· web viewimplanted with dsi ta-f10 telemetry probes. the transmitter was able to freely move...

35
Jukic et al . SUPPLEMANTARY SUPLEMENTARY METHODS En1 +/Otx2 mutants The generation and genotyping of En1 +/Otx2 mice has been reported earlier (Broccoli, et al 1999; Brodski, et al 2003). Mutants were kept on a CD-1 genetic background. For lithium and carbamazepine repetitive OFT experiments mutants were backcrossed for 6 generations to a Black Swiss genetic background. Mice were kept in a temperature-controlled (21–22 °C) room under reversed 12 h light/dark cycle (lights were turned off at 10:00 a.m.), with free access to food and water. After weaning, animals were kept as groups of 4-6 in a cage. All experiments were performed on 3-6 months old males, which were single caged one week prior to any behavioral test. OFT, EPM, LDB, and social interaction tests were all conducted between 12:00 and 17:00 in the separate behavior testing room. Mice were transferred to the behavior testing room 30 min prior to the beginning of the above mentioned behavioral tests in order to habituate to the new environment. In case that the 1

Upload: trinhtu

Post on 20-May-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Jukic et al.

SUPPLEMANTARY

SUPLEMENTARY METHODS

En1+/Otx2 mutants

The generation and genotyping of En1+/Otx2 mice has been reported earlier (Broccoli,

et al 1999; Brodski, et al 2003). Mutants were kept on a CD-1 genetic background.

For lithium and carbamazepine repetitive OFT experiments mutants were

backcrossed for 6 generations to a Black Swiss genetic background. Mice were kept

in a temperature-controlled (21–22 °C) room under reversed 12 h light/dark cycle

(lights were turned off at 10:00 a.m.), with free access to food and water. After

weaning, animals were kept as groups of 4-6 in a cage. All experiments were

performed on 3-6 months old males, which were single caged one week prior to any

behavioral test. OFT, EPM, LDB, and social interaction tests were all conducted

between 12:00 and 17:00 in the separate behavior testing room. Mice were

transferred to the behavior testing room 30 min prior to the beginning of the above

mentioned behavioral tests in order to habituate to the new environment. In case that

the same animals were used repetitively in more than one behavioral test

(Supplementary figure 2a, d, e), tests were conducted from the least invasive to the

most invasive test: OFT, LDB, and EPM with at least 72 h break between the tests

(Flaisher-Grinberg and Einat, 2010).

Home cage locomotor activity

Prior to the testing, animals were anesthetized with an intraperitoneal injection of a

ketamine-xylazine mixture (100 mg/kg and 10 mg/kg, respectively) and chronically

1

Jukic et al.

implanted with DSI TA-F10 telemetry probes. The transmitter was able to freely move

among the peritoneal organs because it was not attached to the peritoneum. After ten

days of recovery, locomotor activity of animals was recorded and analyzed with DSI

DataQuest ART 4.3 software. Locomotor activity (counts) was obtained by counting

the number of impulses, detected by changes in signal strength, per time unit. The

signal was received by an antenna under each animal’s cage and transferred to a

peripheral processor connected to a personal computer. All transmitters were

calibrated before surgery and at the completion of experimentation to ensure validity of

biotelemetry measurements. Locomotor activity was calculated as an hourly or daily

average of the raw data, collected at 1 s intervals by counting the number of impulses,

detected by changes signal strength. (Tarasiuk, et al 2014).

Open Field Test

Mice were placed in the OFT made of Plexiglas and measuring 40 x 40 x 30 cm

under red light. The box was cleaned with a dilute ethanol solution (10%) between

animals and carefully dried. For locomotor activity, animals were videotaped and

recordings were analyzed off-line using Noldus EthoVision® 9 program. In order to

define the center/periphery exploration, we defined the center zone in Noldus

Ethovision® 9 program (20 x 20 cm). In order to study intra-session habituation of

En1+/Otx2 mice in more detail, we quantified the level of activity change ratios (ACR).

Values derived with the formula ACR=b/(a+b), were computed for each trial of each

individual mice as described previously (Bothe, et al 2004; Leussis and Bolivar

2006). In this formula a is the activity during the first 5 minutes, and b is the

averaged value of the 5 min intervals after 15 minutes of habituation. Values below

2

Jukic et al.

0.5 indicate a decrease, values above 0.5 indicate an increase and values closely

around 0.5 indicate no changes in activity over time.

