virtual process engineering - energy

59
Virtual Process Engineering in coarse-grained discrete particle methods Wei Ge State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences 2017 NETL Workshop on Multiphase Flow Science 2017.08.08

Upload: others

Post on 25-Nov-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Virtual Process Engineering - Energy

Virtual Process Engineeringin coarse-grained discrete particle methods

Wei GeState Key Laboratory of Multiphase Complex Systems

Institute of Process Engineering, Chinese Academy of Sciences

2017 NETL Workshop on Multiphase Flow Science

2017.08.08

Page 2: Virtual Process Engineering - Energy

What is virtual process engineeringVirtual experiment and measurement on digital processes in computers

High fidelity: Indistinguishable to the real processesRealtime/quasi-realtime

High flexibility: Virtual and real systems integrated:experiment-measurement-computation-visualization-control integrated

High efficiency: Within reasonable cost and complexity

New R&D and training/educational platformGe et al. 2011 Chem. Eng. Sci. 66:4426-4458; Liu et al. 2012 Chem. Eng. Proc. 108:28-33 2

Page 3: Virtual Process Engineering - Energy

Whydiscrete particle methods

Page 4: Virtual Process Engineering - Energy

4

Challenges of multi-scale simulation

DEM

MD MC / DPD

CGP

molecule assembly particle cluster reactor

unit model

meso-scalesno matured theory

direct simulationtooooo costly

Page 5: Virtual Process Engineering - Energy

5

W(r)

a

i

Locality

Additivity

Similarity

ia ia ai ai2

i ai i

f mf | = D r Wr ρ

∇ ∑

ia ia ai2

i ai i

f mΔf | = 2D Wr ρ∑

Xu et al. 2015 Chem. Eng. Sci. 121:200-216

Advantages of discrete methods

MD MC PPM, DPD LBM, …DEM SPH PIC MaPPM, CG-DEM, …

Page 6: Virtual Process Engineering - Energy

Software-hardware co-design

6

Particle-based

algorithms

Graph- or Matrix-Based

algorithms

MulticoreMIMD

(e.g., CPU)

ManycoreMIMD

(e.g., MIC)

ManycoreSIMD

(e.g., GPU)

model software hardwaresystem

Lattice-based

algorithms

Ge et al. 2015 Chem. Eng. & Tech. 38:575-584 structural consistency

Page 7: Virtual Process Engineering - Energy

7

Multi-scale node architecture

ConfigurationArchitecture Layout

2x Intel E56404C @2.6GHz224.9Gflops

Inter Xeon Phi 3120a 57C @1.1GHz

1000Gflops

5x nVIDIA Tesla c2050448C @1.15GHz

515Gflops

PCI-E8GB/s

QDR IB5GB/s

QDR IB5GB/s

Li et al. 2014 Particuology 15:160-169; Ge et al. 2015 Chem. Eng. & Tech. 38:575-584

Page 8: Virtual Process Engineering - Energy

Rpeak SP:Rpeak DP:Linpack:Mflops/Watt:memory:storage:network:occupied area:weight:max power:

2.26Petaflops ~ 10-8.5 Mole-flops1.13Petaflops496.5Tflops (19th, Top500, 2010)963.7 (8th, Green500, 2010)17.2TB (RAM), 6.6TB (VRAM)76TB (Nastron)+320TB (HP)Mellanox QDR InfiniBand150m2 (with internal cooling)12.6T (with internal cooling)600kW+200kW (cooling)

8

Greenest petaflops supercomputer in 2010

Page 9: Virtual Process Engineering - Energy

Cases Nparticles

1 7,220

2 120,159

3 240,318

4 480,636

5 961,274

6 1,922,548

7 3,845,096

Configuration State: compact packing (most colliding neighbors) Box:80×40 ×20 m3

Radius of particles: 12.5 mm Time step: 10-4 s Grid size: 2 times of diameter of particles Neighbor searching cutoff: 2 times of diameter of

particles Average neighboring particles in neighbor list: ∼20

Parameters

GPU performance in DEM simulation

packing stateXu et al. 2016 IPE Internal Report

9

Page 10: Virtual Process Engineering - Energy

Speed of different modelsNparticle*Nstep/time (108)

