

R17

{rgint}

R9

{rgint}

R8

{rgint}

R6

{rgint}

R4

FF1400R12IP4_RdcLac100MHz

U1

WechslerPlus

MinusHG2

HG1IGBT2_62W

IGBT2_61WIGBT2_52W

IGBT2_51WIGBT2_42W

IGBT2_41WIGBT2_32W

IGBT2_31WIGBT2_22W

IGBT2_21WIGBT2_12W

IGBT2_11WIGBT1_62W

IGBT1_61WIGBT1_52W

IGBT1_51WIGBT1_42W

IGBT1_41WIGBT1_32W

IGBT1_31WIGBT1_22W

IGBT1_21WIGBT1_12W

IGBT1_11WHE1

Diode2_62WDiode2_61W

Diode2_52WDiode2_51W

Diode2_42WDiode2_41W

Diode2_32WDiode2_31W

Diode2_22WDiode2_21W

Diode2_12WDiode2_11W

Diode1_62WDiode1_61W

Diode1_52WDiode1_51W

Diode1_42WDiode1_41W

Diode1_32WDiode1_31W

Diode1_22WDiode1_21W

Diode1_12WDiode1_11W

IGBT1_62PIGBT1_61P

IGBT1_52PIGBT1_51P

IGBT1_42PIGBT1_41P

IGBT1_32PIGBT1_31P

IGBT1_22PIGBT1_21P

IGBT1_12PIGBT1_11P

HC1Diode1_62P

Diode1_61PDiode1_52P

Diode1_51PDiode1_42P

Diode1_41PDiode1_32P

Diode1_31PDiode1_22P

Diode1_21PDiode1_12P

Diode1_11PIGBT2_62M

IGBT2_61MIGBT2_52M

IGBT2_51MIGBT2_42M

IGBT2_41MIGBT2_32M

IGBT2_31MIGBT2_22M

IGBT2_21MIGBT2_12M

IGBT2_11MHE2

Diode2_62MDiode2_61M

Diode2_52MDiode2_51M

Diode2_42MDiode2_41M

Diode2_32MDiode2_31M

Diode2_22MDiode2_21M

Diode2_12MDiode2_11M

G2_62G2_61

G2_52G2_51

G2_42G2_41

G2_32G2_31

G2_22G2_21

G2_12G2_11

G1_62G1_61

G1_52G1_51

G1_42G1_41

G1_32G1_31

G1_22G1_21

G1_12G1_11

IP2

HE1

HE2

ARB5

V(c)-V(e)

c

e

OUT

ARB4

V(g)-V(he)

g

he

OUT

1.4k

I1

IGBT1_62PSubstrat 6Diode2_62M

G2_61 G2_62

IGBT2_62W

IGBT2_61M IGBT2_62M

Diode2_62WDiode2_61W

IGBT2_61W

Diode2_61M

Diode1_62P

IGBT1_62W

Diode1_62WDiode1_61W

IGBT1_61P

IGBT1_61W

G1_61 G1_62

Diode1_61PDiode1_51P

G1_52G1_51

IGBT1_51W

IGBT1_51P

Diode1_51W Diode1_52W

IGBT1_52W

Diode1_52P

Diode2_51M

IGBT2_51W

Diode2_51W Diode2_52W

IGBT2_52MIGBT2_51M

IGBT2_52W

G2_52G2_51

Diode2_52M

Substrat 5IGBT1_52P

IGBT1_42P

Substrat 4

Diode2_42M

G2_41 G2_42

IGBT2_42W

IGBT2_41M IGBT2_42M

Diode2_42WDiode2_41W

IGBT2_41W

Diode2_41M

Diode1_42P

IGBT1_42W

Diode1_42WDiode1_41W

IGBT1_41P

IGBT1_41W

G1_41 G1_42

Diode1_41P

IGBT1_22P

IGBT2_61W

IGBT2_41W

IGBT2_21W

IGBT1_61W

IGBT1_41W

IGBT2_62W

IGBT2_42W

IGBT2_22W

IGBT1_62W

IGBT1_42W

Diode1_32P

Diode1_52P

IGBT1_31P

IGBT1_51P

Diode1_31W

Diode1_51W

Diode2_31W

Diode2_51W

IGBT2_52M

IGBT2_32M

Diode2_51M

Diode2_31M

G2_51

G2_31

G1_51

G1_31

G1_42

G1_62

G2_42

Diode2_32M

IGBT2_31M

IGBT2_51M

Diode2_62W

Diode2_42W

Diode1_62W

Diode1_42W

IGBT1_62P

IGBT1_42P

HC1

Diode1_51P

Diode1_31P

IGBT1_22W

IGBT1_21P

Diode2_21W Diode2_22W

IGBT1_22P

IGBT2_21M

Diode2_22M

G2_21

G1_22

Substrat 2

Diode2_22M

G2_21 G2_22

IGBT2_22W

IGBT2_21M IGBT2_22M

Diode2_22WDiode2_21W

IGBT2_21W

Diode2_21M

Diode1_22P

IGBT1_22W

Diode1_22WDiode1_21W

IGBT1_21P

IGBT1_21W

G1_21 G1_22

Diode1_21P

HG1

IGBT2_11M

Diode2_12M

Diode2_11W

Diode1_12W

IGBT1_11W

IGBT1_11P

Lastspule

Wechsler

170n

L2

1.0

R2

HE2

Pulse(-15 15 10u 110n 110n 387u 669u)