Light-Dark Box

The experiments were conducted in a well-lit behavioral testing room. The Plexiglas

apparatus was constructed from a 13 x 40 x 30 cm dark compartment closed with a

lid and a 27 x 40 x 30 cm light compartment. Those two were joined by 5 x 5 cm

opening in the wall between them. The apparatus was cleaned with a dilute ethanol

solution (10%) between animals and carefully dried. Mice were placed in the light

compartment, videotaped for 10 min, and recordings were analyzed off-line using the

Noldus EthoVision® 9 program.

Elevated Plus Maze

The experiments were conducted in a well-lit behavioral testing room. The apparatus

was constructed out of transparent plexiglas and consisted of two opposing open

arms and two perpendicular opposing closed arms. The arms were 50 cm in length

and 5 cm wide. The closed arms had walls that were 40 cm high, whereas the open

arms had a half cm ledge to prevent falling. The EPM was wiped clean with a dilute

ethanol solution (10%) between animals and carefully dried. At the start of the trial,

the mouse was placed in the center of the maze, facing a closed arm and videotaped

for 5 min. The number of entries and time spent in each of the arms were analyzed

off line using the Noldus Ethovision® 9 program. We measured the number of entries

and the time spent in the open arms as a percentage of the total number of entries

and the time spent in all arms.

3

Jukic et al.

Chronic sucrose preference

Prior to the experiment animals were exposed for two weeks to two bottles of tap

water. During the following 6 weeks animals received a choice between water and a

2% or 5% sucrose solution and sucrose preference was calculated for the last four

weeks according to the weekly protocol. Every week, mice were given access to two

drinking bottles positioned one next to the other. Twenty-four hour fluid consumption

was measured by daily weighing the bottles during the last hour before the onset of

the dark phase (9:00-10:00 AM). All interaction with the animals was conducted

during this period. Sucrose solution (2% and 5% prepared in tap water) was placed

in one bottle and the tap water in the other. In order to study fluctuations in sucrose

preference over time, we designed a one week protocol according to a previously

described method (Taliaz, et al 2011). For day one and two of the week, the sucrose

solution was placed on the left side of the cage and water on the right. On day three

of the week, only tap water was administered on both sides and all animals were

weighed. On day four and five the sucrose solution and water were placed in reverse

to control for side preference. On day six and seven of the week animals received

two tap water bottles. Sucrose preference for each mouse was defined as the

average percentage of sucrose consumption of the total liquid consumption. Sucrose

and total liquid intake were calculated by normalizing the volume of consumed

sucrose solution or total liquid intake with the animal weight for that week. Only day

two and day five were included in the analysis. This procedure was repeated for six

weeks, out of which the first two weeks represent the adjustment period and were

not taken into the analysis.

Social interaction test

4

Jukic et al.

Two mice of the same age, weight and genotype were placed in the opposite corners

of the open-field under the red light as previously described (Shaltiel, et al 2008).

Their activities were videotaped for 5 min, and the time spent in social activity was

manually scored using the Noldus EthoVision® program. The open field was wiped

clean between trials with a 10% alcohol solution.

Acute (IP) injections

Quipazine maleate (5mg/kg, purchased from Sigma-Aldrich Israel) and CP-809101

(5mg/kg, purchased from Tocris Bioscience) were both dissolved in saline and

injected IP into test animals 15 minutes prior to behavioral tests. These doses were

chosen to robustly increase serotonin receptor activation in the brain as previously

described (Hutchinson, et al 2012; Kaur and Kulkarni 2002; Siuciak, et al 2007).

Olanzapine (purchased from Sigma-Aldrich Israel) was dissolved in 0.1 M HCl,

diluted with water, and titrated with 0.1 M NaOH towards neutrality (pH higher than

5) without any precipitation. Vehicle and olanzapine solutions (1 mg/kg) were

injected IP into test animals one hour before behavioral tests. This protocol was

chosen according to the previously reported anti-manic effect in mice (Engel, et al,

2010) Animals were tested in the OFT, LDB, and EPM in this order for the animals

treated with olanzapine (figures S4, 3a, b) and quipazine (figure 4a, b), with a distinct

cohort used for each drug. Established wash-out periods of 14 days were used

between repetitive acute IP injections followed by behavioral tests (Mattiuz et al,

1997; Valencia-Flores et al, 1990). The sequence of the tests was conducted from

the least invasive to the most invasive test (Flaisher-Grinberg and Einat, 2010).

Chronic lithium and carbamazepine treatment

5

Jukic et al.