Relative speed

GPU performance in DEM simulation

10

Page 11: Virtual Process Engineering - Energy

storagedistribution

11

Full scale simulation of a blast furnace

Ren et al. 2015 Internal Report

Page 12: Virtual Process Engineering - Energy

Example IDiscrete particle simulation

of gas-solid flow

Page 13: Virtual Process Engineering - Energy

13

cellcell

1 dd i

iV ∈

= − ∑F fcoupling

CFD-DEM method

solid phase

fluid phase

discrete element method

c dii ij i i

j

dm mdt

= + +∑v f f g

ii ij

j

dIdt

=∑ω T

Navier-Stokes equation

mass conservation

momentum conservation

( ) ( )gg 0

tερ

ερ∂

+∇ ⋅ =∂

u

( ) ( )( )

gg

g d

tp

ερερ

ε ε ερ

∂+∇ ⋅

∂= − ∇ +∇⋅ + +

uuu

τ g F

Page 14: Virtual Process Engineering - Energy

More efficient discrete methods

Simplifying interactions

14

Upgradingscales ofdescription

Stochastic DPMMonte Carlo motion, individual particles

Particle in cellcontinuum stress laws, representative particles

Smoothed particle hydrodynamicscontinuum stress laws, swarms of particles

Coarse-grained particlesdiscrete element models, swarms of particles

Page 15: Virtual Process Engineering - Energy

15* Sakai et al. 2010, Int J Numer Meth Fl. 64:1319-1335

The k3 real particles are represented by k coarse-grained particles and

dc=k3d0

Development of coarse-grained models

𝑚𝑚𝑐𝑐𝑑𝑑𝒗𝒗𝒑𝒑,𝒄𝒄

𝑑𝑑𝑑𝑑 = 𝑭𝑭𝒅𝒅,𝒄𝒄 − 𝑉𝑉𝑐𝑐𝛻𝛻𝑃𝑃 + �𝑭𝑭𝒄𝒄 + 𝑮𝑮𝒄𝒄

= 𝑘𝑘3(𝑭𝑭𝒅𝒅,𝟎𝟎 − 𝑉𝑉0𝛻𝛻𝑃𝑃 + ∑𝑭𝑭𝒄𝒄,𝟎𝟎 + 𝑮𝑮𝟎𝟎)

ln𝑒𝑒𝑐𝑐ln𝑒𝑒0

= 𝑘𝑘3

* The modification of micro-dynamics on particles (Similar particles assembly, SPA)

** In addition, the coefficient of restitution is modified as (MSPA):

** Benyahia et al. 2010, Ind Eng Chem Res. 49:10588-10605

Page 16: Virtual Process Engineering - Energy

16*Liu et al. 2013, 14th International Conference on Fluidization .

Modification of fluid properties for constant Re and Ar (Principle of similarity model, PSM)

