vibrations chapter 2 2013 post

Upload: zain-baqar

Post on 03-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    1/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    1ENME 361, Spring 2013

    ENME361

    Vibrations, Control, and Optimization ISpring 2013

    Chapter 2

    Modeling of Vibratory Systems

    Acknowledgement: Professors B. Balachandran and E. B. Magrab

    Assignment 2 (due on 2/12/13): 2.3, 2.8, 2.11, 2.20, and 2.27

    Chapter 2 Modeling of Vibratory Systems

    2ENME 361, Spring 2013

    In Chapter 2, we shall show how to do the follow ing:

    Compute the mass moment of inertia of rotationalsystems

    Determine the stiffness of various elastic componentsin translation and torsion and the equivalent stiffness

    when many individual linear components are combined

    Determine the stiffness of f luid and pendulum elements

    Determine the potential energy of stiffness elements

    Determine the damping for systems that have differentsources of dissipation

    Construct models of vibratory systems

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    2/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    3ENME 361, Spring 2013

    Two examples from mechanical engineering

    A Microelect romechanical System

    x

    ElectrostaticforceFe

    Base acceleration y

    End massm

    Equivalent structurestiffnessk

    Modeled as a sing le

    degree-of-freedom

    system

    Chapter 2 Modeling of Vibratory Systems

    4ENME 361, Spring 2013

    The Human Body

    Multi-degree-of-freedom system

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    3/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    5ENME 361, Spring 2013

    2.1: Introduction

    There are, in general, three elements thatcomprise a vibrating sys tem

    Inertia element

    Stores and releases kinetic energy

    Stiffness element

    Stores and releases potential energy

    Dissipation element

    Used to express energy loss in a system

    Chapter 2 Modeling of Vibratory Systems

    6ENME 361, Spring 2013

    xek

    ec

    em

    Inertia Element

    Stiffness Element

    Dissipation Element

    GeneralizedCoordinate

    Model Construction

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    4/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    7ENME 361, Spring 2013

    Each of these elements has differentexcitation-response characteristics.

    The excitation is in the form of a force or amoment and the corresponding response ofthe element is in the form of a displacement,velocity, or acceleration.

    Chapter 2 Modeling of Vibratory Systems

    8ENME 361, Spring 2013

    Inertia Elements:

    Inertia

    Element

    Kinetic

    EnergyInertia elements are characterized by a relationshipbetween an applied force (or moment) and the

    corresponding acceleration response

    Inertia

    Element

    Inertia

    Element Forceand/or

    moment

    Acceleration

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    5/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    9ENME 361, Spring 2013

    Stiffness Elements:

    Stiffness

    Element

    Potential

    EnergyStiffness elements are characterized by a relationship

    between an applied force (or moment) and the

    corresponding displacement (or rotation) response

    Stiffness

    Element

    Stiffness

    Element

    Force

    and/or

    moment

    Displacement

    Chapter 2 Modeling of Vibratory Systems

    10ENME 361, Spring 2013

    Dissipation Elements:

    Dissipation

    Element

    Energy

    Loss Dissipation elements are characterized by a relationship

    between an applied force (or moment) and the

    corresponding t ranslational or rotational velocity

    response

    Dissipation

    Element

    Dissipation

    Element Force

    and/or

    moment

    Velocity

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    6/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    11ENME 361, Spring 2013

    Table 2.1: Units of components comprising a vibrating

    mechanical system and their customary symbols

    Quantity Units

    Translational motionMass,mStiffness,kDamping,cExternal force,F

    RotationalmotionMassmomentof inertia,JStiffness,kt

    Damping,ctExternalmoment,M

    kgN/mNs/mN

    kgm2Nm/radNms/radNm

    Chapter 2 Modeling of Vibratory Systems

    12ENME 361, Spring 2013

    k c

    m

    O

    ab

    l

    ?