Lithium carbonate and carbamazepine (purchased from Sigma-Adrich Israel) were

mixed into powdered food. For the lithium experiments, an additional bottle of saline

was added to each cage in order to compensate for the electrolyte loss in lithium

treated animals. After one week of food containing 0.12% lithium, lithium

concentrations were raised to 0.24%, for four weeks before the start and throughout

the testing (Einat, et al 2003). After the experiment lithium serum concentrations

were measured and only animals having lithium levels in the therapeutic range (0.5-

1.2 mEq/l) were included in the analysis. Six OFTs were conducted during a period

of three weeks. For carbamazepine treatment mice received for one week powdered

food containing carbamazepine at a concentration of 0.25%. Two weeks before the

start and throughout the testing, carbamazepine concentrations in the food were

0.5% as previously suggested (Kara, et al 2014). Four OFTs were conducted during

a period of two weeks.

Statistical analysis:

All results are expressed as mean ± SE. IBM® SPSS® Statistics 21 software was

used for the statistical analysis. A two-tailed unpaired Student's t-test was used for

the comparative analyses. For the experiments that included pharmacological

treatments, in addition to genotype, treatment effect was analyzed as a factor for

two-way multifactorial analysis of variance (ANOVA test). Where significant effects

were detected, Fisher’s LSD post hoc analysis indicated significant differences

between individual groups. False discovery rate (FDR) correction of the p-values

was performed for multiple testing.

INRICH Pathway analysis

6

Jukic et al.

1. Compilation of gene lists: Lists of genes specifying DA and 5HT neurons were

compiled in a two-step process. In the first step, a

http://www.ncbi.nlm.nih.gov/pubmed search was performed using the search terms

“dopamine and development”, “dopamine and embryo”, as well as “serotonin and

development” and “serotonin and embryo”, including studies published up to May

2014. In a second step, the published studies obtained from this search were

screened according to the following criteria: 1. Studies performed in vivo 2. Studies

performed in mammals 3. Studies related to midbrain dopaminergic or rostral

serotonergic neurons. 4. Studies related to the specification of monoaminergic

neurons. We choose these criteria according to following rationales. 1: In vitro

studies are not necessarily relevant in vivo (Hegarthy et al., 2013). 2: Only

experiments performed in mammals were considered, since pathways for

monoaminergic neuronal specification in non-mammals differ substantially from

mammalian pathways (Hegarthy et al., 2013). 3. Only data relevant for midbrain DA

or rostral 5HT sub-populations were considered, since they are affected in En1+/Otx2

mutants and relevant to psychiatric disorders. In contrast, other DA and 5HT sub-

populations, not affected in En1+/Otx2 mutants, e.g. olfactory DA or caudal hindbrain

5HT neurons projecting to the spinal cord, are less likely to be involved in these

disorders. 4. Since En1+/Otx2 mutants exhibit alterations in the specification of

monoaminergic neurons rather than in their migration or projection (Brodski , et al

2003), only studies that control this aspect of development were taken into

consideration. Based on these publications a gene list was compiled for DA as well

as for 5-HT neurons.

7

Jukic et al.

2. INRICH Analysis In order to test if the sequence variants of selected gene sets

are correlated with psychiatric disorders we used INRICH, an interval-based

enrichment analysis tool for GWAS (Lee, et al 2012). INRICH evaluates each target

set by considering the number of intervals that contain at least one target gene

sequence. The data used for the statistical analysis was obtained from the meta-

analysis study of bipolar disorders conducted by the Psychiatric Genomics

Consortium (PGC) (Psychiatric GWAS Consortium Bipolar Disorder Working Group

2011). Associated LD-independent genomic intervals were based on the LD pruned

SNP dataset downloaded from PGC website (http://pgc.unc.edu) on 10.11.2013 for

each disease (Supplementary files: pgc.bip.clump for BPD, pgc.scz.clump for SCZ,

and pgc.mdd.clump for MDD). Intervals were spanning 250kbp up/downstream on

variants attaining statistical significance for relationships at P≤0.001. We defined

gene regions as 100 kb up/downstream of the transcription starting/ending sites for

all genes on autosomal chromosomes based on the ENTREZ gene map hg 18

(Maglott, et al 2005) downloaded from the INRICH website

(atgu.mgh.harvard.edu/inrich/downloads.html) on 10.11.2013 (Supplementary file

entrez.gene.map). The original downloaded datasets are available in the

supplementary datasets folder. Significance was assessed through 100,000

permutations in which randomly selected genomic regions matched for gene and

SNP density were compared with the target interval set. In order to test whether or

not there is a degree of correspondence between the test intervals and the target

sets, we calculated global enrichment. It indicates whether more targets than

expected by chance are within one of the associated intervals and within at least one

set that is nominally significant at P≤0.01. Finally, resampling-based 10000 second-

8

Jukic et al.

step permutation was conducted in order to adjust the empirical P-values for testing

multiple candidate target sets.

