· web viewpolythiophenes are polymerized thiophenes, a sulfur heterocycle, that can become...

14

Click here to load reader

Upload: vuongque

Post on 23-May-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1:  · Web viewPolythiophenes are polymerized thiophenes, a sulfur heterocycle, that can become conducting with doping of their conjugated -orbitals. The goal of the work here was to

1. Polythiophenes Containing In-Chain Cobalt Carborane centers: Experimental and computational explorations of cobalt carborane complexes that are covalently linked to polythiophenes were performed to investigate their physical properties. Polythiophenes are polymerized thiophenes, a sulfur heterocycle, that can become conducting with doping of their conjugated -orbitals. The goal of the work here was to assess the expected improvements to the electrical conductivity of these metallopolymers with the inclusion of the boron containing clusters that are known to contain delocalized electrons. J. Garno (LSU) performed atomic force microscopy (AFM) surface studies and conducting probe measurements of charge transport of these novel systems. Her conducting probe AFM characterizations indicate that polymers with bithienyl and terthienyl behave like heavily doped semiconductors rather than pure semiconductors, while the current-voltage (I-V) profile for poly- thienyl exhibits no measurable current consistent with the insulating character of the film (submitted). Related simulations of these structures by P. Derosa, and N.

Ranjitkar (LaTech) employing Gaussian09[1] determined the spin state of these systems. By using a variety of density functionals in their simulations, they concluded that the system is in a spin singlet state. In addition, they calculated the conductivity of these structures using Green’s functions on a density functional theory (DFT) Hamiltonian[2] which compared well to the conducting probe AFM measurements [3] as shown in Fig. 1.

2. Magnetic and Multiferroic Materials

LaSigma supports several projects investigating multiferroic materials, materials that exhibit both ferromagnetic and ferroelectric properties, where there has been intense recent interest. S. Whittenburg (UNO) has expanded his micromagnetics code to include ferroelectric materials through the use of a Landau-Devonshire potential and correctly predicted the ferroelectric phase transition temperatures of BaTiO3. In addition, he has extended the code so that it can model the elastic properties of materials so that stress-induced changes to the morphology can be simulated. Thus, the electric or magnetic field induced stress, and the resulting shape changes, can be calculated and directly compared to the experimental results of several multiferroic systems being investigated with

support provided by LaSigma. G. Caruntu (UNO), for example, has developed a novel experimental methodology for the local measurement of the strain-mediated magneto-elastic coupling in nanocomposite films. Here he employs an AFM tip to monitor the piezoresponse of a perovskite layer caused by the magnetostriction of a ferrite layer[4-8]. LaSigma support to L. Malkinski (UNO) has also assisted the development of new technologies to form multiwall microtubes of magnetic or magnetic and piezoelectric materials where the magnetic properties have been found to depend on the curvature of the films. He is also involved in the investigation of thin Fe1-xNix alloy films whose composition varies across its thickness and displaying unusual hysteresis curves. In addition, he has explored liquid crystal/ferromagnetic nanoparticles composites where switching characteristics of the liquid crystal devices were found to depend on the applied magnetic field.

Figure 1: Current vs. Voltage for Polythiophenes Containing an In-Chain Cobaltabisdicarbollide . a) DFT/Green functions simualtions. b) experiment[3]. 1T, 2T, 3T=one, two, and three thiophene.

Page 2:  · Web viewPolythiophenes are polymerized thiophenes, a sulfur heterocycle, that can become conducting with doping of their conjugated -orbitals. The goal of the work here was to

The understanding and control of the magnetic properties of nano- and microscopic materials is important for a large range of applications from pharmaceuticals to improvements in magnetic storage densities. A.

Burin (Tulane) has used ORCA quantum chemistry software[9] (BPW91/LanL2DZ level) to model nanoscopic iron oxide clusters finding a high spin (S=12) ground state (Fig. 2)[10,11]. He plans on extending these calculations to include relativistic corrections[12] to rule out other, nearly degenerate, high spin states of this molecular magnet. Other calculations include the study of DNA base pair radical cations[13,14] and the modeling of electronic glasses exposed to electric fields[15]. Related experimental work comes from the team of Kucheryavy, Goloverda, and Kolesnichenko (Xavier U.) which has produced ultrasmall superparamagnetic iron oxide nanoparticles in a surfactant-free colloidal form with sizes ranging from 4 to 8 nm. This was accomplished by varying the nucleation and growth conditions, and using a sequential growth technique. Since the T1 relaxivity for magnetite and its oxidized form, estimated by NMR, was found to be similar, they concluded that oxidized magnetite would be preferred as a more stable and potentially

less toxic MRI contrast agent.