    ??

    e

    e

    e

    m

    kc

    ?x

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    7/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    13ENME 361, Spring 2013

    2.2: Inertia Elements

    Translational motion o f a mass: Is described as motion along the path followed

    by the center of mass

    The associated inertia property depends onlyon the total mass of the system and is

    independent of the geometry of the mass

    distribution of the system

    Chapter 2 Modeling of Vibratory Systems

    14ENME 361, Spring 2013

    Consider a mass translating with a velocity of

    magnitude in the plane.

    k

    j

    Oi

    Y

    X

    Z

    F i

    x i

    m

    mx -X Y

    ,d

    mdt

    F p p rPrincipleof Linear Momentum:

    d

    F mxdt

    F xm

    i i

    1

    2

    T m r rKineticEnergy:

    2

    1

    2

    1

    2

    T m x x

    mT x

    i i

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    8/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    15ENME 361, Spring 2013

    Rotational motions of a mass:

    The inertia property is a function of the mass

    distribution as described by it s mass moment of inertiaabout its center of mass or a fixed point O.

    2O GJ J md

    where

    m is the mass of the element

    JG is the mass moment of inertiaabout the center of mass

    d is the distance from the centerof gravity to the point O

    When the mass oscillates about a fixed po int O or a

    pivot point O, the rotary inertia JO is given by the

    parallel-axes theorem

    z

    G

    O

    d

    ,GJ m

    Chapter 2 Modeling of Vibratory Systems

    16ENME 361, Spring 2013

    Table 2.2: Mass moments of inertia about axis z normal

    to the x-y plane and passing through the center of mass

    L

    zL/2

    21

    12G mL

    R

    z

    G

    21

    2GJ mR

    R22

    5G mR

    Slenderbar

    Circulardisk

    Sphere

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    9/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    17ENME 361, Spring 2013

    Example 2.1: Determination of mass moments of inertia

    Uniform disk

    m, J G

    R

    O

    G

    2O GJ J mR

    From Table 2.2

    21

    2GJ mR

    Therefore,

    2 2 21 3

    2 2OJ mR mR mR

    2O GJ md

    kgm2

    kgm2

    kgm2

    From the parallel-axes theorem

    Chapter 2 Modeling of Vibratory Systems

    18ENME 361, Spring 2013

    c.g.L

    L/2m

    O

    G

    Uniform bar

    From Table 2.2, we have that

    21

    12GJ mL

    From the parallel-axes theorem,

    we find

    2

    2 2 21 1

    2 12 4 3O G

    L mJ J m mL L mL

    2

    O GJ md

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    10/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    19ENME 361, Spring 2013

    Example 2.2: Slider mechanism: system w ith varying inertia

    property

    r

    l ams

    b

    emb

    me

    ml

    O

    O

    2O GJ md We will use the parallel-axestheorem. Hence, we need thedistances from each moving

    members c.g. to point O.

    a

    a

    e/2

    b/2

    r

    c.g.

    c.g.

    b/2

    ab

    O

    2 2 2

    22 2

    22 2

    ( ) 2 cos

    ( ) 2 cos

    ( ) 2 cos( )

    b

    e

    r a b ab

    a b a ab

    a e a ae

    Law of cosines

    Chapter 2 Modeling of Vibratory Systems

    20ENME 361, Spring 2013

    The rotary inertia JO of this system is given by

    ( ) ( ) ( )l s b eO m m m m

    J J J J J

    r

    l ams

    b

    emb

    me

    ml

    O

    O

    2

    2 2 2

    2 22 2

    2 22 2

    1

    3

    ( ) ( ) 2 cos

    ( ) cos12 3

    ( ) cos( )12 3

    l

    s

    b

    e

    m l

    m s s

    m b b b b

    m e e e e

    J ml

    J mr m a b ab

    b b

    J m ma m a ab

    e eJ m ma m a ae

    where

    2O GJ md

    kgm2

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    11/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    21ENME 361, Spring 2013

