ventilator manuscript

Upload: fanarjian

Post on 08-Aug-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/22/2019 Ventilator Manuscript

    1/31

    AConstant-VolumeVentilatorandGas

    RecaptureSystemforHyperpolarized

    GasMRIofMouseandRatLungs

    JohnNouls,ManuelFanardjian,Larry?,BastiaanDriehuys

  • 8/22/2019 Ventilator Manuscript

    2/31

    HyperpolarizedgasMRIhasintroducednewmeanstovisualizepulmonaryfunction

    regionally,non-invasivelyandwithhighresolution.Thistechnologyhasseenwide-

    rangingapplicationinclinicalresearch1-8,butonlymodestapplicationinanimal

    studies9-12.ThisispartlybecausehyperpolarizedgasMRIismorestraight-forward

    toconductinhumansubjects,whocaninhaleandholdtheirbreath,thanin

    uncooperativeanimalswhichmustbeanesthetizedandventilated.Nonetheless,

    manyapplicationsareemergingforhyperpolarizedgasMRIinsmallanimals,but

    thishasbeenlimitedtoafewcentersthathavetheexpertiseneededtoprecisely

    deliverhyperpolarizedgasestosmallanimals.Whilethemajorityofsmallanimal

    hyperpolarizedgasMRItodatehasbeenconductedinrabbits13-15,guineapigs16,

    andrats17-22,thereisalsoacompellingneedtoimagemicegiventheirprominent

    roleinbiomedicalresearch.Thispresentsevengreaterchallengesfor

    hyperpolarizedgasMRIbecausecomparedtorats,mouselungvolumesare10-fold

    smaller,breathingrateis2-foldfaster,andhigherresolutionisrequiredtovisualize

    theirairways.

    Deliveryofhyperpolarizedgasesforsmallanimalimagingrequiresadedicated

    ventilatorthatcanbeusedinproximitytoanMRmagnet.MR-compatible

    ventilatorshavebeenavailablesincethemid80stofacilitatesmall-animalproton

    imagingofthelungandintegratethecapabilitytoadministergaseousanesthesia,

    controlbreathingandtriggerimaginginsynchronywiththerespiratoryandcardiac

    cycles23-27.Specifically,itwasrecognizedthathigh-resolutionimagingofthesmall

    animallungrequiredbuildingupimagesovermultiplebreaths,whichinturn

  • 8/22/2019 Ventilator Manuscript

    3/31

    requiredrepositioningthelungwithhighprecisionduringeachcycle.However,

    theseventilatorswerenotdesignedtodeliverhyperpolarizedgases,whichmustbe

    handledusingonlyspecificmaterialsthatpreservenuclearspinpolarization28,29.To

    thisend,Hedlundetal,pioneeredthefirstventilatorsthatcoulddeliver

    hyperpolarizedgasesinawell-controlledfashion,whileusingcomponentsthat

    avoideddepolarization.Theseventilatorsenabledthefirstinvivo3Heimagesof

    guineapiglungs16,andsubsequentimprovementsenabledthedeliveryofasmaller

    tidalvolumeinrats30.Theseventilatorsreliedonacustom-made,pneumatically-

    controlledvalvepositionedclosetotheanimal,containingseveraldelicateflexible

    membranes31-33.Acommercialvalverecentlybecameavailable34.However,the

    intricatedesign,rigorousfabricationrequirementsorphysicalsizeofthesevalves

    limitedtheiradoptionatothercenters.

    Recently,Chenetal.introducedadifferenthyperpolarizedgasventilator22that

    eliminatedtheneedforacustomdeliveryvalve.Thischangesignificantlysimplified

    thedesign,andwiththereductionofdeadvolumesandcontinuedevolution,

    permittedhyperpolarizedgasMRItobecomepossibleinmice35.Thisventilator

    designhasbeenusedbyourlaboratorytoconductstudiesusing3Heand129Xe,in

    bothratsandmice36,37.Ourrecentstudiesusingbronchoconstrictivechallengeto

    studyairwayshyperresponsivenessinmice38haveledustointroduceseveralnew

    designelementsthatmaketheconstantvolumedeliveryofhyperpolarized3He

    morerobustandpermitquantitativeanalysis39.Furthermore,thepaucityandcost

    of3Heandthefrequentuseofexpensiveisotopicallyenriched129Xecreateastrong

  • 8/22/2019 Ventilator Manuscript

    4/31

    incentivetorecapturetheexhaledgasesafterimaging.Hence,itistheobjectiveof

    thismanuscripttoclearlylayoutthekeydesignaspectsofthissimpleandrobust

    ventilatorandrecapturesystem,toprovideanexperimentalvalidationofits

    performance,andtoincludeacomprehensivelistofpartstoenableduplicationby

    otherswishingtoconductpreclinicalhyperpolarizedgasMRimaging.

    ConceptualOverview

    Theventilatorisdesignedtodeliveramixtureofnitrogenandoxygenduring

    normalbreathing(usually80%N2and20%O2)andtosubstitutehyperpolarized

    gasinplaceofnitrogenduringhyperpolarizedgasMRI40.Asshowninfigure1,the

    deliveryofnitrogenandoxygeniscontrolledbyfast-switchingsolenoidvalvesthat

    resideinthe0.1Tfringefieldofthe2Teslamagnet.Afterpassingthroughthese

    valves,thebreathinggasesaredeliveredthroughalong,butlow-deadvolume

    polymertubetotheanimalinthemagnetbore.Asimilartubedirectsexpiredgasto

    theexhalevalve,alsoresidinginthefringefield.Aswithmosthyperpolarizedgas

    ventilatordesigns,thehyperpolarizedgasisdeliveredfromaTedlarbag,whichis

    housedinsidearigid,pressurizedcylinder.