𝜇𝜇𝑔𝑔,𝑐𝑐

𝜇𝜇𝑔𝑔,0= 𝑘𝑘2 𝜌𝜌𝑔𝑔,𝑐𝑐

𝜌𝜌𝑔𝑔,0= 𝑘𝑘

𝑮𝑮𝒄𝒄 = 𝜌𝜌𝑝𝑝,𝑐𝑐16𝜋𝜋𝑑𝑑𝑐𝑐3𝐠𝐠 = 𝑘𝑘3𝜌𝜌𝑝𝑝,0

16𝜋𝜋𝑑𝑑03𝐠𝐠 = 𝑘𝑘3𝑮𝑮𝟎𝟎

𝐅𝐅𝐠𝐠,𝐜𝐜 =βc

1 − εc(𝒖𝒖𝒈𝒈,𝒄𝒄 − 𝒗𝒗𝒑𝒑,𝒄𝒄) − 𝛻𝛻𝛻 𝑉𝑉𝑐𝑐 =

β01 − ε0

(𝒖𝒖𝒈𝒈,𝟎𝟎 − 𝒗𝒗𝒑𝒑,𝟎𝟎) − 𝛻𝛻𝛻 𝑘𝑘3𝑉𝑉0 = k3𝐅𝐅𝐠𝐠,𝟎𝟎

Umfc =µg,c

ρg,cdc𝑓𝑓 Ar =

𝑘𝑘2µg,0

𝑘𝑘2ρg,0d0𝑓𝑓 Ar = Umf0

No change to the particle-particle interactions

Development of coarse-grained models

Page 17: Virtual Process Engineering - Energy

Coarse-graining with statistical equivalence

Lu et al. 2014 Chem. Eng. Sci. 120:67-87

𝑑𝑑ℎ𝑐𝑐 = 𝑑𝑑𝑐𝑐(1 − 𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶)1/3

𝑒𝑒𝑐𝑐 = 1 + 𝑘𝑘 𝑒𝑒02 − 1 (1 − 𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶)1/3

k3(1-εCGP) real particles are lumped into k coarse-grained particles with

dc=k3d0

𝑮𝑮𝒄𝒄 = 𝑘𝑘3(1 − 𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶)𝑮𝑮𝟎𝟎

𝑭𝑭𝒅𝒅,𝒄𝒄 =𝛽𝛽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

1 − 𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶(𝒖𝒖𝒈𝒈 − 𝒗𝒗𝑪𝑪𝑮𝑮𝑪𝑪)𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶

𝑭𝑭𝒈𝒈𝒈𝒈𝒈𝒈,𝒄𝒄 = −( �𝑖𝑖=1

𝑁𝑁𝑛𝑛,𝐶𝐶𝐶𝐶𝐶𝐶 16𝜋𝜋𝑑𝑑𝑐𝑐

3)𝛻𝛻𝑃𝑃 = −(1 − 𝜀𝜀𝐶𝐶𝐶𝐶𝐶𝐶)𝑘𝑘3𝜋𝜋6 𝑑𝑑0

3𝛻𝛻𝑃𝑃

17

Page 18: Virtual Process Engineering - Energy

2 2r

1 ( 1)( )4

E m e∆ = − k v

2 2c 0 g4 ( )f n d gπ ε= Θ

22 2 2ps,p c sys p p p p r,p 0 g( 1) ( )E E f V m N d e gπ ε∆ = ∆ ⋅ ⋅ = − Θk v

22 2 2s,CGP CGP CGP hc CGP r,CGP CGP 0 g( 1) ( )E m N d e gπ ε∆ = − Θk v

2 1/3CGP p CGP1 ( 1) (1 )e e k ε= + − −

Kinetic energy loss:

Collision frequency:

Original system:

Coarse-grained system:

·

Derivation of the coefficient of restitution

·

·

18

Page 19: Virtual Process Engineering - Energy

19Lu et al. 2014 Chem. Eng. Sci. 120:67-87

dcl,min > dcgp

dcl,min

CD(ug-us)

Ug Us

dcl

εcgp

CD,cgp=CD,EMMS

EMMS

Structure:

Drag:

εcl,max > εcgpdcgp

Critical parameters from EMMS

Page 20: Virtual Process Engineering - Energy

Simulation of a bubbling fluidized bed

Zhang et al. 2017. Submitted to Powder Tech. 20

Page 21: Virtual Process Engineering - Energy

21

Flow distribution

21

Interpolation

“Bi-linear”i ui

Ai+1,j Ai,j

Ai,j+1Ai+1,j+1

ui,j

ui,j+1 ui+1,j+1

ui+1,j

Traditional approach ignores meso-scale structure

Page 22: Virtual Process Engineering - Energy

22

Structure-based flow distribution

22

i

u┴

u∕∕

ε∇

ui

i

u

u

Xu, Ge & Li 2007 Chem. Eng. Sci. 62:2302

Page 23: Virtual Process Engineering - Energy

23

Slugging: simulation vs experiment

DPM only DPM+EMMS

Xu, Ge & Li 2007 Chem. Eng. Sci. 62:2302

Page 24: Virtual Process Engineering - Energy

24

Simulation of lab-scale CFB riser

DPM DPM+EMMS

Experiment:Chem. Eng. Sci.49:2413, 1994

Simulation:Xu et al. 2012 Chem. Eng. J. 207:746–757

Up to 10 million particles100mm ID x 6m in 2D, 20x(CPU+GPU)

Speed at ~0.2s per day using ~0.5µs time step

Page 25: Virtual Process Engineering - Energy

Ge et al. 2011 Chem. Eng. Sci. 66:4426-58; Xiong et al. 2012 Chem. Eng. Sci. 71:422-430 25

Our results:1 million particles, 1 billion lattices entering the scale-independent domain for the first time.