    Example: Equivalent Mass of a System

    Rigid link 1: rotateswithpulleyaboutO

    ?eqm 21

    2eqmT x

    2l

    1l

    1m

    cr

    Rigid link 2Cylinder

    No slip

    2m2k

    cmcJ

    ( )y t

    Pulley

    m

    pJ

    O

    1k

    pr

    ( )x t

    2l

    1l

    1m

    cr

    Rigid link 2Cylinder

    No slip

    2m2k

    cmcJ

    ( )y t2l

    1l

    1m

    cr

    Rigid link 2Cylinder

    No slip

    2m2k

    cmcJ

    ( )y t

    Pulley

    m

    pJ

    O

    1k

    pr

    ( )x tPulley

    m

    pJ

    O

    1k

    pr

    ( )x t

    ( ) is "small"x t

    Chapter 2 Modeling of Vibratory Systems

    22ENME 361, Spring 2013

    ( ) is "small"x t

    ( )( )p

    x ttr

    2

    1

    1,

    2T mx

    2

    2

    2

    1 1

    ,2 2p p p

    x

    T J J r

    22

    2 1 13 1

    1 1

    2 2 3 p

    ml xT J

    r

    11( ) ( ) ( )

    p

    ly t t l x t

    r

    m1k

    ( )x t

    1l

    1m

    pJ

    O

    pr

    ( )t

    ( )y t

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    12/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    23ENME 361, Spring 2013

    2l

    cr

    2m

    2k

    cmcJ

    ( )y t

    ( )y t

    ( )t

    1 1( ) ( ) ( )c c p

    l lt t x t

    r r r

    11( ) ( ) ( )

    p

    ly t t l x t

    r

    2

    2 14 2 2

    1 1,

    2 2 p

    l xT my m

    r

    2

    2 15

    1 1,

    2 2c c

    p

    l xT my m

    r

    2

    2 16 1 1

    2 2c c

    c p

    l xT J Jr r

    Chapter 2 Modeling of Vibratory Systems

    24ENME 361, Spring 2013

    2 22

    2 1 1

    2 2 2

    1 1 12

    1 1 1

    2 2 2 3

    1 1 1

    2 2 2

    p

    p p

    c c

    p p c p

    x ml xT mx J

    r r

    l x l x l xm m J

    r r r r

    1 2 3 4 5 6T T T T T T T

    212

    eqmT x

    2 2 22

    1 1 1 1 122 23

    p

    eq c c

    p p p p c p

    J ml l l lm m m m J

    r r r r r r

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    13/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    25ENME 361, Spring 2013

    Examples of sp rings

    Spring

    Motion

    Highway base isolation

    using cylindri cal rubber

    bearings

    Wire rope isolators

    Motion

    Wire

    Wire

    Chapter 2 Modeling of Vibratory Systems

    26ENME 361, Spring 2013

    Steel coi l

    springs

    Addi tional Examples of springs

    Air springs

    Motion

    Steel cable springs use in

    a chimney tuned mass

    damper

    Motion

    Cablesprings

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    14/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    27ENME 361, Spring 2013

    2.3: Stiffness Elements

    Fs is the internal

    force acting with in

    the stiffness

    element.

    It is called the

    restoring force.

    As the sti ffness element is deformed, energy

    is stored in this element, and as the stiffness

    element is un-deformed, energy i s released.

    This energy is called the potential energy.

    F

    FSF

    O

    O

    -S F F

    StiffnessElement

    Chapter 2 Modeling of Vibratory Systems

    28ENME 361, Spring 2013

    Potential energy in a spring

    The potential energy V is defined as the work done to

    take the stiffness element from the deformed position

    to the un-deformed position; that is, the work needed to

    un-deform the element to its original shape.

    0 0

    0

    0

    -

    -

    Sx

    x

    x

    xd F x dx

    F x dx

    V x

    F x dx

    = F x i i

    i i

    F

    xi

    j

    F

    xi

    j

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    15/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    29ENME 361, Spring 2013

    2.3.2 Linear Springs

    Linear Translation Spring

    x

    F

    k

    Single

    spring

    ( )F x kx

    where

    F is the force applied to a linear spring (N)

    k is the spring constant (N/m)

    0 0 0

    2

    ( ) ( )

    1

    2

    x x x

    V x F x dx kxdx k xdx

    kx

    N

    (Nm)

    The potential energy in the spring is

    Chapter 2 Modeling of Vibratory Systems

    30ENME 361, Spring 2013

    Note:

    The stiffness constant k is a static concept , and hence, a

    static loading is sufficient to determine this parameter.