    Akeydesignrequirementfortheventilatoristorepeatedlydeliverallnecessary

    gasesinprecisevolumes,withoutneedingamixingvalvethatoperatesclosetothe

    animalstrachea.Thisrequirementismetbyflowingthegasesfromapressure

  • 8/22/2019 Ventilator Manuscript

    5/31

    muchhigherthanphysiologiclungpressure(severalpsig),throughaprecisionhigh-

    impedanceflowconstrictortoachieveawell-definedflowrate.Thetidalvolumeof

    eachgasisthendeterminedbytheproductofthisflowrateandthedurationfor

    whichthedeliveryvalveisopened(slightlyincreasedbymechanicaldeadspace).

    Thisdesignensuresthatthegasflow,andthusthetidalvolume,aredominatedby

    theimpedanceoftheflowrestrictorandarelargelyunaffectedbytheimpedanceof

    theconnectingtubing,oranychangesinlungimpedanceduringimaging.

    Theinspirationphaseendswhenthevalvescontrollingtheflowofoxygen,

    nitrogenorhyperpolarizedgasareclosed,initiatingabriefbreath-holdduring

    whichimagingdataistypicallyacquired.Afterthis,thesolenoidvalvecontrolling

    exhalationisopenedtoinitiatepassiverelaxationofthelungsbacktofunctional

    residualcapacity.Formice,typicaltimingoftheventilatorycycleisabreathingrate

    of100breathsperminute,with150msforinspiration,a150msbreath-hold,and

    300msforexpiration.

    Theoperationofthehyperpolarizedgaslineisslightlydifferentfromthe

    oxygenandnitrogenlinesbecausethehyperpolarizedgascannotpassthrougha

    typicalmetallicsolenoidvalvewithoutsubstantialpolarizationloss.Hence,the

    deliveryofthehyperpolarizedgasiscontrolledusingarapidlyswitchingpneumatic

    valveconstructedentirelyfromTeflon.Thepneumaticvalveisopenedandclosed

    bypressurechangescontrolledbyasolenoidvalve.Additionally,theflowrestrictor

    usedonthehyperpolarizedgaslineismadeofsapphireembeddedinnylon;both

  • 8/22/2019 Ventilator Manuscript

    6/31

    materialsarenon-depolarizing.Infigure1,thepartsoftheventilatorthatmustbe

    constructedfromnon-depolarizingmaterialsareindicatedbyaboldline.They

    includethehyperpolarizedgasvalveandrestrictor,aswellastheinhaletubing.

    PhysicalImplementation

    Theventilatorisconstructedusinginexpensive,off-the-shelf,fast-switching

    solenoid-actuatedvalves(modelEC-2-12-H,Clippard,Cincinnati,OH),whichcontrol

    theflowofoxygen,nitrogen,exhalation,andtheactuationofthepneumaticvalve

    deliveringhyperpolarizedgas.Foreachgasline,thepressureiscontrolledusing

    compactpneumaticregulators(modelR7010,AirLogic,Racine,WI).Oxygenand

    nitrogenflowthroughbrassflowrestrictors(modelMLP-1-BRtoMLP-5-BR,andL-

    6-BRtoL-30-BR,O'KeefeControls,Trumbull,CT).Hyperpolarizedgasflowsthrough

    afast-switching,pneumaticallyactuatedvalvewithall-Teflonconstruction(model

    PV-1-1134,PartekDivision,ParkerHannifin,Tucson,AZ)andanon-depolarizing

    sapphireconstrictor(modelF-3-NYtoF-30-NY,O'KeefeControls,Trumbull,CT).

    Thesizeoftherestrictordependsonthetidalvolumerequiredbytheanimaland

    thetypeofgasadministered(Table1).Asisdiscussedlater,itisimportantto

    minimizethemechanicaldeadspacebetweentherestrictorsandthevalves,which

    isdonebyintegratingtheconstrictordirectlyintothehosebarb,asshowninfigure

    2.

    Thenitrogen,oxygen,andhyperpolarizedgaslinesarecombined

    immediatelyuponexitingtheirrespectivecontrolvalveintoasingle1-m-long,

  • 8/22/2019 Ventilator Manuscript

    7/31

    polyetheretherketone(PEEK)inhaleline(modelTPK130,ViciValcoinstruments,

    Houston,TX),whichlinkstheventilatortotheanimalinthecenteroftheMRI

    magnet.Becausethislinecarrieshyperpolarizedgas,itmustbeconstructedfrom

    non-depolarizingmaterials,inthiscase,PEEK.Furthermore,hyperpolarizedgasand

    oxygentraveltogetherthroughtheinhaleline,andoxygenisapotentsourceof

    depolarization,itiscriticaltolimittheirinteractiontimebyminimizingthedead-

    volume.Inoursystem,thedeadvolumeoftheinhalelineis0.4ml(inner-diameter

    1/32in).Duringtheadministrationofhyperpolarizedgastoamouse,theusualtidal

    volumeof0.25mlresultsinaninteractionbetweenoxygenandhyperpolarizedgas

    lasting1.6breaths(960ms),whichresultsinlessthan10%polarizationlossduring

    transit.

    Exhalationproceedsthroughpolyurethanetubingwithaslightlylargerinner

    diameter(1/16in)toprovidelowimpedanceandtoensurethatfullexhalation

    occursaftereachbreath(modelURH1-0402,Clippard,Cincinnati,OH).Throughout

    thebreathingcycle,theairwaypressureismonitoredusingacompactpressure

    transducer(modelXFGM-6065KPGSR,FujikuraAmericaInc.,SantaClara,CA)

    mountedatthejunctionoftheinhaleandexhalelines.Thissolid-statetransducer

    wasselectedbecauseitprovidesrobustpressurereadingsuptoafieldstrengthof7

    Tesla,whichisimportantbecauseitresidesintheboreoftheMRImagnetduring

    imaging.