Several experimental investigations supported by LaSigma have both fundamental exploratory goals and offer a forum for direct comparison to computations. R. Kurtz and P. Sprunger (LSU) investigated the magnetic properties of FeAl where DFT calculations[16-23] predict a ferromagnetic ground state at odds with experiment[24-25]. However, DFT+U methods find a paramagnetic state when U, the correlation energy, is sufficiently strong[26]. More interestingly, DFT indicates that the bulk terminated and incommensurate FeAl(110) surfaces may exhibit ferromagnetic ordering of the Fe atoms, with moments enhanced compared to the bulk[23]. In addition to magnetometry showing that the bulk is paramagnetic, their synchrotron X-ray magnetic circular dichroism (XMCD) measurements carried out at CAMD indicates no ferromagnetism at either the commensurate FeAl(110) or the surface reconstructed incommensurate FeAl2 surface[28-29].

Other examples include the investigation of the magnetism of transition metal silicides, germanides and gallium compounds to explore their interesting magnetic and electrical transport properties by J. DiTusa (LSU). These materials are interesting and important because they are relatively simply grown, have crystal structures that lack inversion symmetry, and range from good metals, to magnetic semiconductors and small band gap insulators. They have explored bulk crystals and crystalline nanowires demonstrating the accurate control of Co dopants in FeSi at the 0.5% substitution level, the ability to measure the conductance of 20 nm

wide nanowires to temperatures below 300 mK (Fig. 3), and the discovery of interesting behavior in the Hall effect of, Fe3Ga4. These results were presented by students at the 2012 March meeting of the APS and at a poster session at a Gordon Research conference on Strongly Correlated Electron Systems.

Figure 2: Optimized structure of an iron cluster of the spinel-type moiety

Figure 3: Fe1-xCoxSi nanowire device. Successive magnifications of a device designed to measure the electrical conductivity of a single crystalline nanowire.

Page 3:  · Web viewPolythiophenes are polymerized thiophenes, a sulfur heterocycle, that can become conducting with doping of their conjugated -orbitals. The goal of the work here was to

3. Iron-based superconductors and related materials. Since their discovery in 2008, iron-based superconductors have generated intense scientific interest because they seem to have an unusual underlying mechanism and because they may provide a next generation of high-temperature superconductors. The complex interplay between magnetism and superconductivity in these materials suggests that the attraction needed to form bound electron pairs could be provided by spin fluctuations [30-34]. The typical crystal structure is layered tetragonal, with layers of positive iron ions separated by

layers of negative ions. Most of the iron-based superconductors are pnictides, such as BaFe2 As2 . An

exception is the binary iron chalcogenide material Fe1+ y (Te1−x Sex ), with the excess Fe occupying interstitial sites of the chalcogen layers.

A systematic investigation of transport, magnetic, and superconducting properties of the phase diagram of the chalcogenide material using resistivity, Hall coefficient, magnetic susceptibility, specific heat, and neutron scattering was reported in 2010 [35]. Leonard Spinu is completing this picture by measuring the London penetration depth in single crystals at ultra-low temperatures as a function of temperature and Se concentration (25% to 45%). The penetration depth of a magnetic field is one of the most important characteristic parameters in a type II superconductor, because it can give information about the pairing mechanism. Its zero-temperature value is directly related to the density of superconductive electrons in the crystal, and its low-temperature behavior can give insight into the pairing symmetry and pairing energy gaps. The measurements employ a tunnel diode oscillator set up in a dilution refrigerator that can reach temperatures as low as 40mK. Results were presented at several conferences [36,37].

The Zhiqiang Mao group has synthesized a new layered iron pnictide CuFeSb [38]. In contrast with the metallic antiferromagnetic or superconducting states of other iron pnictides and chalcogenides, this material exhibits a metallic ferromagnetic state with a Curie temperature of 375 K. This finding suggests that a competition between antiferromagnetic and ferromagnetic coupling may exist in iron-based superconductors. It also supports theoretical predictions [39,40] that the nature of the magnetic coupling within the iron plane depends on the height of the anion plane above the iron plane (~1.8 Å for the Sb plane in CuFeSb vs. ~1.4 in FeAs compounds).