Previous results: ~100 particles

Scale-independent clustering from DNS

Page 26: Virtual Process Engineering - Energy

Zhou et al. 2014 Chem. Eng. Sci. 116:9-22

Spatial distribution

Magnitude & direction

26

new old

Drag characteristics revealed by DNS

F(Rep,ϕ,|∇ϕ|,θ)

Page 27: Virtual Process Engineering - Energy

Flowchart for CFD-DEM coupling

CFD DEMcoupling step

only

27Lu et al. 2016 Chem. Eng. Sci. 155:314-337

Page 28: Virtual Process Engineering - Energy

Overlapping of computing & communication

particle order & storage main tasks

28

Lu et al. 2016 Chem. Eng. Sci. 155:314-337;Xu et al. 2016 Huagong Xuebao 67:14-16 (In Chinese)

Page 29: Virtual Process Engineering - Energy

Irregular space decomposition

1

23

4

6 7

8

91011

5

29

Xu et al. 2016 Huagong Xuebao 67:14-16 (In Chinese); Xu et al. 2017 IPE Internal Report

Page 30: Virtual Process Engineering - Energy

3D simulation of a lab-scale riser in DPM14M CGPs for

~7G 80µm RPs120x(CPU+GPU)

@ ~12s/daywith ∆t=10µs

Lu et al. 2014Chem. Eng. Sci.120:67-87

30

Page 31: Virtual Process Engineering - Energy

Example IIHard sphere/Pseudo Particle

Modeling of high Kn flows

Page 32: Virtual Process Engineering - Energy

32

activation center

poresize & structure

intrinsickinetics

coupled models, concurrent computing

particle

chemistry

Interface of chemistry & chem. eng.

interfacial diffusion

hydrodynamic behavior

strength & lifespan

chemical engineering

Page 33: Virtual Process Engineering - Energy

33

Challenges at the “interface”• Lack of scale separation• Strong scale dependence of properties• Strong non-linear effect (e.g., non-Newtonian, slip…)• Strong non-equilibrium effect (e.g., anisotropic)

Continuum methods are invalidDiscrete methods are expensive

Efficient algorithms & supercomputing

Page 34: Virtual Process Engineering - Energy

Shen & Ge, Phys. Rev. E, 2010

34

Two categories of MD methods

Model: Soft Sphere (SS) Hard Sphere (HS)

Algorithm time-driven(synchronized)

event-driven(asynchronized)

Pros scalable accurate (machine err.)efficient (dilute)

Cons inefficient (dilute)inaccurate (num. err.)

non-scalable( 𝑁𝑁 log𝑁𝑁 → 𝑁𝑁 )

Page 35: Virtual Process Engineering - Energy

35

Begin Initialization Construct FEL&CBT

Winner from CBTValid

Traverse

TimeUpdate FEL&CBT

Move to new cell Collision

Finish

Y

N

Y

N

YN

Hard sphere model and algorithm

Page 36: Virtual Process Engineering - Energy

Miller et al., 2003. Computational Physics 193, 206-316

dash line: Available HS

dash-dot line: Ideal HSparallelized perfectly

Scalability of the event-driven algorithm

36Zhang, Shen & Ge et al. 2016 Molecular Simulation 42: 1171-1182

Page 37: Virtual Process Engineering - Energy

t t+1 a t+1 b t+2

Pseudo-particle modeling for dilute gas:a combination of SS & HS

Ge & Li 2003 Chem. Eng. Sci. 58: 1565-1585; Chen & Ge 2010 Particuology 8:332-34237

Page 38: Virtual Process Engineering - Energy

PPM for flow simulation

38

TS waves in duct flow & Flow past a single cylinderLong-time tail ofthe velocity auto-correlation function (VAF)