Since we repeatedly tested the hypothesis that sequence variants of genes

directing the development of DA neurons are associated with BPD using different

data sets, we corrected for multiple testing. We used the p-values obtained from the

INRICH analysis using the lists of genes directing the specification of dopaminergic

neurons compiled by us and by Hegarthy et al, for the FDR correction, according to

SanGiovanni and Lee, 2013.

9

Jukic et al.

TABLE 1 REFERENCES

1. Baquet ZC, Bickford PC, Jones KR. Brain-derived neurotrophic factor is required

for the establishment of the proper number of dopaminergic neurons in the

substantia nigra pars compacta. J Neurosci 2005 Jun 29;25(26):6251-9.

2. Sakane F, Miyamoto Y. N-cadherin regulates the proliferation and differentiation of

ventral midbrain dopaminergic progenitors. Dev Neurobiol 2013 Jul;73(7):518-

29.

3. Tang M, Villaescusa JC, Luo SX, Guitarte C, Lei S, Miyamoto Y, Taketo MM,

Arenas E, Huang EJ. Interactions of Wnt/beta-catenin signaling and sonic

hedgehog regulate the neurogenesis of ventral midbrain dopamine neurons. J

Neurosci 2010 Jul 7;30(27):9280-91.

4. Ribeiro D, Ellwanger K, Glagow D, Theofilopoulos S, Corsini NS, Martin-Villalba A,

Niehrs C, Arenas E. Dkk1 regulates ventral midbrain dopaminergic differentiation

and morphogenesis. PLoS One 2011 Feb 11;6(2):e15786.

5. Iwakura Y, Wang R, Abe Y, Piao YS, Shishido Y, Higashiyama S, Takei N, Nawa

H. Dopamine-dependent ectodomain shedding and release of epidermal growth

factor in developing striatum: Target-derived neurotrophic signaling (part 2). J

Neurochem 2011 Jul;118(1):57-68.

6. Alberi L, Sgado P, Simon HH. Engrailed genes are cell-autonomously required to

prevent apoptosis in mesencephalic dopaminergic neurons. Development 2004

Jul;131(13):3229-36.

7. Alves dos Santos MT, Smidt MP. En1 and wnt signaling in midbrain dopaminergic

neuronal development. Neural Dev 2011 May 10;6:23,8104-6-23.

10

Jukic et al.

8. Ellisor D, Rieser C, Voelcker B, Machan JT, Zervas M. Genetic dissection of

midbrain dopamine neuron development in vivo. Dev Biol 2012 Dec

15;372(2):249-62.

9. Simon HH, Saueressig H, Wurst W, Goulding MD, O'Leary DD. Fate of midbrain

dopaminergic neurons controlled by the engrailed genes. J Neurosci 2001 May

1;21(9):3126-34.

10. Ono Y, Nakatani T, Minaki Y, Kumai M. The basic helix-loop-helix transcription

factor Nato3 controls neurogenic activity in mesencephalic floor plate cells.

Development 2010 Jun;137(11):1897-906.

11. Ratzka A, Baron O, Stachowiak MK, Grothe C. Fibroblast growth factor 2

regulates dopaminergic neuron development in vivo. J Neurochem 2012

Jul;122(1):94-105.

12. Lahti L, Peltopuro P, Piepponen TP, Partanen J. Cell-autonomous FGF signaling

regulates anteroposterior patterning and neuronal differentiation in the

mesodiencephalic dopaminergic progenitor domain. Development 2012

Mar;139(5):894-905.

13. Ferri AL, Lin W, Mavromatakis YE, Wang JC, Sasaki H, Whitsett JA, Ang SL.

Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron

development in a dosage-dependent manner. Development 2007

Aug;134(15):2761-9.

14. Hynes M, Poulsen K, Tessier-Lavigne M, Rosenthal A. Control of neuronal

diversity by the floor plate: Contact-mediated induction of midbrain dopaminergic

neurons. Cell 1995 Jan 13;80(1):95-101.

15. Kholodilov N, Yarygina O, Oo TF, Zhang H, Sulzer D, Dauer W, Burke RE.

Regulation of the development of mesencephalic dopaminergic systems by the

11

Jukic et al.

selective expression of glial cell line-derived neurotrophic factor in their targets. J

Neurosci 2004 Mar 24;24(12):3136-46.

16. Hynes M, Stone DM, Dowd M, Pitts-Meek S, Goddard A, Gurney A, Rosenthal A.

Control of cell pattern in the neural tube by the zinc finger transcription factor and

oncogene gli-1. Neuron 1997 Jul;19(1):15-26.

17. Matise MP, Epstein DJ, Park HL, Platt KA, Joyner AL. Gli2 is required for

induction of floor plate and adjacent cells, but not most ventral neurons in the

mouse central nervous system. Development 1998 Aug;125(15):2759-70.