In strongly-correlated materials such as those discussed above, there is typically a close coupling between structure, charge, and spin, leading to a competition among several phases at low temperature. Structural changes in the topmost layers that occur at surfaces or crystal-vacuum interfaces are interesting in themselves and can also drive changes in material functionality. Ward Plummer and Von Braun Nascimento are measuring surface structure in complex materials via low energy electron diffraction (LEED) [41], since the electron beam penetrates only into the surface region. But the analysis of LEED data is an inverse problem: one must search for the surface structure that yields a given diffraction pattern. The Plummer group has developed novel LEED codes that use global search algorithms [42] and can also tackle the structural determination of multiple terminated crystallographic surfaces. A LA-SiGMA supported graduate student, Diogo D. dos Reis, is participating in this work. The codes have been

tested successfully for BaTiO3 ultra-thin films [42], and will next be applied to multi-phase (001)

surfaces of the BaFe2 As2 and Ba(Fe1−x Cox )2 As2 iron pnictide superconducting materials.

Page 4:  · Web viewPolythiophenes are polymerized thiophenes, a sulfur heterocycle, that can become conducting with doping of their conjugated -orbitals. The goal of the work here was to

4. Broad-impact computational methodologies. The computation and theoretical prediction of materials properties must confront the electron-electron interaction, which ties the electrons together into a correlated whole. Correlated wavefunction methods, including Quantum Monte Carlo (QMC) [43], are computationally inefficient for systems of many electrons. One way to deal with this problem is to perform the wavefunction calculations for small systems, to introduce multiscale corrections, and to then extrapolate calculated properties to larger or infinite systems. The remaining problems are then to do the wavefunction calculations efficiently for small systems and to find effective multiscale corrections. The other and more common way is to use Kohn-Sham density functional theory (DFT) [44], an orbital-based approach in which the electron exchange-correlation energy is provided by a functional of the electron density that must be approximated in practical calculations. The remaining problems are then to improve the accuracy of the available approximations, to understand long-range correlations including van der Waals interactions, and to deal with the fact that even the exact Kohn-Sham band structure can underestimate the fundamental energy gap of a solid [45].

Mark Jarrell and Juana Moreno, with C.E. Ekuma, Z. Meng, S. Feng, and C. Moore, are developing multiscale methods for disordered and interacting systems. They have found that graphics processing units (GPU’s) greatly accelerate materials simulations, including simulations of Ising-model glasses [46,47] and QMC calculations. They are developing QMC codes tuned [48,49] for the next generation of Kepler GPU’s. To incorporate nonlocal correlations systematically, they have proposed a Cluster Typical Medium Theory (CTMT) that opens a new avenue to the study of Anderson localization in both model and real materials, unlike the coherent phase approximation [50] and its cluster extensions, including the DCA [51]. The idea is to extend the Typical Medium Theory [52], which replaces average quantities with typical values, to its cluster version. They have also shown that size extrapolations of calculated properties over multiple scales can converge much better if three length scales are invoked: the shortest one for explicit correlation, an intermediate one treated perturbatively, and a longest one treated for the first time via mean field correlations [53]. Finally, they have used density functional theory to generate a band structure for (Ga,Mn)As and (Ga,Mn)N, then applied a Wannier-based downfolding method [54] to get effective interacting Hamiltonians.

The van der Waals interaction is a weak long-range attraction between two objects due to correlations among their fluctuating multipole moments. It is most important when the objects are not otherwise strongly bonded, as for two biological molecules or nanostructures. The accurate calculation of this interaction via many-electron wavefunctions or DFT is feasible only for a pair of atoms or small molecules. Thus standard intermolecular interactions are often based on an atom pair potential picture. Jianmin Tao, John P. Perdew, and Adrienn Ruzsinszky have shown [55-57] how to evaluate this interaction between two quasispherical objects accurately and efficiently, using just the electron densities and static dipole polarizabilities. They have found that the atom pair potential picture is correct at best for the interaction between two solid spheres, but not when one or both objects are spherical shells (e.g., fullerenes). Other work from the Perdew group [58-62] concerns improvements to semilocal and nonlocal DFT approximations. The fundamental gaps in the Kohn-Sham band structure are maybe 20-100% too small compared to experiment. Diola Bagayoko and C.E. Ekuma have shown how to find accurate gaps and other properties by using a basis set of atom-centered orbitals which is extended only so far as it must