Page 39: Virtual Process Engineering - Energy

collsii

l s n=∑B

collsobs

1 1ij iPV Nk T

dim tδ= + ⋅∑r p

( ) ( ) 21 lim 02 i it

D tdim →∞

= −r r

2

m12gW

Uν =

Obtained in equilibrium molecular dynamics simulation

Mean free path

Pressure

Self-diffusion coefficient

Shearing viscosity

Periodic boundaries

1 2 3 ... Nc

Boundaries

W

Hg

Properties of the pseudo-particles

Obtained in non-equilibriummolecular dynamics simulation

39Chen & Ge 2010 Particuology 8:332-342

Page 40: Virtual Process Engineering - Energy

Hard sheremodel

( )21 21ηχη

−=

− ( )31 21ηχη

−=

−1/ 2

* EE

0

12 8

DDv

πσ ηχ

= =

1/ 2* EE

0

1.018963 16

DDv

πσ ηχ

= =

0.01 0.1 11E-5

1E-4

1E-3

0.01

0.1

1

10

Simulation value Dsim/(σv0) Enskog value DE/(σv0)

Dimen

sionle

ss dif

fusion

coeff

icient

D/(σv

0)

Effective packing fraction ηηt≈0.70 1E-3 0.01 0.1 1

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

ηt≈0.55

Simulation value Dsim/(σv0) Enskog value DE/(σv0)

Dimen

sionle

ss di

ffusio

n coe

fficien

t D/(σ

v 0)

Effective packing graction η

Effective self-diffusion coefficient 2D 3D

41

Page 41: Virtual Process Engineering - Energy

Hard sphere model ( )2

1 21ηχη

−=

− ( )31 21ηχη

−=

−1/ 2

* 2E

1 1 82 18 2

πν η χηη χ π

= + + + ( )

1/ 2 22*

E5 8 7681

96 3 5 25πν χη χη

χη π = + +

0.0 0.1 0.2 0.3 0.4 0.50

1

2

3

4

5

Simulation value νsim/(σv0) Enskog value νE/(σv0)

Dimen

sionle

ss sh

ear v

iscos

ity ν/(σv

0)

Effective packing fraction η0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

1

2

3

4

Simulation value νsim/(σv0) Enskog value νE/(σv0)

Dimen

sionle

ss vis

cosity

ν/(σv

0)

Effective packing fraction η

2D 3D

Effective shearing viscosity

42

Page 42: Virtual Process Engineering - Energy

PPM HS Buffer

Simulation of dilute gas:Hard sphere + pseudo-particle modeling

43Zhang, Shen & Ge et al. 2016 Molecular Simulation 42: 1171-1182

Page 43: Virtual Process Engineering - Energy

Miller et al., 2003. Computational Physics 193, 206-316

dash line: Available HS

dash-dot line: Ideal HSparallelized perfectly

dash-dot line: HS-PPMmultiple processes with same scale on each process

Demonstration of scalability

44Zhang, Shen & Ge et al. 2016 Molecular Simulation 42: 1171-1182

Page 44: Virtual Process Engineering - Energy

46

Simulation of flow past a single sphere

Flow field across the shockwaveComparison of the drag coefficients from simulation with experiments

Ma=3.865Re=104

Page 45: Virtual Process Engineering - Energy

47

Simulation of flow past a single sphere

Flow distribution at two planes across the shockwave

Page 46: Virtual Process Engineering - Energy

48

The diffusion between two chambers

The number of particles (NB) in chamber B during the diffusion processZhang, Shen & Ge et al. 2016 Molecular Simulation 42: 1171-1182;

Zhang et al. 2016. Comp. & Appl. Chem. 33(11):1135-1144 (In Chinese)

Page 47: Virtual Process Engineering - Energy

Effect of coke on gas diffusion in zeolites

ZSM-5 zeolite (MFI) : 8×8×8 (u.c)Gas properties similar to methane at 723K & 1tamGas loading: 4 molecules/u.c.Coke deposition at T12 sites.

