velazquez-vazquez etal 2015 ijp sleepingsites

Upload: dario-navarrete

Post on 06-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    1/18

    Sleeping Sites of Spider Monkeys ( Ateles geoffroyi )

    in Logged and Unlogged Tropical Forests

    Guadalupe Velázquez-Vázquez1 & Rafael Reyna-Hurtado1 &

    Victor Arroyo-Rodríguez2 & Sophie Calmé1,3 &

    Mathieu Léger-Dalcourt3 & Darío A. Navarrete4

    Received: 3 August 2015 /Accepted: 27 October 2015 / Published online: 15 December 2015

    # Springer Science+Business Media New York 2015

    Abstract   Selective logging can have negative effects on biodiversity and on key

    ecological processes such as seed dispersal and forest regeneration. Yet, the effect that 

    timber extraction has on animal behavior and habitat use is poorly known. We tested

    whether the density, distribution, and composition of sleeping sites used by spider 

    monkeys ( Ateles geoffroyi) differed between two logged and two unlogged forest sites

    in the Calakmul region, southeastern Mexico. We recorded a total of 74 sleeping sites

    (0.11 sleeping sites/ha). The density of sleeping sites did not differ between forest conditions. Most (97%) sleeping sites were located in medium-stature semievergreen

    forest, and only 3% in low-stature seasonally inundated forest. In three of four sites, the

    number of sleeping sites in core areas was significantly greater than expected by

    chance, showing an aggregated spatial distribution, particularly in areas containing a 

    greater density of feeding trees. About half (51%) of the sleeping sites were composed

    of a single large tree (mean ± SD diameter at breast height, 42.2 ± 21.9 cm) from a 

    small number of tree species, such as   Lonchocarpus castelloi,  Bucida buceras, and

     Lysiloma latisiliquum. These results suggest that the current level of timber extraction

    seems to have no effect on the density, distribution, and composition of sleeping sites.

     Nevertheless, because the species that were selected as sleeping trees are subject to

    Int J Primatol (2015) 36:1154 – 1171

    DOI 10.1007/s10764-015-9883-8

    *   Guadalupe Velázquez-Vázquez

    [email protected]

    1Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur (ECOSUR),

    Unidad Campeche, CP 24500 Campeche, México2

    Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de

    México (UNAM), Morelia 58190 Michoacán, México

    3 Département de Biologie, Université de Sherbrooke, Quebec J1K 2R1, Canada 

    4Laboratorio de Información Geográfica, El Colegio de la Frontera Sur (ECOSUR), San Cristóbal

    de Las Casas CP 29290 Chiapas, México

    http://crossmark.crossref.org/dialog/?doi=10.1007/s10764-015-9883-8&domain=pdf

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    2/18

    timber extraction, the availability of sleeping sites is expected to decrease in coming

    decades, potentially modifying the habitat use of this primate species.

    Keywords   Home range . Latrine . Neotropical primates . Seed dispersal . Sleeping tree .

    Timber extraction

    Introduction

    Selective logging is a pervasive driver of forest degradation across the tropics (Asner 

    et al . 2009), with negative effects on many plant and animal species (Fredericksen and

    Fredericksen 2002; Heydon and Bulloh 1997; Putz  et al . 2001;  cf. Berry  et al .  2010;

    Bicknell et al .  2015), including primates (Gutiérrez-Granados and Dirzo  2010; Johns

    1992). Logging can also alter soil properties and forest regeneration (Malhi et al . 2014;Putz et al . 2001), as well as ecological interactions such as frugivory, seed dispersal,

    and seedling recruitment (Gutiérrez-Granados and Dirzo   2010; Johns   1992).

     Nevertheless, the effect that timber extraction may have on animal behavior 

    and habitat use is largely unknown, particularly for primates (cf.   Chapman   et 

    al .   2000). This information is required to design effective conservation strate-

    gies, particularly considering that timber extraction is an economically impor-

    tant activity that is becoming increasingly common in tropical forests world-

    wide (Ariyanti   et al .   2008; Asner   et al .   2005; Berry   et al .   2010; Malhi   et al .