  • 8/22/2019 Ventilator Manuscript

    8/31

    Allsolenoidvalvesinthesystemareactuatedbysolid-staterelays,whichare

    computer-controlledbyadatainput/outputboard(modelPCI-6602,National

    Instruments,Austin,TX)drivenbyreal-timeinstrumentationsoftware(Labview

    8.0,NationalInstruments,Austin,TX).Thissoftwareisusedtosetthedurationof

    theinspiration,breath-hold,andexpiration,aswellasthebreathingrate.Italso

    providesa5Vtriggersignalthatcanbepositionedanywhereintherespiratorycycle

    (usuallyatend-inspiration)toinitiateMRacquisition.Thissoftwarealsocontrols

    theanimal'sbodytemperatureandmonitorsheartrate.Althoughitisnotdiscussed

    indetailinthismanuscript,thesoftwareisavailableasanon-linesupplementto

    thismanuscript,alongwithdetailedplumbingandwiringdiagrams,schematicsof

    thepowerdistributionelectronicsandanextensivelistofcomponentsand

    suppliers,athttp://www.civm.duhs.duke.edu/VentilatorMouseRat.

    Asshowninfigure1b,theventilatorassemblyiscompactandresidesona

    portablecart.Duringimaging,theventilatorcartispositionedattheedgeofthe

    magnetbore,connectedtotheanimalbytheinspirationandexpirationlines.The

    ventilatorcartfacilitatesshuttlingtheanimalbetweentheanimalpreparationarea

    andthemagnet,andcanbeusedondiverseimagingsystems.Itisconnectedtoan

    externalsupplyofnitrogenandoxygenbyextensiblepneumaticlines,andtothe

    computerandpower-distributionelectronicscontrollingvalveactuationbya25-pin

    cable(D-subminiatureDB-25).

  • 8/22/2019 Ventilator Manuscript

    9/31

    GasRecapture

    Duringhyperpolarizedgasimaging,exhalationiscontrolledbyadifferent

    expirationvalvefromtheoneusedduringnormalnitrogen/oxygenbreathing.From

    thisvalve,theexhaled3Heor129Xemixtureisdirectedtoacaptureballoonmadeout

    ofmetalizedmylar.Byusingthisseparateexhalevalve,theballoonfillsonlywith

    exhaled3Heor129Xe(plusresidualbreathinggases),andminimizesdilutionwithair

    thatwouldoccurifcapturealsocontinuedduringnormalbreathing.Afterthe

    imagingsession,themylarballoonisattachedtoaseparatestationthatfirst

    withdrawsthegasfromtheballoonandthencompressesitintoagascylinderfor

    storage(figure3).Thisisaccomplishedusingapneumatically-actuatedpiston(part

    number6498k424,McMaster,Aurora,OH).Oncethestoragecylinderhasreached

    capacity,itcanbesenttoareprocessingfacilitysothat3Heor129Xeisseparated

    fromnitrogen,oxygen,carbondioxideandothergasesandrenderedsuitableforre-

    useinsubsequentnon-clinicalorpre-clinicalhyperpolarizedgasstudies.

    PerformanceMetricsandConsiderations

    Areasonableruleofthumbforsmallanimalventilationistouseatidalvolumeofair

    of1mlperminute,pergramofbodymass41,approximately.Atypical25gmouse

    canbeventilatedat100breathsperminute,withatidalvolumeof0.25ml.Weuse

    thisexampletofurtherdiscusstheperformancemetricsandlimitationsofthe

    ventilatordesign.

  • 8/22/2019 Ventilator Manuscript

    10/31

    Foranyofthegaslines,theflowrateQisgivenby

    Qsupplied =P

    Rrestrict +Rtubing +Rlung

    P

    Rrestrict (1)

    wherePisthepressuredropacrosstheentireflowpath,andtherelevant

    resistancesRarethoseoftheflowrestrictor,thetubing,andthelungs.Bydesign,

    wesetRrestrict>>Rtubing+Rlung,tomaketheapproximationvalid.Forreference,we

    commonlyemployflowrestrictorswithanimpedanceof1250cmH2Os/ml,

    whereasthetubingimpedancewasmeasuredtobe85cmH2Os/ml.Thelung

    impedancerangesfrom0.5cmH2Os/mlnormallyto2cmH2Os/mlduring

    bronchoconstriction42.

    Takingtheoxygenlineasanexample,andassumingventilationofa25gmouse,the

    inhalationandexhalationproceedsasfollows.Theoxygenpressureismaintainedat

    2psigattheentranceofaflowrestrictorwithanimpedanceof0.26psimin/ml,

    resultinginaflowrateof7.7ml/minwhenthevalveisopen.Duringthe150-ms-

    longinspiration,0.019mlisdispensedtowardsthemouse.Attheendofinspiration,

    thevalveclosesandoxygennolongerflowsthroughthevalve.However,oxygen

    continuesflowingthroughtherestrictor:thepressureinthemechanicaldeadspace

    betweentherestrictorandtheclosedvalverisesuntilitequilibrateswiththe

    drivingpressureof2psig.Atthebeginningofthenextinspirationcycle,thevalve

    opensandthisvolumeofcompressedgasisimmediatelyreleasedandaddstothe

    nextinspiration.Specifically,thedeadspacewasmeasuredtobe0.030ml.That

  • 8/22/2019 Ventilator Manuscript

    11/31

    volumeofoxygen,originallycompressedto2psig,expandswhentheoxygenvalve

    openstoavolumeof0.034mlclosetoatmosphericpressure.Hence,thetotal

    volumeflowingthroughtheoxygenvalve,perinspiration,is0.019+0.034=0.053ml.

    Tomitigatethepotentialinjurycausedbytheinstantaneousreleaseofcompressed

    gastothelungsandavoidbarotrauma,themechanicalspaceinwhichthis

    compressedgasaccumulatesmustbeminimized(figure2).