Page 5:  · Web viewPolythiophenes are polymerized thiophenes, a sulfur heterocycle, that can become conducting with doping of their conjugated -orbitals. The goal of the work here was to

be to predict accurate occupied orbitals [63-69]. This method has been applied to ZnO [65], ScN [66], YN

[66], SrTiO3 [67], Ge [68], and InP [69].

References:

1. M. J. T. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Wallingford, CT. (2009).

2. B. Fabre, E. H. Hao, Z. M. LeJeune, E. K. Amuhaya, F. Barriere, J. C. Garno, and M. G. H. Vincente, Polythiophenes Containing In-Chain Cobaltabisdicarbollide Centers. ACS Applied Materials and Interfaces 2, 691–702 (2010).

3. P. A. Derosa, and J.M. Seminario, Electron transport through single molecules: Scattering treatment using density functional and green function theories. J. Phys. Chem. B 105, 471-481 (2001).

4. G. Caruntu, A. Yourdkhani, M. Vopsaroiu, G. Srinivasan, Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy, Nanoscale 4, 3218-3227 (2012).

5. A. Yourdkhani, A. K. Perez, C. K. Lin, G. Caruntu, Magnetoelectric Perovskite-Spinel Bilayered Nanocomposites Synthesized by Liquid-Phase Deposition, Chem. Mater. 22, 6075-6084 (2010).

6. D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys. 61, 1267-1324 (1998).

7. S. V. Kalinin, D. A. J. Bonnell, Contrast mechanism maps for piezoresponse force microscopy, Mater. Res. 17, 936-939 (2002).

8. C. Harnagea, A. Pignolet, M. Alexe, D. Hesse, Possibilities and limitations of voltage-modulated scanning force microscopy: Resonances in contact mode, Integrated Ferroelectrics 60, 101-110 (2004).

9. F. Neese, ORCA – an ab initio, Density Functional and Semiempirical program package, Version 2.4. Max-Planck-Insitut für Bioanorganische Chemie, Mülheim and der Ruhr, (2004).

10. M. Castro, D. R. Salahub, Density-functional calculations for small iron clusters: Fen, Fen+, and Fen- for n≤5, Phys. Rev. B 49, 11842 (1994).

11. G. L. Gutsev, C.W. Bauschlicher Jr., Electron Affinities, Ionization Energies, and Fragmentation Energies of Fen Clusters (n = 2−6):  A Density Functional Theory Study, J. Phys. Chem. A 107, 7013-7032 (2003).

Page 6:  · Web viewPolythiophenes are polymerized thiophenes, a sulfur heterocycle, that can become conducting with doping of their conjugated -orbitals. The goal of the work here was to

12. C. J. Milios, A. Vinslava, W. Wernsdorfer, S. Moggach, S. Parsons, S. P. Perlepes, G. Christou, E. K. Brechin, A Record Anisotropy Barrier for a Single-Molecule Magnet, Journal of the American Chemical Society 129, 2754-2755 (2007).

13. A. L. Burin, A. K. Kurnosov, Fluctuator model of memory dip in hopping insulators, J. Low Temp. Phys., 167, 318-328 (2012),

14. A. L. Burin, A. K. Kurnosov, Fluctuator model of memory dip in hopping insulators, European Superconductivity News Forum, CR25 (http://www.ewh.ieee.org/tc/csc/europe/newsforum/pdf/ CR25.pdf).

15. Sarah L. Tesar, John M. Leveritt III, Arkady A. Kurnosov, Alexander L. Burin, Temperature dependence for the rate of hole transfer in DNA: Nonadiabatic regime, Chemical Physics 393, 13–18 (2012).