    0.1 0.05 0 0.05 0.11500

    1000

    500

    0

    500

    1000

    1500

    x (m)

    F

    (N)

    k=10568 N/m

    Fitted curve

    Data

    Experimentally obtained data used to determine the linear spring constant k

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    16/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    31ENME 361, Spring 2013

    Linear Torsion Spring

    ( ) tk

    kt

    where

    is the moment applied to a linear spring(Nm)

    k t is the torsion spring constant (Nm/rad)

    The potential energy in the torsion spr ing is

    0 0

    2

    ( ) ( )

    12

    t

    t

    V d k d

    k

    (Nmrad)

    Chapter 2 Modeling of Vibratory Systems

    32ENME 361, Spring 2013

    Combinations of L inear Springs

    Two springs in series

    F

    x

    1k 2k

    1k 2k F

    x

    1k 2k

    1k 2k

    1k 2k

    ?ek

    1k 2k1k 2k

    ?ek

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    17/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    33ENME 361, Spring 2013

    1 1

    1

    1

    F k x

    Fx

    k

    2 2

    2

    2

    F k x

    Fx

    k

    F1k 2kFFF

    The force on each spring is the same

    1 2

    1 2 1 2

    1 1F Fx x x Fk k k k

    Chapter 2 Modeling of Vibratory Systems

    34ENME 361, Spring 2013

    F1k 2k

    1 2

    1 2

    1 2

    1 2

    1

    1 2

    1 1

    e

    kk

    k k

    kkk

    k k

    F x xk k

    x

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    18/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    35ENME 361, Spring 2013

    1 2

    1 2

    e

    kkk

    k k

    1k 2k

    ek

    Chapter 2 Modeling of Vibratory Systems

    36ENME 361, Spring 2013

    N Springs in Series

    ek

    1k 2k

    1Nk Nk

    1

    1 2 1

    1 1 1 1e

    N N

    kk k k k

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    19/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    37ENME 361, Spring 2013

    The potential energy fo r two springs in series is

    where V1(x1) is the potential energy associated with

    the spring of stiffness k1 and V2(x2) is the potential

    energy associated with the spring of stif fness k2.

    Then,

    1 2 1 1 2 2( , ) ( ) ( )V x x V x V x

    2 21 2 1 1 2 2

    1 1( , )

    2 2V x x k x k x

    Chapter 2 Modeling of Vibratory Systems

    38ENME 361, Spring 2013

    Two springs in parallel

    The displacements of both springs are equal

    F

    x

    1k 2k1k 2k

    F

    x

    1k 2k1k 2k

    1k 2k ?ek

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    20/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    39ENME 361, Spring 2013

    1 1k xF 2 2k xF

    2k

    F

    1F 2F

    1F 2F

    1k 2k

    F

    1F 2F

    1F 2F

    1k

    1 2

    1 2

    1 2

    kx k x

    k k x

    F F F

    1 2

    1 2e

    xk k

    k k k

    F

    Chapter 2 Modeling of Vibratory Systems

    40ENME 361, Spring 2013

    1 2ek k k 1k 2k ek1k 2k ekek

    1k 2k ekek 1Nk Nk

    1 2 1e N Nk k k k k

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    21/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    41ENME 361, Spring 2013

    Axially loadedrodorcable:

    AEk

    L

    : area of cross section

    : Young's modulus

    A

    E,F x

    L,A E

    ,F x

    L,A E

    A Few Equivalent Spr ing Constants of Common Struc tural

    Elements Used in Vibratory Models (from Table 2.3)

    Chapter 2 Modeling of Vibratory Systems

    42ENME 361, Spring 2013

    Axially loaded rod or cable:

    1 2

    4

    Eddk

    L

    : Young's modulusE,F x

    E L

    1d

    2d

    ,F x

    E L

    1d

    2d

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    22/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    43ENME 361, Spring 2013

    Hollow circular rod in torsion:

    ,

    t

    GIk

    L

    L,G I 4 4out in32

    d dI

    : polar moment of inertia

    : shear modulus

    I

    G

    Chapter 2 Modeling of Vibratory Systems

    44ENME 361, Spring 2013

    CantileverBeam:

    3

    3,

    0

    EIk

    a

    a L

    ,F x

    La

    : area moment of inertia

    : Young's modulus

    I

    E

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    23/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    45ENME 361, Spring 2013