    Thetidalvolumeofoxygenthatactuallyreachesthelungissmallerthancalculated

    above:

    TVlung=TVsupplied-Vdead

    (2)

    whereTVlungisthetidalvolumeofoxygendeliveredtothelungs,TVsuppliedisthe

    tidalvolumeflowingthroughtheoxygenvalve,andVdeadisthedeadvolume

    betweentheanimal'stracheaandthejunctionteeoftheinhaleandexhaleline.This

    deadvolumemustbeminimizedtoensuresufficientoxygenationoftheanimal,as

    illustratedbyfigure1and2c.Ingeneral,wealsoemployamixtureslightlyricherin

    oxygen,consistingof25%O2ratherthan20%.

    Theoperationofthenitrogenlineissimilartothatdescribedforoxygen;fora25g

    mouse,itdelivers0.2mlofnitrogenperinspiration.Sincebothgasesemergefrom

    high-impedanceflowrestrictors,theirvolumessimplyaddlinearlytoprovidethe

    totaltidalvolumedeliveredof0.25mlofbreathingmixtureperinspiration.Asis

    apparentfromthediscussionabove,theapproximatetidalvolumeofagivengascan

  • 8/22/2019 Ventilator Manuscript

    12/31

    bedeliveredbyidentifyinganadequateflowrestrictor,andthenmakingsmall

    adjustmentsinthedrivingpressuretosetthevolumeexactly.Becauseofthis

    operatingprinciple,theventilatorcanbesimplychangedtoventilatemiceandrats,

    oradministerdifferenttypesofgas,byswappingtherestrictorsandtubingsizeas

    outlinedintable1.

    MeasurementofTidalVolume

    Thetidalvolumeemergingfromtheendoftheendotrachealtubewasdetermined

    byfeedingitsoutputintoaninvertedgraduatedcylinderinawaterbath,and

    measuringthedisplacedwatervolumeduringaknownnumberofinspirations,as

    illustratedinfigure4a.Thismethodwasusedtoshowthelinearincreasesintidal

    volumesofoxygen,nitrogen,xenonandheliumthatareachievedbyincreasingthe

    drivingpressure.Inaddition,animportantconsiderationistherobustnessoftidal

    volumeagainstincreasinglungresistance.Thiseffectwassimulatedbyplacingthe

    outputoftheendotrachealtubesuccessivelydeeperunderwater,therebyincreasing

    theback-pressureagainstwhichtheventilatorwasworking.Asshowninfigure4d,

    thetidalvolumedeliveredremainsconstantoveraphysiologicallyrelevantrangeof

    pressures.

    AnimalPreparationandInVivoImaging

    Protocolsdescribinganimal-relatedworkandguaranteeinganimalwelfarewere

    approvedbytheInstitutionalAnimalCareandUseCommitteeatDukeUniversity.

  • 8/22/2019 Ventilator Manuscript

    13/31

    Two6-to-8week-oldmaleBalb/C,20-to-25gmicewereanesthesized,underwent

    tracheotomyandreceivedtail-veininjectionsofmethacholinefor

    bronchoconstrictorchallengeasdescribedbyThomasetal38.

    Theanimal'sendotrachealcatheterwasconnectedtotheventilatorprovidinga150

    msinspiration,a150msbreathhold,anda300msexpiration,atabreathingrateof

    100breathsperminute.Thetidalvolumewascomposedof0.07mloxygen,and

    0.15mlnitrogenreplacedbyheliumorxenonduringhyperpolarizedgasimaging.

    Heartrateandairwaypressureweremonitoredinreal-time.

    Theanimalwasplacedintoadual-frequencyquadraturebirdcagecoil,providing

    both1Hand3He,or1Hand129Xesignals(m2mimagingcorp.,Cleveland,OH).The

    coilcontainingthemouse,linkedtotheventilatoronarollingcart,wasmovedfrom

    theanimalpreparationtabletothemagnet,andthecoilwasinsertedintothebore.

    Therodent'sbodytemperaturewasmeasuredbyarectalthermistorandfedback

    intoasystemcirculatingwarmairinthemagnetbore,maintainingthebody

    temperaturebetween35and37C.

    Duringhyperpolarizedheliumimagingofthefirstmouse,onethree-dimensional

    imagewasacquiredinfiveminutes(respiratorygatedradialacquisition,FOV

    202032mm,TE0.9ms,TR5ms,BW31.25kHz,10,001projections,matrix

    128128128,resolution156156250m3).Then,aseriesoftwo-dimensional

    3Heimageswereacquiredconsecutively,before,duringandaftermethacholine

  • 8/22/2019 Ventilator Manuscript

    14/31

    challenge.Thesedatawereacquiredoneimageevery12seconds,foratotaloffour

    minutes(respiratorygatedradialacquisition,FOV20x20mm,TE0.9ms,TR5ms,

    BW31.25kHz,400projections,matrix128128,resolution156156m2).

    Specifically,afteracquiringtworeferenceimages,a250g/kgbolusof

    methacholinewasinjectedtoinduceseverebroncho-constrictionandimaging

    continuedfor18moreimagestocapturetheresponse.Throughouttheimaging,the

    peakinspirationpressurewasrecorded.Aftercompletionofthe3Heimaging,a3D

    1Himagewasacquiredtoprovideananatomicalreference.Thisacquisitiontook10

    min(respiratorygatedradialacquisition,FOV404040mm,TE0.9ms,TR5ms,

    BW31.25kHz,20,001projections,matrix128128128,resolution313313313

    m3).

    Hyperpolarized129Xeimagesofthesecondmousewereacquiredover20min

    (respiratorygatedradialacquisition,FOV303032mm,TE0.9ms,TR5ms,BW

    31.25kHz,10,001projections,matrix12812832,resolution2342341000

    m3).Thiswasagainfollowedbyan1Himageoftheanatomyasdescribedabove.