    2014).Timber extraction can modify the tree canopy, potentially altering resource avail-

    ability and habitat use for primates that are primarily tree dwellers. Sleeping sites are an

    important resource for many tree-dwelling primates, which depend on suitable sleeping

    sites for their daily activity patterns and survival (Anderson  1998; Smith et al . 2007).

    The selection of sleeping sites by primates depends on many factors. For example,

    night or owl monkeys ( Aotus   spp.), gibbons ( Hylobates lar ), and spider monkeys

    ( Ateles geoffroyi) select sleeping sites that are composed of one or several closely

    spaced large trees with dense foliage in which to sleep, most probably as a strategy for 

    hiding from predators and as protection from adverse climatic conditions (Aquino and

    Encarnación 1986; González-Zamora  et al . 2012; Reichard 1998). Also, many primate

    species select sleeping sites that are located near available food resources to reduce

    travel costs and increase foraging efficiency ( Ateles geoffroyi: Asensio   et al .  2012a ;

    Chapman 1989; González-Zamora  et al . 2014; Callithrix jacchus: Mendes-Pontes and

    Lira   2005;   Collobus vellerosus: Teichroeb   et al .   2012;   Saguinus   spp.: Smith   et al .

    2007). Thus, the loss and alteration of sleeping sites as a consequence of selective

    logging could limit the persistence of primates in human-modified tropical landscapes,

     but to our knowledge, no study to date has tested the effect of timber extraction on

     primate selection of sleeping sites.

    Here, we tested whether the density, distribution, and composition of sleeping sites

    used by spider monkeys ( Ateles geoffroyi) differed between logged and unlogged

    forests in the Calakmul region, southeastern Mexico. In this region,  ca. 6500 km2 are

    devoted to timber extraction following   de facto   norms established by the Forest 

    Stewardship Council (FSC   1996) regarding forest management, e.g., minimizing

    damage to remaining trees, soil, and water bodies, ensuring tree regeneration,

    Sleeping Sites of  Ateles geoffroyi   1155

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    3/18

    diversifying timber production). The effects that such management practices may have

    on primates are unknown.

    Spider monkeys show fission – fusion social dynamics (Aureli and Schaffner  2008),

    i.e., they split to forage in subgroups of variable size and composition during the day,

    and may congregate in larger subgroups during the evening to sleep in sleeping sitesthat are formed by one or several sleeping trees (Chapman  1989; González-Zamora 

    et al . 2012, 2014; Russo and Augspurger  2004). As they frequently return to the same

    sleeping sites after feeding excursions, they are considered   Bmulti-central place

    foragers^ ( sensu Chapman et al . 1989). Spider monkeys deposit scats containing seeds

    along their daily routes and deposit copious amounts of dung and seeds in latrines that 

    are located beneath sleeping sites (González-Zamora  et al . 2012, 2014, 2015; Russo et 

    al .  2006). For example, González-Zamora  et al .  (2014) found that 8 communities of 

    spider monkeys deposited >45,000 seeds (>5 mm in length) from 68 plant species

    during a 13-mo period. Although seed aggregation in latrines can increase seedmortality (Connell   1971; Janzen   1970), the enormous accumulation of seeds and

    seedlings in latrines could saturate seed and seedling predators, thus allowing some

    seeds and seedlings to escape predation and recruit in latrines (Bravo  2012). Thus,

    spider monkey latrines may represent hotspots of seedling recruitment, thereby having

    a key role in forest regeneration (González-Zamora   et al .   2014,   2015; Russo and

    Augspurger   2004; Russo and Chapman   2011). Therefore, understanding the impact 

    that selective logging may have on the density, spatial distribution, and composition of 

    sleeping sites has critical ecological and conservation implications. Such information is

     particularly urgent because spider monkeys are increasingly forced to inhabit human-modified landscapes, which are subject to timber extraction (Ramos-Fernández and

    Wallace 2008).