    Pinned-pinned Beam:

    2 2

    3EI a b

    k a b

    ,F x

    a b

    : area moment of inertia

    : Young's modulus

    I

    E

    Chapter 2 Modeling of Vibratory Systems

    46ENME 361, Spring 2013

    Clamped-clamped Beam:

    3

    3 3

    3EI a bk

    a b

    ,F x

    a b

    : area moment of inertia

    : Young's modulus

    I

    E

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    24/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    47ENME 361, Spring 2013

    Hollow circular rod in torsion:

    1 2

    ,it t t tii

    IGk k k k

    L

    : polar moment of inertia; : shear modulusI G

    ,

    1L 2L

    1IG 2IG

    Chapter 2 Modeling of Vibratory Systems

    48ENME 361, Spring 2013

    Hollow circular rod in torsion:

    1

    1 2

    1 1,it ti

    i t t

    IGk k

    L k k

    ,

    1L 2L

    1

    IG 2

    IG

    : polar moment of inertia; : shear modulusI G

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    25/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    49ENME 361, Spring 2013

    L

    AEk

    3

    3EIk

    a

    t

    GIk

    L

    Engineering unit check:

    N/m [(m2)(N/m2)/m]

    N/m [(N/m2)(m4)/m3]

    Nm [(N/m2)(m4)/m]

    Chapter 2 Modeling of Vibratory Systems

    50ENME 361, Spring 2013

    F

    2k1k

    Example: Equivalent spring constant

    F

    2k1k

    Case 1 Case 2

    1 2ek k k

    1

    1 2

    1 1ek

    k k

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    26/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    51ENME 361, Spring 2013

    Example: Equivalent spring constant

    F

    L

    1

    EI

    2

    EI

    k

    F

    LL

    1

    EI

    2

    EI

    k

    F

    k

    1k

    2k

    F

    k

    1k

    2k

    k1

    k2

    Chapter 2 Modeling of Vibratory Systems

    52ENME 361, Spring 2013

    Example: (Continuation)

    F

    k

    1k

    2k

    1 2

    1 23 3

    3 3,

    EI EIk k

    L L

    1

    2

    1

    1 1ek kk k

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    27/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    53ENME 361, Spring 2013

    Example 2:

    k

    k

    F

    1k

    F

    a b

    EI

    Chapter 2 Modeling of Vibratory Systems

    54ENME 361, Spring 2013

    Example 2: (Continuation)

    1ek k k

    k

    F

    1k

    1 2 2

    3EI a bk

    a b

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    28/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    55ENME 361, Spring 2013

    Linear Torsion Springs

    kt1 kt kt1kt

    Springs in

    parallelSprings in

    series

    1 2

    1 2 1 2

    ( ) ( ) ( )

    ( )t t t t

    te

    k k k k

    k

    1 2

    1 2

    1 2

    1 1

    t t

    t t te

    k k

    k k k

    Potential energy Potential energy

    1 2

    21( )2

    t tV k k 1 22 2

    1 2 1 21 1( , )2 2

    t tV k k

    Chapter 2 Modeling of Vibratory Systems

    56ENME 361, Spring 2013

    Example 2.7 Equivalent stiffness of springs in parallel:

    removal of a restriction

    k1k2

    ba

    F

    a

    x2x1

    x1 x2

    2 1 2

    1 2

    bx x x x

    a b

    b ax xa b a b

    b

    aF

    F2=k2x2 F1 =k1 1 1 2

    2 1

    F F F

    bF aF

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    29/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    57ENME 361, Spring 2013

    1

    2

    bF

    F a b

    aFF

    a b

    From the force and moment balance equations, we obtain

    )(

    )(

    22

    22

    11

    11

    bak

    aF

    k

    Fx

    bak

    bF

    k

    Fx

    Therefore

    1 2

    2 22 1

    21 2

    ( ) ( ) ( ) ( )

    ( )

    b bF a aFx

    a b k a b a b k a b

    F k b ka

    a b kk

    and we obtain

    1 2

    b ax x x

    a b a b

    1 2

    2 1

    F F F

    bF aF

    Chapter 2 Modeling of Vibratory Systems

    58ENME 361, Spring 2013

    Comparing this result to the form

    e

    Fx

    k

    the equivalent spring constant ke is determined as

    21

    22

    221 )(

    akbk

    bakkke

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    30/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    59ENME 361, Spring 2013