    DiscussionofVentilatorPerformance

    Theventilatordescribedhereisusedroutinelyatourlaboratorytoventilatemice

    andrats,sometimesforperiodsoftimeupto6hrs.Inaddition,itenablesthe

    acquisitionofHPgasimagesaccumulatedoverhundredsofbreaths,whichrequirea

    highly-reproducibletidalvolumeandpositioningofthediaphragm.Itsperformance

    forimaging1H,3Heand129Xeinamouseisillustratedbyfigure5.Notethegood

  • 8/22/2019 Ventilator Manuscript

    15/31

    airwaydelineationinboththe3Heand129Xemaximumintensityprojections.

    Similarly,thesharplowerlungborderonthecentralslicefrom3D1Himages

    indicatesreproduciblepositioningofthediaphragmoverthe4000breath-holds

    requiredtoacquiretheimage.

    Figure6illustratestheimportanceofconstanttidalvolumedeliveryovertheentire

    durationoftheimageacquisition.Theleft-hand-sideimagewasacquiredwithalow

    drivingpressureandlargediameterrestrictor.Duringtheprogressionofimage

    acquisition,thetidalvolumedecreasesbecausethebagholdinghyperpolarizedgas

    becomeslessandlesscompliantasitempties.Consequently,theimageisseverely

    degradedbythegradualdecreaseintidalvolume.Conversely,theright-hand-side

    imagewasacquiredwithahighdrivingpressureandasmallconstrictordiameter.

    Thedrivingpressureissufficienttoovercomethechangesincomplianceofthebag.

    Itenablesthedeliveryofaconstanttidalvolumeresultinginaimagedevoidof

    motionartifacts.

    Amorestringenttestoftheventilatoristheabilitytodeliveraconstanttidal

    volumewhenthelungimpedancechanges,asisthecaseduringseverebroncho-

    constriction.Theconsistencyof3Hetidalvolumecanbeassessedfromthe

    magnitudeofthefirstdatapointofeachradialviewofk-spaceduringimaging.This

    exploitsanadvantageofradialimaging:thecenterofk-spaceisacquiredoneach

    viewanditsmagnitudeisdirectlyproportionaltotheamountofmagnetization

    inhaled.AplotofthissignalintensityisshowninFigure7foralltheviewsacquired

  • 8/22/2019 Ventilator Manuscript

    16/31

    duringmethacholinechallenge,alongwiththecorrespondingpeakinspiration

    pressure.Notethatthepeakinspirationpressureincreasesduringmethacholine

    challengebecausetheventilatedlungvolumeisreducedwhiletheamountofgas

    deliveredremainsfixed.The3Hesignalexhibitsaslowexponentialdecayovertime,

    whichisattributableto3Herelaxationwithinthebagholdinghyperpolarizedgas.It

    showsonlyaslightdecrease(10%)duringbroncho-constriction,indicatingthatthe

    ventilatorcontinuestodeliverarelativelyconstanttidalvolumeof3He.

    ConclusionandFutureDevelopment

    Wepresentaconstant-volumeventilatorthatiseasytoreplicateandimplement.

    Itssimplicitystemsfromcombiningoxygen,nitrogenandhyperpolarizedgas

    distallyfromtheanimal.Longlinesdelivergastotheanimal'slungs.Byselecting

    asufficientdrivingpressureandminimizingdeadvolume,theventilatordelivers

    ofaconstanttidalvolumeofgas.Onlyoff-the-shelf,inexpensivecomponentsare

    required,allowingrobustoperationandaneasyscalingoftheventilatorto

    deliverothertidalvolumes.

    Wedemonstratethattheventilatorachievesconstantvolumedelivery,even

    duringdifferentstagesofbroncho-constrictionandenablesquantitative

    hyperpolarizedgasquantitativeMRIofmiceandrats.Futuretechnical

  • 8/22/2019 Ventilator Manuscript

    17/31

    developmentsincludetheadditionofgaseousanesthesiaandanebulizerto

    deliverdrugsbyinhalation.

    Acknowledgements

    TheauthorsgratefullyacknowledgeBomaFubaraandYiQiforanimalsupport,

    MichaelFosterandErinPottsforusefuldiscussions.WorkperformedattheCenter

    forInVivoMicroscopy,aNIH/NCRRNationalBiomedicalTechnologyResearch(P41

    RR005959)andsupportedinpartbyR01-CA-142842.

  • 8/22/2019 Ventilator Manuscript

    18/31

    References

    1. MacFallJR,CharlesHC,BlackRD,MiddletonH,SwartzJC,SaamB,DriehuysB,

    EricksonC,HapperW,CatesGDandothers.1996Humanlungairspaces:

    PotentialforMRimagingwithhyperpolarizedHe-3.Radiology;200(2):553-558.

    2. KauczorHU,HofmannD,KreitnerKF,NilgensH,SurkauR,HeilW,PotthastA,

    KnoppMV,OttenEW,ThelenM.1996Normalandabnormalpulmonary

    ventilation:VisualizationathyperpolarizedHe-3MRimaging.Radiology;201(2):564-568.

    3. MuglerJP,DriehuysB,BrookemanJR,CatesGD,BerrSS,BryantRG,DanielTM,deLangeEE,DownsJH,EricksonCJandothers.1997MRimagingand

    spectroscopyusinghyperpolarizedXe-129gas:Preliminaryhumanresults.

    MagneticResonanceinMedicine;37(6):809-815.

    4. deLangeEE,MuglerJP,BrookemanJR,Knight-ScottJ,TruwitJD,TeatesCD,

    DanielTM,BogoradPL,CatesGD.1999Lungairspaces:MRimagingevaluationwithhyperpolarizedHe-3gas.Radiology;210(3):851-857.

    5. FainSB,PanthSR,EvansMD,WentlandAL,HolmesJH,KorosecFR,O'Brien

    MJ,FountaineH,GristTM.2006EarlyEmphysematousChangesin

    AsymptomaticSmokers:Detectionwith3HeMRImaging.

    Radiology;239(3):875-883.