18. Andersson E, Tryggvason U, Deng Q, Friling S, Alekseenko Z, Robert B,

Perlmann T, Ericson J. Identification of intrinsic determinants of midbrain

dopamine neurons. Cell 2006 Jan 27;124(2):393-405.

19. Deng Q, Andersson E, Hedlund E, Alekseenko Z, Coppola E, Panman L, Millonig

JH, Brunet JF, Ericson J, Perlmann T. Specific and integrated roles of Lmx1a,

Lmx1b and Phox2a in ventral midbrain development. Development 2011

Aug;138(16):3399-408.

20. Smidt MP, Asbreuk CH, Cox JJ, Chen H, Johnson RL, Burbach JP. A second

independent pathway for development of mesencephalic dopaminergic neurons

requires Lmx1b. Nat Neurosci 2000 Apr;3(4):337-41.

21. Andersson E, Jensen JB, Parmar M, Guillemot F, Bjorklund A. Development of

the mesencephalic dopaminergic neuron system is compromised in the absence

of neurogenin 2. Development 2006 Feb;133(3):507-16.

22. Kele J, Simplicio N, Ferri AL, Mira H, Guillemot F, Arenas E, Ang SL. Neurogenin

2 is required for the development of ventral midbrain dopaminergic neurons.

Development 2006 Feb;133(3):495-505.

12

Jukic et al.

23. Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T.

Dopamine neuron agenesis in Nurr1-deficient mice. Science 1997 Apr

11;276(5310):248-50.

24. Chakrabarty K, Von Oerthel L, Hellemons A, Clotman F, Espana A, Groot

Koerkamp M, Holstege FC, Pasterkamp RJ, Smidt MP. Genome wide

expression profiling of the mesodiencephalic region identifies novel factors

involved in early and late dopaminergic development. Biol Open 2012 Aug

15;1(8):693-704.

25. Brodski C, Weisenhorn DM, Signore M, Sillaber I, Oesterheld M, Broccoli V,

Acampora D, Simeone A, Wurst W. Location and size of dopaminergic and

serotonergic cell populations are controlled by the position of the midbrain-

hindbrain organizer. J Neurosci 2003 May 15;23(10):4199-207.

26. Hoekstra EJ, von Oerthel L, van der Linden AJ, Smidt MP. Phox2b influences the

development of a caudal dopaminergic subset. PLoS One 2012;7(12):e52118.

27. Smidt MP, Smits SM, Bouwmeester H, Hamers FP, van der Linden AJ,

Hellemons AJ, Graw J, Burbach JP. Early developmental failure of substantia

nigra dopamine neurons in mice lacking the homeodomain gene Pitx3.

Development 2004 Mar;131(5):1145-55.

28. Hoekstra EJ, von Oerthel L, van der Heide LP, Kouwenhoven WM, Veenvliet JV,

Wever I, Jin YR, Yoon JK, van der Linden AJ, Holstege FC, et al. Lmx1a

encodes a rostral set of mesodiencephalic dopaminergic neurons marked by the

Wnt/B-catenin signaling activator R-spondin 2. PLoS One 2013 Sep

16;8(9):e74049.

13

Jukic et al.

29. Joksimovic M, Yun BA, Kittappa R, Anderegg AM, Chang WW, Taketo MM,

McKay RD, Awatramani RB. Wnt antagonism of shh facilitates midbrain floor

plate neurogenesis. Nat Neurosci 2009 Feb;12(2):125-31.

30. Hynes M, Ye W, Wang K, Stone D, Murone M, Sauvage F, Rosenthal A. The

seven-transmembrane receptor smoothened cell-autonomously induces multiple

ventral cell types. Nat Neurosci 2000 Jan;3(1):41-6.

31. Blum M. A null mutation in TGF-alpha leads to a reduction in midbrain

dopaminergic neurons in the substantia nigra. Nat Neurosci 1998 Sep;1(5):374-

7.

32. Rabe TI, Griesel G, Blanke S, Kispert A, Leitges M, van der Zwaag B, Burbach

JP, Varoqueaux F, Mansouri A. The transcription factor Uncx4.1 acts in a short

window of midbrain dopaminergic neuron differentiation. Neural Dev 2012 Dec

8;7:39,8104-7-39.

33. Prakash N, Brodski C, Naserke T, Puelles E, Gogoi R, Hall A, Panhuysen M,

Echevarria D, Sussel L, Weisenhorn DM, et al. A Wnt1-regulated genetic

network controls the identity and fate of midbrain-dopaminergic progenitors in

vivo. Development 2006 Jan;133(1):89-98.