    2.3.4: Other Forms of Potent ial Energy Elements

    Fluid - Manometer (Ships at sea)

    Compressed gas piston (Jackhammer)

    Pendulums (Cranes, hoists on mov ing platforms)

    The source of the restoring force is a fluid element or a

    gravitational loading

    Chapter 2 Modeling of Vibratory Systems

    60ENME 361, Spring 2013

    Fluid Element - Manometer

    g

    Ao

    The total displacement

    of the fluid is 2x.

    The total force of the

    displaced fluid acting on

    the rest of the fluid is

    ( ) 2m oF x gA x

    Engineering unit check:

    3 2 2

    2 2 3

    (N) ~ (kg/m ) (m/s ) (m ) (m)

    ~(kg)(m/s )(mm/m )

    ~N

    oF g A x

    The equivalent spring

    constant of the system is

    2

    me

    o

    dFk dx

    gA

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    31/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    61ENME 361, Spring 2013

    Pendulum System 1

    L

    L/2

    c.g.

    L/2

    mgx)cos1(

    2cos

    22

    LLLx

    Since F = mgj, the potential energy increase is0

    0

    ( ) ( )initial position

    deformed position x

    x

    V x x mg dx

    mgdx mgx

    F dx j j

    The change in height is given

    by

    i

    j

    Chapter 2 Modeling of Vibratory Systems

    62ENME 361, Spring 2013

    ( ) (1 cos )2

    mgLV

    This can be writ ten as

    From the Taylor series approximation

    ...2

    1cos2

    we obtain2 2

    ( ) (1 cos ) 1 12 2 2 2 2

    mgL mgL mgLV

    from which we identify the equivalent spring constant

    as

    2e

    mgLk

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    32/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    63ENME 361, Spring 2013

    L

    m1

    L

    m1gx

    Pendulum System 2

    Using the previous results by

    replacing L/2 with L

    (1 cos )x L

    The potent ial energy can be

    approximated as

    21( )2

    eV k

    where we replace m with m1 and L/2

    with L to obtain

    1ek mgL

    Chapter 2 Modeling of Vibratory Systems

    64ENME 361, Spring 2013

    L

    m1

    L

    m1gx

    L/2mg

    Pendulum System 3

    The potential energy of the bar

    and the mass are obtained from

    the previous results as

    2 21

    1 1( )

    4 2V mgL mgL

    we find that the equivalent spring constant is

    12

    e

    mk m gL

    21( )2

    eV k

    Comparing with

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    33/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    65ENME 361, Spring 2013

    Pendulum System 4

    L

    m1

    L

    m1g

    x

    L

    O

    QP

    e1e2

    i

    j

    We see that

    21 cos2

    Lx L

    The potential energy is

    1 1

    1 1

    21

    ( ) ( ) ( )

    ( )

    1( )2

    L LL

    L xL x L x

    V x mg dx mgx

    mg L L x mgx

    V mgL

    F dx j j

    =

    Chapter 2 Modeling of Vibratory Systems

    66ENME 361, Spring 2013

    We see that when the pendulum is inverted there is a

    decrease in potential energy, since V() is negative.

    Therefore,

    1ek mgL

    L

    m1

    Lm1g

    x

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    34/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    67ENME 361, Spring 2013

    2.4: Dissipation ElementsDamping elements are assumed to have neither

    inertia nor the means to store or release potential

    energy.

    The mechanical motion imparted to these elements

    is converted to heat or sound and, hence, they are

    called non-conservative ordissipative because this

    energy i s not recoverable by the mechanical system.

    Chapter 2 Modeling of Vibratory Systems

    68ENME 361, Spring 2013

    London Millennium Footbridge and Dampers from Taylor Devices

    Source: Taylor Devices, Damper Retrofit o f The London Millennium

    Footbridge: A case study in Biodynamic Design

    Space Satellite Damper Adaptedfor London Milliennium

    Footbridge

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    35/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    69ENME 361, Spring 2013

    London Millennium Footbridge and Dampers from Taylor Devices

    Source: Taylor Devices, Damper Retrofit o f The London Millennium

    Footbridge: A case study in Biodynamic Design

    Chapter 2 Modeling of Vibratory Systems

    70ENME 361, Spring 2013

    There are four common types o f damping mechanisms

    used to model vibratory systems.