    We hypothesized that timber extraction limits the availability of suitable sleeping

    trees. More specifically, we predicted that the density of sleeping sites would be lower 

    in logged than in unlogged forests. We also predicted that the distribution of sleeping

    sites would be spatially more dispersed in logged forests than in unlogged forests,

     because food resources may be less abundant and spatially more dispersed in logged

    forests than in unlogged forests. Finally, we predicted that monkeys would rely on

    fewer tree species and smaller trees in logged forests than in unlogged forests,

     particularly if sleeping trees were subject to timber extraction.

    Methods

    Study Area

    We performed the study in the Nuevo Becal ejido, a communally shared area adjacent 

    to the Calakmul Biosphere Reserve, Calakmul Municipality, Campeche, Mexico

    (18°40′07.7′′ N, 89°12′34.3′′W) (Fig. 1). This  ejido  has an area of 520 km2, of which

    250 km2 are devoted to timber extraction. The climate is warm and sub-humid, with

    annual temperatures averaging 27°C, and annual precipitation ranging from 600 to

    1200 mm (García  et al . 2002). A dry season occurs from December to May, and a rainy

    season from June to November. The vegetation is composed mainly of medium-stature

    semievergreen forest, with trees reaching heights of 20 – 25 m, and low-stature

    1156 G. Velázquez-Vázquez et al.

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    4/18

    Figure 1   Location of study sites in Campeche State, Mexico. Small polygons with black outlines represent 

    the home ranges of four groups of spider monkeys for five consecutive months in 2014. The groups are

    located in two logged forests (L1 and L2) and two unlogged forests (C1 and C2). Spatial distribution of 

    sleeping sites (▲) and feeding trees (+) used by the four groups of spider monkeys in their home ranges are

    also indicated. We estimated home ranges using the minimum convex polygon method (black line) and the

    fixed kernel method at 95% (gray line) and 50% (white line).

    Sleeping Sites of  Ateles geoffroyi   1157

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    5/18

    seasonally inundated forest, with trees

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    6/18

    considered all latrines that were located

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    7/18

    recording it. To estimate the availability of trees that could be potentially used as

    sleeping trees, we recorded all trees with a DBH  ≥10 cm in 30 randomly distributed 50

    m × 2 m plots in C1 and L1 (3000 m2 of sampling area per site), and in 74 circular plots

    each of 10-m radius in sites C2 and L2 (23,247 m2 of sampling area per site). We used

    these two types of plots because they were designed for estimating variables not included in the present study. Yet, such differences did not bias our results, as we

    included both types of plots in both unlogged and logged forests.

    We estimated inter-sleeping site distances with the Hawth’s Tools-Nearest Neighbor 

    extension for ArcGIS 9.3 (Beyer  2004). The analysis was made with the extension

    Spatial Statistics and Analyzing Patterns with the tool Average Nearest Neighbor. To

    evaluate the spatial distribution of sleeping sites, we used the Average Nearest-

     Neighbor (ANN) index:

    ANN ¼ Do

     DE 

    where Do is the average distance between each sleeping site and its closest neighbor,

    and DE  is the average expected distance, expressed as a function of a random pattern.

     Do ¼X N 

    1

    d i

     DE ¼0:5 ffiffiffiffiffiffiffiffiffi  N = A

    where d i is the distance between sleeping site i and its nearest neighboring sleeping site,

     N  is the total number of sleeping sites, and  A  is the area that encapsulates all recorded

    sleeping sites. Values of ANN 1

    indicate a dispersed pattern (Mitchell  2005).

    Home Range of Spider Monkeys

    We used the minimum convex polygon (MCP) and fixed kernel methods to estimate

    the home range (MCP and fixed kernel) and core areas (fixed kernel) of each commu-

    nity. MCP is used mainly for comparative purposes as it is widely employed, and

     because it represents the entire area that animals can visit. The fixed kernel is based on

    the density distribution of primate locations, and thus represents more intensively used

    areas (Kernohan  et al.  2001). The smoothing factor calculated for kernel estimations

    was calculated in an iterative way as recommended by Kernohan et al . (2001), as the

    least square cross validation method tends to underestimate it. We used the same

    smoothing factor for analysis of the four groups. Fixed kernel home ranges were

    defined as the 95% probability contour and core areas as the 50% probability contour.