V2

HG2

1.3

R3

HG2

G2_12

G1_12

WechslerPlus

600

V1

Diode1_11P

G1_12G1_11

IGBT1_11W

IGBT1_12P

10

R7

HG1

-15

V3

HE1

Plus

Aufbau mit Quelle

R-L-Ersatzschaltung Aufbau 36n

L1

37.5m

R1

Ansteuerung

Minus

500u

R5

100n

L5

IGBT1_11P

Diode1_11W Diode1_12W

IGBT1_12W

Diode1_12P

Diode2_11M

IGBT2_11W

Diode2_11W Diode2_12W

IGBT2_12MIGBT2_11M

IGBT2_12W

G2_12G2_11

Diode2_12M

Substrat 1

Minus

G1_11

G2_11

HE2

Plus

IGBT1_12P

IGBT1_12W

Diode1_11P

Diode1_11W

Diode1_12P

Diode2_12W

Diode2_11M

IGBT2_12M

HE1

G1_21

G2_22

Diode2_21M

Diode1_21P

Diode1_22W

IGBT1_21W

Diode1_21W

Diode1_22P

IGBT2_22M

Diode1_41P

Diode1_61P

IGBT1_32P

IGBT1_52P

Diode1_32W

Diode1_52W

Diode2_32W

Diode2_52W

IGBT2_61M

IGBT2_41M

Diode2_62M

Diode2_52M

Diode2_42M

G2_62

G2_52

G2_32

G1_52

G1_32

G1_41

G1_61

G2_41

G2_61

Diode2_41M

Diode2_61M

IGBT2_42M

IGBT2_62M

Diode2_61W

Diode2_41W

Diode1_61W

Diode1_41W

IGBT1_61P

IGBT1_41P

Diode1_62P

Diode1_42P

IGBT1_32W

IGBT1_52W

IGBT2_12W

IGBT2_32W

IGBT2_52W

IGBT1_31W

IGBT1_51W

IGBT2_11W

IGBT2_31W

IGBT2_51W

Diode1_31P

G1_32G1_31

IGBT1_31W

IGBT1_31P

Diode1_31W Diode1_32W

IGBT1_32W

Diode1_32P

Diode2_31M

IGBT2_31W

Diode2_31W Diode2_32W

IGBT2_32MIGBT2_31M

IGBT2_32W

G2_32G2_31

Diode2_32M

Substrat 3IGBT1_32P

I(in)

ARB1

I(in)

OUT

VD

ARB3

V(A)-V(K)

OUT

k

a

I(in)

ARB2

I(in)

OUTID

IC

Vge

Vce

HC1

HE1

IP1

IP2

IP1

{rgint}

R13

{rgint}

R12

{rgint}

R11

{rgint}

R10

{rgint}

R29

{rgint}

R28

{rgint}

R27

{rgint}

R26

DL1

IL1

DL2

DH1 DH2

IL2

IH1 IH2

IH6IH5

IL6

DH6DH5

DL6

IL5

DL5

DL11

IL11

DL12

DH11 DH12

IL12

IH11 IH12

C1

1n

25

vjIL2

25

vjDL1

25

vjDL2

25

vjIH1

25

vjIH2

25

vjDH2

25

vjDH1

25

vjDL5

25

vjIL5

25

vjDL6

25

vjIL6

25

vjIL10

25

vjDL10

25

vjIL9

25

vjDL9

25

vjIH9

25

vjIH10

25

vjDH10

25

vjDH9

25

vjIH3

25

vjIL7

25

vjDL7

25

vjIH7

25

vjDH7

25

vjDL11

25

vjIL11

25

vjDL12

25

vjIL12

25

vjIH12

25

vjDH12

ID

P_IL

FF1400R12IP4_Therm_N100U2

vjIL1 vjIL2vjIL3 vjIL4vjIL5 vjIL6vjIL7 vjIL8vjIL9 vjIL10vjIL11 vjIL12vjDL1 vjDL2vjDL3 vjDL4vjDL5 vjDL6vjDL7 vjDL8vjDL9 vjDL10vjDL11 vjDL12vjIH1 vjIH2vjIH3 vjIH4vjIH5 vjIH6vjIH7 vjIH8vjIH9 vjIH10vjIH11 vjIH12vjDH1 vjDH2vjDH3 vjDH4vjDH5 vjDH6vjDH7 vjDH8vjDH9 vjDH10vjDH11 vjDH12