    6. PatzS,MuradianI,HrovatMI,RusetIC,TopulosG,CovrigSD,FrederickE,

    HatabuH,HersmanFW,ButlerJP.2008Humanpulmonaryimagingand

    spectroscopywithhyperpolarizedXe-129at0.2T.Academic

    Radiology;15(6):713-727.

    7. ClevelandZI,CoferGP,MetzG,BeaverD,NoulsJ,KaushikSS,KraftM,Wolber

    J,KellyKT,McAdamsHPandothers.2010HyperpolarizedXe-129MRImagingofAlveolarGasUptakeinHumans.PlosOne;5(8).

    8. YablonskiyDA,SukstanskiiAL,LeawoodsJC,GieradaDS,BretthorstGL,

    LefrakSS,CooperJD,ConradiMS.2002Quantitativeinvivoassessmentof

    lungmicrostructureatthealveolarlevelwithhyperpolarizedHe-3diffusion

    MRI.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica;99(5):3111-3116.

    9. ViallonM,CoferGP,SuddarthSA,MollerHE,ChenXJ,ChawlaMS,Hedlund

    LW,CremillieuxY,JohnsonGA.1999FunctionalMRmicroscopyofthelung

    usinghyperpolarizedHe-3.MagneticResonanceinMedicine;41(4):787-792.

    10. JalaliA,IshiiM,EdvinssonJM,GuanL,ItkinM,LipsonDA,BaumgardnerJE,

    RiziRR.2004DetectionofsimulatedpulmonaryembolisminaporcinemodelusinghyperpolarizedHe-3MRI.MagneticResonancein

    Medicine;51(2):291-298.

    11. RuppertK,MataJF,BrookemanJR,HagspielKD,MuglerJP.2004Exploring

    lungfunctionwithhyperpolarizedXe-129nuclearmagneticresonance.

    MagneticResonanceinMedicine;51(4):676-687.

  • 8/22/2019 Ventilator Manuscript

    19/31

    12. SalitoC,AlivertiA,GieradaDS,DesleeG,PierceRA,MacklemPT,WoodsJC.

    2009QuantificationofTrappedGaswithCTandHe-3MRImagingina

    PorcineModelofIsolatedAirwayObstruction.Radiology;253(2):380-389.

    13. MataJF,AltesTA,CaiJ,RuppertK,MitznerW,HagspielKD,PatelB,Salerno

    M,BrookemanJR,deLangeEEandothers.2007Evaluationofemphysema

    severityandprogressioninarabbitmodel:comparisonofhyperpolarizedHe-3andXe-129diffusionMRIwithlungmorphometry.JournalofAppliedPhysiology;102(3):1273-1280.

    14. RuppertK,MataJF,BrookemanJR,HagspielKD,MuglerJP.2004Exploring

    lungfunctionwithhyperpolarizedXe-129nuclearmagneticresonance.MagnResonMed;51(4):676-687.

    15. BannierE,NqranB,CieslarK,RivoireJ,HeideniannRM,GaillardS,SulaimanAR,Canet-SoulasE,CremillieuxY.2009FreeBreathingHyperpolarizedHe-3

    LungVentilationSpiralMRImaging.InvestigativeRadiology;44(4):185-191.

    16. BlackRD,MiddletonHL,CatesGD,CoferGP,DriehuysB,HapperW,Hedlund

    LW,JohnsonGA,ShattuckMD,SwartzJC.1996InvivoHe-3MRimagesof

    guineapiglungs.Radiology;199(3):867-70.17. CremillieuxY,BerthezeneY,HumblotH,ViallonM,CanetE,BourgeoisM,

    AlbertT,HeilW,BriguetA.1999Acombined1Hperfusion/3Heventilation

    NMRstudyinratlungs.MagnResonMed;41(4):645-8.

    18. MitchellHW,TurnerDJ,GrayPR,McFawnPK.1999Complianceandstability

    ofthebronchialwallinamodelofallergen-inducedlunginflammation.JAppl

    Physiol;86(3):932-7.

    19. ChenXJ,HedlundLW,MollerHE,ChawlaMS,MaronpotRR,JohnsonGA.2000

    Detectionofemphysemainratlungsbyusingmagneticresonance

    measurementsof3Hediffusion.ProcNatlAcadSciUSA;97(21):11478-81.

    20. SpectorZZ,EmamiK,FischerMC,ZhuJ,IshiiM,YuJ,KadlecekS,DriehuysB,

    PanettieriRA,LipsonDAandothers.2004Asmallanimalmodelofregionalalveolarventilationusing(HPHe)-He-3MRI.Academic

    Radiology;11(10):1171-1179.

    21. ManssonS,DeningerAJ,MagnussonP,PetterssonG,OlssonLE,HanssonG,

    WollmerP,GolmanK.20053HeMRI-basedassessmentofposture-

    dependentregionalventilationgradientsinrats.JApplPhysiol;98(6):2259-2267.

    22. ChenBT,BrauAC,JohnsonGA.2003Measurementofregionallungfunction

    inratsusinghyperpolarized3heliumdynamicMRI.MagnReson

    Med;49(1):78-88.

    23. HedlundL,DeitzJ,NassarR,HerfkensR,DahlkeJ,VockP,KubekR,CharlesC,

    EffmannE,PutmanC.1985OPTIMIZINGQUALITYOFMAGNETIC-RESONANCEIMAGESBYSCANSYNCHRONOUSVENTILATION.Investigative

    Radiology;20(6):S47-S47.

    24. HedlundLW,DeitzJ,NassarR,HerfkensR,VockP,DahlkeJ,KubekR,

    EffmannEL,PutmanCE.1986AVENTILATORFORMAGNETIC-RESONANCE-

    IMAGING.InvestigativeRadiology;21(1):18-23.

  • 8/22/2019 Ventilator Manuscript

    20/31

    25. HedlundLW,JohnsonGA,KarisJP,EffmannEL.1986MRMICROSCOPYOF

    THERATTHORAX.JournalofComputerAssistedTomography;10(6):948-

    952.