    We estimated distances between sleeping sites with the Spatial Statistics and Analyzing

    Patterns extension and the Average Nearest Neighbor tool in Hawth’s Tools-Nearest 

     Neighbor extension for ArcGIS 9.3 (Beyer  2004). Despite the short sampling period,

    1160 G. Velázquez-Vázquez et al.

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    8/18

    we found that the home range size-sampling effort curves also reached an asymptote in

    all groups (Fig. 2).

    Distribution of Sleeping Sites and the Availability of Feeding Trees

    To test if the distribution of sleeping sites was related to the availability of feeding trees,

    we determined the number of feeding trees in the Moore neighborhood of sleeping

    sites, together with a similar number of sites that were selected at random in the home

    range of the community. The Moore neighborhood consists of nine cells in a lattice,

    viz., one central cell (in our case, containing sleeping sites or locations chosen

    randomly) and its eight surrounding cells (Weisstein 2005). To calculate these neigh-

     borhoods, we first constructed a grid with a cell size of 1 ha on the map of home ranges

    (Fig. 1). This cell size is smaller than the mean distance reportedly traveled between

    feeding trees by spider monkeys (162 ± 86 m, rainy season, and 393 ± 54 m, dryseason: Nunes 1995). This allowed feeding trees to be spread over several cells, making

     possible the estimation of neighboring effects. We then calculated the number of 

    feeding trees in each of the eight cells that neighbored the cells that contained sleeping

    sites and in randomly selected cells (where no sleeping site had been detected) with the

    Hawth’s Tools-Sampling Tools function in ArcGis 9.3 (Beyer  2004).

    Statistical Analyses

    To test for differences between logged and unlogged forests in terms of thedensity of sleeping sites and mean inter-sleeping site distances, we used Student 

    t -tests, which can be used with extremely small sample sizes (de Winter   2013).

    To test for differences among sites in the size (DBH) of sleeping trees, we used

    a one-way analysis of variance. We also used Student   t -tests to evaluate if the

    DBH of sleeping trees was significantly higher than the DBH of available trees

    in the home range (one analysis per species). Lastly, we used simple logistic

    regression to test if the presence of sleeping sites is positively related to the

    abundance of feeding trees in its Moore neighborhood. These statistical analy-

    ses were performed in SPSS v. 17.0 (SPSS Inc., Chicago). We also used chi

    square goodness-of-fit tests using HABUSE (Byers   et al  .   1984) to assess

    whether the observed number of sleeping sites and feeding trees within and

    outside core areas differed from to that expected by chance. We calculated the

    expected values based on the area available within and outside core areas.

    To identify spider monkey preferences for specific sleeping tree species, we

    used Manly’s standardized selection index (Manly   et al .   2002), which is one of 

    the simplest and most effective methods for measuring resource preference. It is

     based on the selection ratio   wi, which is defined as the proportional use divided

     by the proportional availability of each resource: i.e.,   wi   =   oi/ π i, where   oi   is the

     proportion of the sleeping trees of species   i   that are used, and   π i   is the

     proportion of available trees of species   i   in the home range (see vegetation

    sampling in the preceding text). A   wi   value >1 indicates positive selection,

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    9/18

    Ethical Note

    We obtained all of the necessary permits that were required for the present study.

    Because our research involved an observational field study and did not involve any

    contact with the animals, we met all ethical and legal requirements that were established by the Principles for the Ethical Treatment of Non-Human Primates of the International

    Primatological Society. This study was also approved by the authorities from

    ECOSUR, Université de Sherbrooke, Reserva de la Biosfera de Calakmul, and

    Consejo Nacional de Ciencia y Tecnología (CONACYT-Mexico), and has the autho-

    rization of the owners of the study area.