    (i) Viscous damping

    (ii) Coulomb or dry fri ction damping

    (iii) Material or solid o r hysteretic damping

    (iv) Fluid damping

    In all these cases, the damping force is usually expressed

    as a function of velocity.

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    36/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    71ENME 361, Spring 2013

    2.4.1 Viscous Damping

    When a viscous fluid flows through a slot or around

    a piston in a cylinder, the damping force generated is

    proportional to the relative velocity between the two

    boundaries confining the fluid.

    Fx

    Viscous Fluid

    PistonCylinder

    F x xc Damping Coefficient

    (unit: N/(m/s )Linear Case:

    Chapter 2 Modeling of Vibratory Systems

    72ENME 361, Spring 2013

    Energy Dissipation

    The energy dissipated by a linear viscous damper

    is given by

    2 2dE Fdx Fxdt cx dt c x dt

    The symbol used to represent a viscous damper is

    orc

    c

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    37/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    73ENME 361, Spring 2013

    In the case of a nonlinear viscous damper described by

    a function the equivalent linear viscous dampingaround an operating speed is determined asfollows:

    Linear viscous damping elements can be combined inthe same way that linear springs are, except that theforces are proportional to velocity instead of displacement.

    l

    e

    x x

    dF xc

    dx

    F x

    lx x

    Chapter 2 Modeling of Vibratory Systems

    74ENME 361, Spring 2013

    Two Linear Dampers in Series: The force on eachdamper is the same

    F

    1c 2c

    1x

    2x

    1c 2c

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    38/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    75ENME 361, Spring 2013

    ?ec

    1c 2c

    Two Linear Dampers in Series:

    Chapter 2 Modeling of Vibratory Systems

    76ENME 361, Spring 2013

    FFFF1 1

    1

    1

    F c x

    Fx

    c

    2 2 1

    2 1

    2

    F c x x

    Fx x

    c

    1c 2c1x 2x1x

    Two Linear Dampers in Series:

    2 1 2 1x x x x 21 2 1 2

    1 1F Fx F

    c c c c

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    39/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    77ENME 361, Spring 2013

    1 2

    1

    1

    2

    2

    1 2

    1

    1 2

    2

    2

    1 1

    e

    cc

    cF x x

    c c

    ccc c c

    c

    1

    c2

    c

    F2

    xTwo Linear Dampers in Series:

    Chapter 2 Modeling of Vibratory Systems

    78ENME 361, Spring 2013

    ec

    1

    1 2 1

    1 1 1 1e

    N N

    cc c c c

    1c 2c

    1Nc NcN Linear Dampers in Series

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    40/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    79ENME 361, Spring 2013

    Two Linear Dampers in Paral lel : The velocit ies of both dampers are equal

    1c 2c

    F

    2c1c

    x

    Chapter 2 Modeling of Vibratory Systems

    80ENME 361, Spring 2013

    1 2ec c c

    1c 2c ec

    Two Linear Dampers in Paral lel : The velocit ies of both dampers are equal

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    41/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    81ENME 361, Spring 2013

    N Linear Dampers in Parallel

    1 2 1e N Nc c c c c

    1c 2c

    ec1Nc Nc

    Chapter 2 Modeling of Vibratory Systems

    82ENME 361, Spring 2013

    Example: Equivalent Damping Coefficient. Assume is small.