    26. GewaltSL,GloverGH,HedlundLW,CoferGP,MacFallJR,JohnsonGA.1993

    MRmicroscopyoftheratlungusingprojectionreconstruction.MagnReson

    Med;29(1):99-106.27. ShattuckMD,GewaltSL,GloverGH,HedlundLW,JohnsonGA.1997MR

    microimagingofthelungusingvolumeprojectionencoding.MagnReson

    Med;38(6):938-42.

    28. SchmiedeskampJ,ElmersHJ,HeilW,OttenEW,SobolevY,KilianW,RinnebergH,Sander-ThommesT,SeifertF,ZimmerJ.2006Relaxationofspin

    polarizedHe-3bymagnetizedferromagneticcontaminantsPartIII.EuropeanPhysicalJournalD;38(3):445-454.

    29. FitzsimmonsW,Tankersl.Ll,WaltersGK.1969NATUREOFSURFACE-

    INDUCEDNUCLEAR-SPINRELAXATIONOFGASEOUSHE3.Physical

    Review;179(1):156-&.

    30. ChenXJ,ChawlaMS,HedlundLW,MollerHE,MacFallJR,JohnsonGA.1998MRmicroscopyoflungairwayswithhyperpolarizedHe-3.Magnetic

    ResonanceinMedicine;39(1):79-84.

    31. HedlundLW,CoferGP,OwenSJ,JohnsonGA.2000MR-compatibleventilator

    forsmallanimals:computer-controlledventilationforprotonandnoblegas

    imaging.MagneticResonanceImaging;18(6):753-759.

    32. DugasJP,GarbowJR,KobayashiDK,ConradiMS.2004HyperpolarizedHe-3

    MRIofmouselung.MagneticResonanceinMedicine;52(6):1310-1317.

    33. deAlejoRP,Ruiz-CabelloJ,VillaP,RodriguezI,Perez-SanchezJM,Peces-

    BarbaG,CortijoM.2005AfullyMRI-compatibleanimalventilatorforspecial-

    gasmixingapplications.ConceptsinMagneticResonancePartB-Magnetic

    ResonanceEngineering;26B(1):93-103.34. modelSYA,SMCCorporation,Tokyo,Japan

    35. ChenBT,YordanovAT,JohnsonGA.2005Ventilation-synchronousmagnetic

    resonancemicroscopyofpulmonarystructureandventilationinmice.Magn

    ResonMed;53(1):69-75.

    36. DriehuysB,CoferGP,PollaroJ,MackelJB,HedlundLW,JohnsonGA.2006Imagingalveolar-capillarygastransferusinghyperpolarized129XeMRI.

    ProcNatlAcadSci;103(48):18278-18283.

    37. ThomasA,NoulsJ,DriehuysB,VoltzJ,FubaraB,FoleyJ,BradburyA,Zeldin

    D.VentilationDefectsObservedwithHyperpolarized3HeMagnetic

    ResonanceImaginginaMouseModelofAcuteLungInjury.American

    JournalofRespiratoryCellandMolecularBiology;2010.38. ThomasAC,PottsEN,ChenBT,SlipetzDM,FosterWM,DriehuysB.2009A

    robustprotocolforregionalevaluationofmethacholinechallengeinmouse

    modelsofallergicasthmausinghyperpolarizedHe-3MRI.Nmrin

    Biomedicine;22(5):502-515.

    39. MistryNN,ThomasA,KaushikSS,JohnsonGA,DriehuysB.2010QuantitativeAnalysisofHyperpolarizedHe-3VentilationChangesinMiceChallenged

    WithMethacholine.MagneticResonanceinMedicine;63(3):658-666.

  • 8/22/2019 Ventilator Manuscript

    21/31

    40. HedlundLW,MollerHE,ChenXJ,ChawlaMS,CoferGP,JohnsonGA.2000

    MixingoxygenwithhyperpolarizedHe-3forsmall-animallungstudies.Nmr

    inBiomedicine;13(4):202-206.

    41. LindstedtSL.1984PULMONARYTRANSIT-TIMEANDDIFFUSING-CAPACITY

    INMAMMALS.AmericanJournalofPhysiology;246(3):R384-R388.

    42. WagersS,LundbladL,MoriyaHT,BatesJHT,IrvinCG.2002Nonlinearityofrespiratorymechanicsduringbronchoconstrictioninmicewithairwayinflammation.JournalofAppliedPhysiology;92(5):1802-1807.

  • 8/22/2019 Ventilator Manuscript

    22/31

    Figure1

    a)Schematicoftheventilator.Fromtheupperrightcorneroftheschematics:

    oxygenflowsthrougharegulator,apressuregauge,thenaflowrestrictor.Its

    deliverytotheanimaliscontrolledbytheoxygenvalve.Thenitrogenlineoperates

    similarly.HyperpolarizedgasisdeliveredfromaTedlarbagwhichresidesinarigid

    chamberthatispressurizedbyN2.Thevalveandrestrictor,andtubingthathandle

    HPgasarebuiltfrompolarization-preservingmaterials,asindicatedbythebold

    line.Allgasesarecombinedatthevalveoutputsanddirectedthroughtheinhaleline

    totheendotrachealcatheter.Afterinspirationandabriefbreath-holdforimaging,

    gasesareexpelledbyopeningtheventingvalve(normalbreathing)orcapturevalve

    (HPgasbreathing).Note:tubingrepresentedbyatriplelineindicatesthatthedead

  • 8/22/2019 Ventilator Manuscript

    23/31

    volumemustbeminimized.b)theventilatorandallthevalvesarepositionedinthe

    fringefieldofthe2Teslamagnetduringimaging.One-meter-longlinesdirectthe

    breathingmixturetowardstheanimalatthecenterofthemagnet,orrecollectthe

    exhalemixture.