34. Sousa KM, Villaescusa JC, Cajanek L, Ondr JK, Castelo-Branco G, Hofstra W,

Bryja V, Palmberg C, Bergman T, Wainwright B, et al. Wnt2 regulates progenitor

proliferation in the developing ventral midbrain. J Biol Chem 2010 Mar

5;285(10):7246-53.

35. Andersson ER, Prakash N, Cajanek L, Minina E, Bryja V, Bryjova L, Yamaguchi

TP, Hall AC, Wurst W, Arenas E. Wnt5a regulates ventral midbrain

morphogenesis and the development of A9-A10 dopaminergic cells in vivo.

PLoS One 2008;3(10):e3517.

14

Jukic et al.

36. Pattyn A, Simplicio N, van Doorninck JH, Goridis C, Guillemot F, Brunet JF.

Ascl1/Mash1 is required for the development of central serotonergic neurons.

Nat Neurosci 2004 Jun;7(6):589-95.

37. Simon HH, Scholz C, O'Leary DD. Engrailed genes control developmental fate of

serotonergic and noradrenergic neurons in mid- and hindbrain in a gene dose-

dependent manner. Mol Cell Neurosci 2005 Jan;28(1):96-105.

38. Fox SR, Deneris ES. Engrailed is required in maturing serotonin neurons to

regulate the cytoarchitecture and survival of the dorsal raphe nucleus. J

Neurosci 2012 Jun 6;32(23):7832-42.

39. Jacob J, Ferri AL, Milton C, Prin F, Pla P, Lin W, Gavalas A, Ang SL, Briscoe J.

Transcriptional repression coordinates the temporal switch from motor to

serotonergic neurogenesis. Nat Neurosci 2007 Nov;10(11):1433-9.

40. Craven SE, Lim KC, Ye W, Engel JD, de Sauvage F, Rosenthal A. Gata2

specifies serotonergic neurons downstream of sonic hedgehog. Development

2004 Mar;131(5):1165-73.

41. van Doorninck JH, van Der Wees J, Karis A, Goedknegt E, Engel JD, Coesmans

M, Rutteman M, Grosveld F, De Zeeuw CI. GATA-3 is involved in the

development of serotonergic neurons in the caudal raphe nuclei. J Neurosci

1999 Jun 15;19(12):RC12.

42. Matise MP, Epstein DJ, Park HL, Platt KA, Joyner AL. Gli2 is required for

induction of floor plate and adjacent cells, but not most ventral neurons in the

mouse central nervous system. Development 1998 Aug;125(15):2759-70.

43. Jacob J, Storm R, Castro DS, Milton C, Pla P, Guillemot F, Birchmeier C, Briscoe

J. Insm1 (IA-1) is an essential component of the regulatory network that specifies

15

Jukic et al.

monoaminergic neuronal phenotypes in the vertebrate hindbrain. Development

2009 Jul;136(14):2477-85.

44. Ding YQ, Marklund U, Yuan W, Yin J, Wegman L, Ericson J, Deneris E, Johnson

RL, Chen ZF. Lmx1b is essential for the development of serotonergic neurons.

Nat Neurosci 2003 Sep;6(9):933-8.

45. Briscoe J, Sussel L, Serup P, Hartigan-O'Connor D, Jessell TM, Rubenstein JL,

Ericson J. Homeobox gene Nkx2.2 and specification of neuronal identity by

graded sonic hedgehog signalling. Nature 1999 Apr 15;398(6728):622-7.

46. Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B,

Silver J, Weeber EJ, Sweatt JD, Deneris ES. Pet-1 ETS gene plays a critical role

in 5-HT neuron development and is required for normal anxiety-like and

aggressive behavior. Neuron 2003 Jan 23;37(2):233-47.

47. Pattyn A, Vallstedt A, Dias JM, Samad OA, Krumlauf R, Rijli FM, Brunet JF,

Ericson J. Coordinated temporal and spatial control of motor neuron and

serotonergic neuron generation from a common pool of CNS progenitors. Genes

Dev 2003 Mar 15;17(6):729-37.

48. Osterberg N, Wiehle M, Oehlke O, Heidrich S, Xu C, Fan CM, Krieglstein K,

Roussa E. Sim1 is a novel regulator in the differentiation of mouse dorsal raphe

serotonergic neurons. PLoS One 2011 Apr 26;6(4):e19239.

49. Hynes M, Ye W, Wang K, Stone D, Murone M, Sauvage F, Rosenthal A. The

seven-transmembrane receptor smoothened cell-autonomously induces multiple

ventral cell types. Nat Neurosci 2000 Jan;3(1):41-6.

16

Jukic et al.