16. V.L. Moruzzi, P.M. Marcus, Magnetic-Structure of Ordered FeAl and FeV, Phys. Rev. B, 47, 7878-7884 (1993).

17. V. Sundararajan, B.R. Sahu, D.G. Kanhere, P.V. Panat, G.P. Das, Cohesive, electronic and magnetic-properties of the transition-metal aluminides FeAl, CoAl, and NiAl, J. Phys.-Condes. Matter, 7 6019-6034 (1995).

18. J. Zou, C.L. Fu, Structural, electronic, and magnetic-properties of 3d transition-metal aluminides with equiatomic composition, Phys. Rev. B, 51 2115-2121 (1995).

19. D. A. Papaconstantopoulos, K.B. Hathaway, Predictions of magnetism in transition metal aluminides, J. Appl. Phys., 87, 5872-5874 (2000).

20. G.P. Das, B.K. Rao, P. Jena, S.C. Deevi, Electronic structure of substoichiometric Fe-Al intermetallics, Phys. Rev. B, 66 184203 (2002).

21. P.G. Gonzales-Ormeno, H.M. Petrilli, C.G. Schon, Ab-initio calculations of the formation energies of BCC-based superlattices in the Fe-Al system, Calphad 26, 573-582 (2002).

22. S.H. Yang, M.J. Mehl, D.A. Papaconstantopoulos, M.B. Scott, Application of a tight-binding total-energy method for FeAl, J. Phys.-Condes. Matter, 14, 1895-1902 (2002).

23. J.L. Pan, J. Ni, B. Yang, Stability of FeAl(110) alloy surface structures: a first-principles study, European Physical Journal B, 73, 367-373 (2010).

24. P. Shukla, M. Wortis, Spin-glass behavior in iron-aluminum alloys – microscopic model, Phys. Rev. B, 21 159-164 (1980).

25. J. Bogner, W. Steiner, M. Reissner, P. Mohn, P. Blaha, K. Schwarz, R. Krachler, H. Ipser, B. Sepiol, Magnetic order and defect structure of FexAl1-x alloys around x=0.5: An experimental and theoretical study, Phys. Rev. B, 58 14922-14933 (1998).

26. P. Mohn, C. Persson, P. Blaha, K. Schwarz, P. Novak, H. Eschrig, Correlation induced paramagnetic ground state in FeAl, Phys. Rev. Lett., 87 196401 (2001).

27. L. Hammer, H. Graupner, V. Blum, K. Heinz, G.W. Ownby, D.M. Zehner, Segregation phenomena on surfaces of the ordered bimetallic alloy FeAl, Surf. Sci., 412-13 69-81 (1998).

28. A. P. Baddorf, S.S. Chandavarkar, Identification of an incommensurate FeAl2 over-layer on FeAl(110) using x-ray diffraction and reflectivity, Physica B, 221 141-144 (1996).

29. O. Kizilkaya, D.A. Hite, D.M. Zehner, P.T. Sprunger, Surface reconstruction of FeAl(110) studied by scanning tunnelling microscopy and angle-resolved photoemission spectroscopy, J. Phys.-Condes. Matter, 16 5395-5406 (2004).

Page 7:  · Web viewPolythiophenes are polymerized thiophenes, a sulfur heterocycle, that can become conducting with doping of their conjugated -orbitals. The goal of the work here was to

30. K. Ahilan, F.L. Ning, T. Imai, A.S. Sefat, R. Jin. M.A. McGuire, B.C. Sales, and D. Mandrus, 19

F NMR investigation of the iron pnictide superconductor LAFeAsO0 .89F0 .11 , Phys. Rev. B 78, 100501 (2008).

31. Y. Nakai, K. Ishida, Y. Kamihara, M. Hirano, and H. Hosono, Evolution from itinerant

antiferromagnet to unconventional superconductor with fluorine doping in LaFeAs(O1−x Fx )

revealed by 17

As and 139

La nuclear magnetic resonance, J. Phys. Soc. Jpn. 77, 073701 (2008).32. A.D. Christianson, E.A. Goremychkin, R. Osburn, S. Rosenkranz, M.D. Lumsden, C.D.

Malliakis, I.S. Todorov, H. Claus, D.Y. Chung, M.G. Kanatzidis, R.I. Bewley, and T. Guidi,

Unconventional superconductivity in Ba0 .6 K0 .4 Fe2 As2 from inelastic neutron scattering, Nature 456, 930 (2008).