gnd

25Vtambient

244.141734692882

PIL9

243.510914717039

PIL11

0.0457366750958548

PDL1

0.0583527217828008

PDL3

246.560629722351

PIL7253.092342728174

PIL5249.779500651404

PIL3253.379714324295

PIL1

0.0639353704677629

PDL5

0.0619137081089526

PDL7

0.0573678645351192

PDL9

0.0442727672843596

PDL11

0.0207127483256967

PIH70.0204301527359044

PIH50.0202047956111984

PIH30.0198797591381681

PIH1

0.0212157919284937

PIH9

0.0221505077710705

PIH11

110.070345323269

PDH1

111.551162487456

PDH3

109.482827935673

PDH11114.578259462689

PDH9114.331689203209

PDH7113.406335506563

PDH5

vjDH7

vjIH9

vjIH5

vjDL9

vjDL5

vjIL9

vjIL5

vjDL3

vjIL1

vjDL1

vjDH1

vjIH1

vjDH3

vjIL3

vjIH3

vjDH5

vjIL7

vjIL11

vjDL7

vjDL11

vjIH7

vjIH11

vjDH9vjDH11 vjDH12

vjDH10

vjIH12

vjIH8

vjDL12

vjDL8

vjIL12

vjIL8

vjDH6

vjIH4

vjIL4

vjDH4

vjIH2

vjDH2

vjDL2

vjIL2

vjDL4

vjIL6

vjIL10

vjDL6

vjDL10

vjIH6

vjIH10

vjDH8

108.866242343757

PDH2

110.400396125383

PDH4

111.946280909337

PDH6

112.786412518265

PDH8

112.929778003241

PDH10107.488108345139

PDH120.0198589220380567

PIH20.0201882557578181

PIH4

0.0204086514234834

PIH6

0.0206984417949577

PIH8

0.0212303454981039

PIH10

0.0222155205472372

PIH12

0.0500369742007769

PDL20.0617732620971844

PDL40.0661033337570826

PDL60.0634768963893531

PDL8

246.824096071425

PIL2

244.834384910374

PIL4

247.936990677803

PIL6

242.569039417704

PIL8

0.0578156757479723

PDL100.0411749905897605

PDL12239.887128801927

PIL10240.406160611496

PIL12

script linkage

Tota

l lo

ss p

er

chip

Mean te

mpera

ture

per c

hip

› Transient multi-pulse electro-thermal simulation: not viable because of analysis time and convergence stability

› Next approach: perform separated, but coupled iterative simulations with pure electrical and pure thermal model

Electrical model: 1 double-pulse

simulation at given fsw and D

with updated T and Iload

Thermal model: quasi-continuous

transient simulation with updated losses

simulate stationary temperature and power loss distribution in the module at thermal steady state in a DC/DC converter

simulate transient temperature and power loss distribution in the module during thermal ramp up with sinusoidal current load (emulates inverter operation)

every

32 s

witchin

g p

eriods e

very 3

2 sw

itchin

g perio

ds

Page 29: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

29 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Electro-thermal co-simulation in SPICE Example: PrimePackTM3

Results for transient pseudo electro-thermal simulation

› Switching: high-side IGBT, D=0.5, fsw=1500Hz › Load: sinusoidal current source, f=1Hz, Imax=1240A › Tinitial = Tambient = 25°C › Dt for thermal model update: 21.408ms › Simulated time range: 9,6336s › Total analysis time: 77h

TIGBT

TDiode

Mean T in IGBTs and diodes Chip-specific T in high-side IGBT

Low-side diode (DH)

High-side IGBT (IL)

Page 30: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Outline

Introduction

Virtual Prototyping Approach

Compact modelling for power devices

Assessment of Model Precision

Electro-thermal co-simulation in SPICE

1

2

3

4

5

30 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Summary and Outlook 6

Page 31: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Summary

31 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

› Virtual prototyping flow for device and package development

› Detailed evaluation of simulation precision

› Current distribution in modules for design optimization

› Investigation of impact of main FE and BE tolerances

› Simulation-based system-level models for thermal converter design

› Enhanced IGBT and diode compact models

› Electro-thermal co-simulation at circuit level

Page 32: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

Outlook

32 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Automated generation of

compact chip models

Establish MOR technique

to predict temp. distribution

Compact chip models:

Equivalent circuits Verilog-A

Establish automated

calibration routine

Extraction of compact chip

models from TCAD flow

Extend VP to discrete IGBTs

in evaluation boards

Vision

Page 33: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

33 2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved.

Page 34: Virtual prototyping for power diode and IGBT development...diode and IGBT development Maria Cotorogea Peter Türkes Andreas Groove 30th Working Group Bipolar Outline Introduction Virtual

2017-11-09 Copyright © Infineon Technologies AG 2015. All rights reserved. 34