SUPPLEMENTARY FIGURE 1

En1+/Otx2 mutants show increased spontaneous fluctuations in their locomotor

activity in their home cage under constant darkness

After five days in the normal light/dark cycle, the animal activity was recorded daily

for 33 days under constant darkness, normalized to the average activity level of that

animal during the entire period, and shown as a function of day in separate plots for

each of the nine (a) WT and eleven (b) En1+/Otx2 mutant animals. (c) En1+/Otx2 mutants

showed increased intra-individual fluctuation as indicated by an increased CV

(t18=2.157, p=0.047). Two-tailed unpaired Student's t-test: *p<0.05, **p<0.01,

***p<0.001

17

Jukic et al.

SUPPLEMENTARY FIGURE 2

En1+/Otx2 mutants show increased levels of locomotor activity, risk taking

behavior and reduced levels of hedonic-like and social behavior.

(a) In the OFT, mutants were more active (t16=2.972, p=0.003) and entered more into

the center than controls (t16=3.572, p=0.001), while the percentage of the distance

traveled in the center did not significantly differ between genotypes (t16=0.997,

p=0.452). (b) The time mutants spent in social interaction was decreased compared

to the WTs (t16=2.945, p=0.011). (c) The sucrose preference in the mutant mice was

lower compared to WTs (t18=3.459, p=0.003), while the sucrose (t18=0.631, p=0.536)

and total liquid intake (t18=1.476, p=0.157) did not differ between genotypes. (d) In

the EPM, mutants showed more entries into (t18=3.583, p=0.001) and time spent

(t18=2.149, p=0.036) in the open arms compared to controls, while number of entries

into all arms did not differ between groups (t18=0.684, p=0.497). Mutants spent

significantly more time in the light compartment in the LDB than WTs (t18=5.149,

p<0.001). Two-tailed unpaired Student's t-test: *p<0.05, **p<0.01, ***p<0.001

18

Jukic et al.

SUPPLEMENTARY FIGURE 3

The activity of En1+/Otx2 mutants correlates with their risk-taking behavior and

habituation, but not with their fluctuations in activity

Locomotor activity, ACRs, the number of entries into and the percentage of distance

traveled in the center of the OFT were analyzed for the 45 minute OFT for each

animal. (a) The frequency of entries to the center correlated with activity levels for

both mutants (r27=0.882, p<0.001) and controls (r29=0.772, p<0.001), while the

distance traveled in the center correlated with activity levels only in En1+/Otx2

(r27=0.447, p=0.015) and not in WT animals (r29=0.089, p=0.633). (b) Activity levels

and ACRs were correlated for both WTs (r28=0.699, p<0.001) and mutants

(r27=0.661, p<0.001). (c) The activity of the animals was not correlated with the

coefficients of variance for both the mutants (r27=0.187, p<0.418) and the controls

(r27=0.015, p<0.953) in six repetitive one hour OFTs.

19

Jukic et al.

SUPPLEMENTARY FIGURE 4

Olanzapine reduces activity and risk-taking behavior in both mutants and

controls

Vehicle and olanzapine solutions (1 mg/kg) were injected IP into animals one hour

before they were tested in the OFT for 60 minutes. Olanzapine decreased the (a)

activity (TreatmentF1,36=4.834, p=0.034) and the (b) number of entries into the center

(TreatmentF1,36=8.092, p=0.007) of both WT and En1+/Otx2 mutants, without a differential

effect on genotypes (Genotype*TreatmentF1,36=0.588, p=0.448; Genotype*TreatmentF1,36=0.313,

p=0.580). There was no significant interaction between the genotype and the

treatment for the percentage of distance traveled in the center of the OFT

(Genotype*TreatmentF1,36=1.023, p=0.319). (d) ACR was increased after the acute

olanzapine treatment (TreatmentF1,36=6.829, p=0.013) with no selective effect to neither

of the genotypes (Genotype*TreatmentF1,36=0.338, p=0.564).

20

Jukic et al.

SUPPLEMENTARY FIGURE 5

En1+/Otx2 mutants maintained on a BS genetic background show increased

fluctuations in their locomotor activity and risk-taking behavior

En1+/Otx2 mutants were exposed to the repetitive OFT, the values for the distance

traveled were normalized by the individual animal average, and were depicted by

different colors for the each animal as the function of the trial. En1+/Otx2 mutants

showed an increase in the CV in their activity levels in the repetitive OFT compared

to WTs when maintained on the CD1 genetic background (t18=3.912, p=0.001) and

on the BS genetic background (t18=4.143, p=0.001). The number of entries and the

percentage of the distance (center vs total) traveled in the center was also measured

in animals on both backgrounds. In contrast to (c) the CD1 genetic background

where only number of entries into (t18=4.32, p<0.001) and not the percentage of

distance traveled in the center (t18=0.648, p=0.52) was increased in mutants, (d)

mutants on BS background entered more into (t18=4.939, p<0.001) and traveled

more distance in the center (t18=7.537, p<0.001). Taken together, these results

suggest that En1+/Otx2 mutants on a Black Swiss genetic background maintained the

21

Jukic et al.

intra-individual differences observed on a CD-1 genetic background and that they

showed a stronger manic-like phenotype in the OFT. Two-tailed unpaired Student's t-

test: *p<0.05, **p<0.01, ***p<0.001

22

Jukic et al.