  • 8/22/2019 Ventilator Manuscript

    24/31

    Figure2

    a)Tominimizethemechanicaldeadspacebetweentheconstrictorandthevalve,

    thesolenoid-actuatedvalvesoftheoxygenandnitrogenlinesuseaconstrictor

    integratedintothebrasshosebarb,highlightedbytheblackovalbackground.b)

    Similarly,theflowrestrictorforhyperpolarizedgas(emphasizedbytheblackoval

    background)islocatedascloseaspossibletotheTeflon-constructed,

    pneumatically-actuatedvalve.c)Thevolumeoftubingfromthejunctiontee

    betweentheinhaleandexhalelinetothetipoftheendotrachealcatheteris

    subtractedfromthetidalvolumeoffreshmixtureinhaledbytheanimal.Thevolume

    waslimitedto0.02ml(blackbackground).

  • 8/22/2019 Ventilator Manuscript

    25/31

    Figure3

    Apparatustransferringtheexhaledmixturecontainedintheballoontoa

    pressurizedcylinder.a)Aftertheballoonisconnectedtotherecapturesystem,the

    pistonismovedup,withdrawingthecontentoftheballoonthroughacheckvalve

    intothechamberofthepiston.Then,whenthepistonispushedin,anothercheck

    valveforcesthecontentsofthepistontoflowtowardthecylinderwherethe

    recapturedgasisstored.Thegasalsocontainsairandcarbondioxide.b)Mechanical

    modelwherethecasingistransparenttoshowthemaincomponents,andc)the

    deviceinuseatourlab.

  • 8/22/2019 Ventilator Manuscript

    26/31

    Figure4

    Measurementoftidalvolume.a)Asmallgraduatedcylinderisfilledwithwaterand

    placedupsidedowninawaterbath.Theoutputoftheendotrachealcatheter

    displaceswaterfromthegraduatedcylinderandallowsthetidalvolumetobe

    determinedoverafixednumberofbreaths.Totestrobustnessagainstimpedance

    changes,thegasoutputcanbeplacedincreasinglydeeperinthewaterbathto

    increasethebackpressure.b)Nitrogenandoxygentidalvolumesincreaseinlinear

    proportiontotidalvolume.Theverticalbarwithineachmarkershowsthestandard

  • 8/22/2019 Ventilator Manuscript

    27/31

    deviationofthedatafittedlinearly.Inthisexample,thetidalvolumeofnitrogen

    increaseswithaslopeof0.0440.011ml/psi,indicatinghowpreciselythetidal

    volumecanbeadjusted.c)Thetidalvolumedispensedremainslargelyconstant

    regardlessofbackpressure.Theverticalbarwithineachmarkershowsthe

    standarddeviationofthedatafittedtoastraightline.Thedecreaseintidalvolume

    versusbackpressureisnegligible,at0.72.5l/cmH2O.

  • 8/22/2019 Ventilator Manuscript

    28/31

    Figure5

    a)maximumintensityprojection(MIP)ofavolumeimagesetacquiredonaBalb/C

    mouseventilatedwithoxygenandhyperpolarized3He.b)MIPfromadifferent

    Balb/Cmouse,ventilatedwithoxygenandhyperpolarized129Xe.Becauseof

    differentdiffusionproperties,xenonrevealsairwaysmoreprominentlythanhelium.

    c)313-micrometerthick1Hslicethroughthelungs.Thesharpedgeatthebaseof

    thelungssuggeststhattheventilatoraccuratelyrepositionedthediaphragm4000

    consecutivetimes,thenumberofbreathingcyclesrequiredtoacquiretheimage.d)

    Therecordedairwaypressureincreasesduringthe150-msinhalation,followedbya

    150ms-longplateau,indicatingbreathhold.Theairwaypressuredecreasesduring

    the300msexpiration.Eachbreathingcycleisidenticalandlasts600ms.The

  • 8/22/2019 Ventilator Manuscript

    29/31

    imagingtriggers,located160-msintothebreathingcycle,indicatethestartofthe

    partialacquisitionoftheimage,whichlasts100ms(shadedrectangle).

  • 8/22/2019 Ventilator Manuscript

    30/31

    Figure6

    Effectofavariabletidalvolumeonimagequality.a)Athree-dimensional3Heimage

    arrayofmouselungswasacquiredusingarespiratorygatedradialacquisitionover

    500breaths;thecenter-sliceisdepicted.Alowdrivingpressureof8.5cmH2Owas

    usedtomovehyperpolarizedgasthroughalargediameterconstrictor,which

    resistanceiscomparabletothatofthelungs.Thiscausedthetidalvolumetovary

    andgraduallydiminishoverthecourseof500breaths,asthe3Hesupplybag

    depletedandbecamelesscompliant.Asaconsequence,theimagequalityis

    degraded.b)Astandardhigh-impedanceconstrictorandadrivingpressureof4.5

    psigwereused,allowingthetidalvolumetoremainconstant,thereforerepeatedly

    positioningthebaseofthelungsatthesamelocation,andgivingrisetoahigh-

    qualityimage.

  • 8/22/2019 Ventilator Manuscript

    31/31

    Figure7

    a)Duringa4-minute-longchallengeinducedby250g/kgdoseofthebroncho-

    constrictormethacholineinamouse,aseriesof20two-dimensionalimageswere

    acquiredconsecutively,oneimageevery12second.Themagnitudeofthe3Hesignal

    (k=0)remainslargelyconstant(fullline),althoughanexponentialdecayisapparent

    duetorelaxationwithintheTedlarbag.Thedashedlineshowsthepeakinspiration

    pressure,revealingaclearincreaseinairwayresistanceaftertheinjectionof

    methacholine,24safterthestartoftheexperiment.Animageofthemouselungsis

    shownbeforemethacholineinjection(left),duringbroncho-constriction(middle)

    wherethelargerairwayshavedecreasedindiameter(arrows),andafterrecovery

    (right).