33. M.D. Lumsden, A.D. Christianson, D. Parshall, M.B. Stone, S.E. Nagler, G.J. MacDougall, H.A. Mook, K. Lokshin, T. Egami, D.L. Abernathy, E.A. Goremychkin, R. Osburn, M.A. McGuire, A.S. Sefat, R. Jin, B.C. Sales, and D. Mandrus, Two-dimensional resonant magnetic excitation in

BaFe1.84 Co0 .16 As2 . Phys. Rev. Lett. 102, 107005 (2009).34. S. Chi, A, Schneidewind, J. Zhao, L.W. Harriger, L. Li, Y. Luo, G. Cao, Z.A. Xu, M.

Loewenhaupt, J. Hu, and P. Dai, Inelastic neutron-scattering measurements of a three-

dimensional spin resonance in rhe FeAs-based BaFe1. 9 Ni0 .1 As2 superconductor. Phys. Rev. Lett. 102, 107006 (2009).

35. T.J. Liu, J. Hu, B. Qian, D. Fobes, Z.Q. Mao, W. Bao, M. Reehuis, S.A.J. Kimber, K. Prokes, S. Matas, D.N. Argyriou, A. Hiess, A. Rotura, H. Pham, L. Spinu, Y. Qiu, V. Thampy, A.T. Savici,

J.A. Rodriguez, and C. Broholm, From (π ,0) magnetic order to superconductivity with (π , π )

magnetic resonance in Fe1.02 Te1−x Sex . Nature Materials 9, 716-720 (2010).36. L. Spinu, London penetration depth measurements in FeSeTe single crystals at ultra-low

temperatures. APS March Meeting, Boston (2012).37. L. Spinu, London penetration depth measurements in FeSeTe single crystals at ultra-low

temperatures. 56th MMM Conference, Scottsdale (2011). 38. B. Qian, J. Lee, J. Hu, G.C. Wang, P. Kumar, M.H. Fang, T.J. Liu, D. Fobes, H. Pham, L. Spinu,

X.S. Wu, M. Green, S.H. Lee, and Z.Q. Mao, Ferromagnetism in CuFeSb; Evidence of competing magnetic interactions in iron-based superconductors. Phys. Rev. B 85, 144427 (2012).

39. W.-G. Yin, C.-C. Lee, and W. Ku, Unified picture for magnetic correlations in iron-based superconductors. Phys. Rev. Lett. 105, 107004 (2010).

40. C.-Y. Moon and H.J. Choi, Chalcogen-height dependent magnetic interactions and magnetic

order switching in FeSex Te1−x . Phys. Rev. Lett. 104, 057003 (2010).41. M.A. Van Hove, W.H. Weinberg, and C.-M. Chan, Low-energy electron diffraction experiment,

theory, and surface structure determination. (Springer Verlag, Berlin, 1986).42. V.B. Nascimento and E.W. Plummer, Differential evolution: Global search problem in LEED-IV

surface structural analysis. Surface Science, submitted.43. W.M.C. Foulkes, L. Mitas, R.J. Needs, and G. Rajagopal, Quantum Monte Carlo simulations of

solids. Rev. Mod. Phys. 73, 33-83 (2001).

Page 8:  · Web viewPolythiophenes are polymerized thiophenes, a sulfur heterocycle, that can become conducting with doping of their conjugated -orbitals. The goal of the work here was to

44. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133-A1138 (1965).

45. J.P. Perdew and M. Levy, Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities. Phys. Rev. Lett. 51, 1884-1887 (1983).

46. Q. Yan and J. de Pablo, Hyperparallel tempering Monte Carlo simulation of polymeric systems. J. Chem. Phys. 113, 1276 (2000).

47. P.M.C. de Olivieira, Computing Boolean Statistical Models (World Scientific, 1991). 48. J.E. Hirsch and R.M. Frye, Monte Carlo method for magnetic impurities in metals. Phys. Rev.