SUPPLEMENTARY REFERENCES

Bothe GW, Bolivar VJ, Vedder MJ, Geistfeld JG (2004). Genetic and behavioral differences among five inbred mouse strains commonly used in the production of transgenic and knockout mice. Genes Brain Behav 3: 149-157.

Broccoli V, Boncinelli E, Wurst W (1999). The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401: 164-168.

Brodski C, Weisenhorn DM, Signore M, Sillaber I, Oesterheld M, Broccoli V, Acampora D, Simeone A, Wurst W (2003). Location and size of dopaminergic and serotonergic cell populations are controlled by the position of the midbrain-hindbrain organizer. J Neurosci 23: 4199-4207.

Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G (2003). The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 23: 7311-7316.

Engel SR, Creson TK, Hao Y, Shen Y, Maeng S, Nekrasova T, Landreth GE, Manji HK, Chen G (2009). The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement. Mol Psychiatry 14: 448-461.

Flaisher-Grinberg S, Einat H (2010) Strain-specific battery of tests for domains of mania: effects of valproate, lithium and imipramine. Front Psychiatry. 1: e00010

Hutchinson AN, Deng JV, Aryal DK, Wetsel WC, West AE (2012). Differential regulation of MeCP2 phosphorylation in the CNS by dopamine and serotonin. Neuropsychopharmacology 37: 321-337.

Kara NZ, Karpel O, Toker L, Agam G, Belmaker RH, Einat H (2014). Chronic oral carbamazepine treatment elicits mood-stabilising effects in mice. Acta Neuropsychiatrica 26: 29-34.

Kaur G and Kulkarni SK (2002). Evidence for serotonergic modulation of progesterone-induced hyperphagia, depression and algesia in female mice. Brain Res 943: 206-215.

Lee PH, O'Dushlaine C, Thomas B, Purcell SM (2012). INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics 28: 1797-1799.

Leussis MP and Bolivar VJ (2006). Habituation in rodents: a review of behavior, neurobiology, and genetics. Neurosci Biobehav Rev 30: 1045-1064.

Mattiuz E, Franklin R, Gillespie T, Murphy A, Bernstein J, Chiu A, Hotten T, Kassahun K (1997) Disposition and metabolism of olanzapine in mice, dogs, and rhesus monkeys. Drug Metab Dispos 25: 573-583

Maglott D, Ostell J, Pruitt KD, Tatusova T (2005). Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 33: D54-8.

Psychiatric GWAS Consortium Bipolar Disorder Working Group (2011). Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 43: 977-983.

SanGiovanni JP, Lee PH. (2013) AMD-Associated Genes Encoding Stress-Activated MAPK Pathway Constituents Are Identified by Interval-Based Enrichment Analysis. PloS One 8: e71239

23

Jukic et al.

Shaltiel G, Maeng S, Malkesman O, Pearson B, Schloesser RJ, Tragon T, Rogawski M, Gasior M, Luckenbaugh D, Chen G, Manji HK (2008). Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Mol Psychiatry 13: 858-872.

Siuciak JA, Chapin DS, McCarthy SA, Guanowsky V, Brown J, Chiang P, Marala R, Patterson T, Seymour PA, Swick A, Iredale PA (2007). CP-809,101, a selective 5-HT2C agonist, shows activity in animal models of antipsychotic activity. Neuropharmacology 52: 279-290.

Taliaz D, Loya A, Gersner R, Haramati S, Chen A, Zangen A (2011). Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor. J Neurosci 31: 4475-4483.

Tarasiuk A, Levi A, Berdugo-Boura N, Yahalom A, Segev Y (2014). Role of Orexin in Respiratory and Sleep Homeostasis during Upper Airway Obstruction in Rats. Sleep 37: 978-998

Valencia-Flores M, Campos-Sepulveda E, Galindo-Morales JA, Lujan M, Colotla VA (1990). Behavioral and biochemical correlates of chronic administration of quipazine. Pharmacol Biochem Behav 36: 299-304.

24