    3c

    O

    ab

    l

    2c1c 3c

    O

    ab

    l

    2c1c

    O

    d

    ec

    O

    d

    ec

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    42/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    83ENME 361, Spring 2013

    is "small"

    3c

    , O

    ab

    l

    2c1c 1x 2x 3x3c

    , O

    ab

    l

    2c1c 1x1x 2x 3x

    Example: Equivalent Damping Coefficient

    1 2 3

    , ,x a x b x l

    Chapter 2 Modeling of Vibratory Systems

    84ENME 361, Spring 2013

    Example: Equivalent Damping Coefficient

    ,

    3c

    O

    2c1c

    1x 2x 3x

    1F 2F 3F

    ,

    3c

    O

    2c1c

    1x 2x 3x

    1F 2F 3F

    3c

    O

    2c1c

    1x1x 2x 3x

    1F 2F 3F

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    43/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    85ENME 361, Spring 2013

    1 1 1 1

    2 2 2 2

    3 3 3 3

    F cx ca

    F c x c b

    F c x c l

    1 2 3OM F a F b F l

    O

    1F 2F 3F

    ,

    Chapter 2 Modeling of Vibratory Systems

    86ENME 361, Spring 2013

    O

    1F 2F 3F

    2

    1 2 3

    1

    2

    2

    2

    1

    3

    2 3

    O F a F b F l

    ca a c b

    M

    ca c b c

    c

    l

    b l l

    ,

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    44/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    87ENME 361, Spring 2013

    O

    d

    ec x

    is "small" x d

    ,

    Chapter 2 Modeling of Vibratory Systems

    88ENME 361, Spring 2013

    e eF c x c d

    2

    e

    O

    e

    Fd

    c d

    d

    d

    M

    c

    ec

    x

    O

    F

    ,

    ec

    x

    O

    F

    ,

    xx

    O

    F

    , O

    F

    ,

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    45/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    89ENME 361, Spring 2013

    2 2 21 2 3 2eca cb l dc c

    OOM M

    2 2 21 22

    3

    ec d

    ca c b c l

    Chapter 2 Modeling of Vibratory Systems

    90ENME 361, Spring 2013

    2.5 Model Construction

    Discrete system or a lumped-parameter system

    Only discrete elements are used to model a

    physical system

    mass, stiffness, and damping

    These three types of elements appear as

    parameters in the governing equations of the

    system.

    Distributed-parameter system orcontinuous systemNo discrete elements are used to model the

    system. One or more partial differential equations

    are used to model the system. Equivalent to an

    infinite number of discrete elements.

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    46/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    91ENME 361, Spring 2013

    The Human Body Revis ited

    Multi-degree-of-freedom system

    Chapter 2 Modeling of Vibratory Systems

    92ENME 361, Spring 2013

    Machine-tool Cutting Process

    Work pieceMachine bed

    Tool

    TurretTool slide

    Beam fixed at each end

    (machine bed)

    Cantilever beam(work piece)

    Cutting force

    Turret

    J , Mm

    Tool

    Physical system Vibratory model

    Cutting force

    Turret andslidestiffness and

    damping

    Lb, mb, Eb, Ib

    Lw, mw, Ew, Iw

    c

    Coupled discrete and distr ibuted parameter model

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    47/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    93ENME 361, Spring 2013

    ?

    ?

    ?

    e

    e

    e

    m

    k

    c

    k

    c

    1m

    O

    2m

    G 3, Gm J

    a

    b

    l

    g

    Example: r2

    r1

    Chapter 2 Modeling of Vibratory Systems

    94ENME 361, Spring 2013

    Glossary Chapter 2

    Coulomb damping a damping model for dry f ri ct ion in

    which the damping force has a constant magnitude and a

    direction opposite to that of the motion

    Dissipation element a dev ice that provides res is tance to

    motion in the form of an irrecoverable loss of energy

    Mass a measure of the amount of mater ial a body

    contains; its weight is the mass times the gravity force in a

    gravitational field; for translational motions, the ratio of

    force to acceleration

    Mass moment of inertia a measure o f the resistance of a

    body to angular acceleration about a given axis; the ratio

    of moment to angular acceleration

  • 7/28/2019 Vibrations Chapter 2 2013 Post

    48/48

    2/4

    Chapter 2 Modeling of Vibratory Systems

    95ENME 361, Spring 2013

    Potential energy a scalar quant ity that represents the

    energy that is associated with elastic forces and

    gravitational forces

    Spring a dev ice that recovers its or ig inal shape when

    released after being distorted

    Stiffness element a dev ice that stores and releases

    potential energy

    Viscous damping a damping model in which the

    damping force has a magnitude linearly proportional to

    the system speed and a direction opposite to that of the

    motion