Lett. 56, 2521-2524 (1986).49. A.N. Rubtsov, V.V. Savkin, and A.I. Lichtenstein, Continuous-time quantum Monte Carlo

method for fermions. Phys. Rev. B 72, 035122 (2005).50. R.J. Elliot, J. A. Krumhansl, and P. L. Leath, The theory and properties of randomly disordered

crystals and related physical systems, Rev. Mod. Phys. 46, 465-543 (1974).51. M. Jarrell and H. R. Krishnamurthy, Systematic and causal corrections to the coherent potential

approximation, Phys. Rev. B 63, 125102 (2001).52. V. Dobrosavljevic, A. A. Pastor, and B. K. Nikolic, Typical medium theory of Anderson

localization: A local order parameter approach to strong-disorder effects, Europhys. Lett. 62, 76-82 (2003).

53. S.-X. Yang, H. Fotso, H. Hafermann, K.-M. Tam, J. Moreno, T. Pruscke, and M. Jarrell, Dual fermion dynamical cluster approach for strongly correlated systems, Phys. Rev. B 84, 155106 (2011).

54. W. Ku, H. Rosner, W.E. Pickett, and R.T. Scalettar, Insulating ferromagnetism in La4Ba2Cu2O10: An ab initio Wannier function analysis, Phys. Rev. Lett. 89, 167204 (2002).

55. J. Tao, J.P. Perdew, and A. Ruzsinszky, Accurate van der Waals coefficients from density functional theory. Proc. Nat. Acad. Sci. (USA) 109, 18-21 (2012).

56. J.P. Perdew, J. Tao, P. Hao, A. Ruzsinszky, G.I. Csonka, and J.M. Pitarke, Spherical-shell model for the van der Waals coefficients between fullerenes and/or nearly-spherical nanoclusters, J. Phys.:Condens. Matter, accepted.

57. J. Tao and J.P. Perdew, Understanding long-range van der Waals interactions: Huge coefficients between nanoclusters, submitted.

58. R. Haunschild, M.M. Odashima, G.E. Scuseria, J.P. Perdew, and K. Capelle, Hyper-generalized gradient functional constructed from the Lieb-Oxford bound. J. Chem. Phys. 136, 184102 1-7 (2012).

59. M.R. Pederson and J.P. Perdew, Self-interaction correction in density functional theory: The road less traveled. Psi-k Newsletter 109, 77-100 (February 2012).

60. P. Hao, Y. Fang, J. Sun, G.I. Csonka, P.H.T. Philipsen, and J.P. Perdew, Lattice constants from semilocal density functionals with zero-point phonon correction. Phys. Rev. B 85, 014111 (2012).

61. A. Ruzsinszky, J. Sun, B. Xiao, and G.I. Csonka, A meta-GGA made free of the order-of-limits problem. J. Chem. Theory Comput., to appear.

62. J. Sun, B. Xiao, and A. Ruzsinszky, Effect of the orbital-overlap dependence of the meta-generalized gradient approximation. submitted.

63. D. Bagayoko, G.L. Zhao, J.D. Fan. And J.T. Wang, Ab-initio calculations of the electronic

structure and optical properties of ferroelectric tetragonal BaTiO3 . J. Phys.: Condens. Matter 10, 5645 (1998).

Page 9:  · Web viewPolythiophenes are polymerized thiophenes, a sulfur heterocycle, that can become conducting with doping of their conjugated -orbitals. The goal of the work here was to

64. G.L. Zhao, D. Bagayoko, and T.D. Williams, Local-density-functional prediction of the

electronic properties of GaN, Si, C, and RuO2 . Phys. Rev. B 60, 1563 (1999).65. L. Franklin, G.L. Zhao, C.E. Ekuma, and D. Bagayoko, Density functional description of

electronic properties of wurtzite zinc oxide. Can. J. Phys., submitted.66. C.E. Ekuma, D. Bagayoko, M. Jarrell, and J. Moreno, Electronic, structural, and elastic properties

of metal nitrides XN (X=Sc,Y): a first principle study. J. Appl. Phys., submitted.67. C.E. Ekuma, M. Jarrell, J. Moreno, and D. Bagayoko, First principle electronic, structural, and

elastic properties of strontium titanate. AIP Advances 2, 012189 (2012).68. C.E. Ekuma, M. Jarrell, J. Moreno, G.L. Zhao, and D. Bagayoko, Re-examining the electronic

structure of germanium: a first principle study. Phys. Rev. Lett., submitted.69. Y. Malozovsky, L. Franklin, C.E. Ekuma, G.L. Zhao, and D. Bagayoko, Electronic and transport

properties of InP: An ab-initio study. in preparation.