49

Li, Zhang, Li, Liu & Ge, Chemical Engineering Journal, 2017, 320: 458-467

Self-diffusion coefficients vs. coke amount for the two coke formation mechanisms

Coke Model I Coke Model II

Page 48: Virtual Process Engineering - Energy

1027/m3

Flow-diffusion-reaction in a porous particle

Solid material structuresimilar to ZSM-5

Gas propertiessimilar to methaneat 723K & 1tam

50

Zhang et al. 2016 IPE Internal ReportThe number density distribution of products

Page 49: Virtual Process Engineering - Energy

Virtual Process Engineering

from reactions to reactors

Page 50: Virtual Process Engineering - Energy

The VPE platform at CAS-IPE

Experiment - Measurement - Computation - Visualization - Control integrated

Processing

Simulation

Control

Visualization

ControllerComputer

instructionoperation

SignalMeasurement

Signal & data

Display

Ge et al. 2011 Chem. Eng. Sci. 66:4426-4458; Liu et al. 2012 Chem. Eng. Proc. 108:28-33 52

Page 51: Virtual Process Engineering - Energy

53

Offline Online interactive simulation

陈ppt-第24页

real solids: ~ 10 billionCG solids: ~ 0.3 milliondp: 200 microns~ 1/30-1/50 realtime speed@ 0.1ms time step

Ge et al. 2015 Chem. Eng. & Tech. 38:575-584;

Lu et al. 2016 Chem. Eng. Sci. 155:314-337

Xu et al. 2017 Internal Report

Page 52: Virtual Process Engineering - Energy

Physical system decomposition scheme

Simplifiedtwo-fluid model for

developing period

CG-DPM for steady state

dynamics

coupling

CGratio 3

Particle size distribution

10-4m(1.23 1.85 2.46)

%mass(5 90 5)

Nparticle 81.5 Million

Ncell 94,694

K80 54

CPU 108 cores

dtsolid 2.0e-6

dtgas 4.0e-5

Speed ≈40s/dayVelocity

Discrete simulation of a CFB at lab-scale

54Xu et al. 2017 Internal Report

Page 53: Virtual Process Engineering - Energy

Very long time simulation at industrial scale

22x(CPU+GPU), 640s/day, 6800s totally5555Lu et al. 2016 Chem. Eng. Sci. in revision; TFM data from Lu et al. 2015 Internal Report

Page 54: Virtual Process Engineering - Energy

-1.0 -0.5 0.0 0.5 1.00.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

Kn=0.185 Kn=0.154 Kn=0.132 Kn=0.116 Kn=0.103 Kn=0.092

T(x)

/Tav

g

x/WShen & Ge, Phys. Rev. E, 2010

Reaction-diffusion-flow coupling

56

Xu et al. 2015 Chem. Eng. Sci. 121:200-216

Page 55: Virtual Process Engineering - Energy

57

Inflatable reentry vehicle experiment (IRVE)

57

Page 56: Virtual Process Engineering - Energy

58

The simulation shape of IRVE

Simulations on IRVE

The flow field and

temperature distribution of the simulation

of IRVE

The temperature profiles of two crossing lines

Zhang et al. 2016. Comp. & Appl. Chem. 33(11):1135-1144 (In Chinese)

Page 57: Virtual Process Engineering - Energy

Full system test on Haihu Light (125PF)

dp>60 nm, length>55mm10.27 million cores (160K CPEs), 8.5-17.6Pflops sustainable performance

Fu et al. 2016 Sci. China: Info. Sci. 59(7):072001The Sunway TaihuLight supercomputer system and applications.

59

Page 58: Virtual Process Engineering - Energy

solid particle(silicon powder): GPU

gas (silane): CPU

particle scale reactor scalemolecular scale

from Reactions to ReactorsRcp= ratio of

computing time to real time

Rcp~50

Rcp~2000

60

solid particle: CPUgas: GPU

Rcp~1012

Page 59: Virtual Process Engineering - Energy

Acknowledgements:NSFC MOF MOST CASSinoPec PetroChina BaoSteel YeTech SynFuelsAlstom BASF BHPb BP EDF GEIntel nVidia Shell Total Unilever

www.emms.cnemms.mpcs.cnwww.multiscalesci.org