    Results

    Density of Sleeping Sites

    In total, we recorded 74 sleeping sites in 668.7 ha of the fixed kernel polygon sampling

    area, i.e., 0.11 sleeping sites/ha. The density of sleeping sites did not differ significantly

     between logged and unlogged sites (t -test;   t   = 1.66, df = 1,   P   = 0.24). Estimated

    densities were respectively 0.11 and 0.16 sleeping sites/ha in L1 and L2, and 0.04 and

    0.10 sleeping sites/ha in C1 and C2.

    Spatial Distribution of Sleeping Sites and Feeding Trees

    In all study sites, sleeping sites had an aggregated distribution (C1: ANN = 0.74,  P  <

    0.01; C2: ANN = 0.92,  P  = 0.05; L1: ANN = 0.43,  P  < 0.01; L2: ANN = 0.68,  P  <

    0.01). Most sleeping sites (61%) were separated from one another by distances

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    10/18

    Table I   Home ranges and core areas (both in hectares) of spider monkeys in January – May and March – 

    July 2014 in two logged (L1 and L2) and two unlogged (C1 and C2) sites in Calakmul, Mexico

    Sites Home

    range

    Core

    area 

    In core areas   χ2  P    Outside core areas   χ2  P 

    Obs. Exp.

    C1 202.0 24.5 SS 8 (+) 2.66 10.7

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    11/18

    Characteristics of Sleeping Sites

    About half (51%) of the sleeping sites were composed of a single sleeping tree and

    showed only one latrine (Table III). The mean (± SD) DBH of sleeping trees was 42.2 ±

    21.9 cm, and did not differ among sites ( F 3,127 = 1.28, P  = 0.28). In total, we recorded128 sleeping trees from 21 species, with more than half (55%) of the trees belonging to

    three species:   Bucida buceras   L. (Combretaceae),   Lonchocarpus castelloi   Stanley

    (Fabaceae), and Lysiloma latisiliquum (L.) Benth. (Fabaceae) (Table III).  Spider mon-

    keys actively selected some of the tree species, such as B. buceras  and L. castelloi  in

    C1, an unidentified species (locally called   Bcelestillo^), and   L. latisiliquum   in C2;

    Talisia oliviformis   (Kunth.) Radlk. (Sapindaceae) and   Swietenia macrophylla

    (Meliaceae) in L1; and   Bcelestillo^  and L. castelloi   in L2 (Table  IV). In most cases,

    sleeping trees exhibited a DBH greater than those of conspecific trees that were not 

    used as sleeping trees in their respective home ranges, yet the difference was not significant for all species (Table IV).

    Table III   Abundance and density of sleeping sites (SS) used by spider monkeys in January – May and March – 

    July 2014 in two unlogged (C1 and C2) and two logged (L1 and L2) sites in Calakmul, Mexico

    Sites Abundance Density (SS/ha) Characteristics of SS Number (%) of SS

     NST NL

    C1 23 0.10 1 1 9 (39.1)

    2 2 4 (17.4)

    2 1 3 (13.0)

    2 3 2 (8.7)

    1 2 2 (8.7)

    4 4 1 (4.4)

    4 5 1 (4.4)

    2 3 1 (4.4)

    C2 7 0.04 1 1 6 (85.7)

    4 4 1 (14.3)

    L1 16 0.11 1 1 8 (50.0)

    2 2 4 (25.0)

    3 4 2 (12.5)

    2 3 1 (6.3)

    2 1 1 (6.3)

    L2 28 0.16 1 1 15 (53.6)

    3 3 6 (21.4)2 1 4 (14.3)

    2 2 2 (7.1)

    4 4 1 (3.6)

    We classified SS in each forest site based on the number of sleeping trees (NST) and latrines (NL) that 

    composed each SS and we then indicate the number (and %) of SS in each class.

    1164 G. Velázquez-Vázquez et al.

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    12/18

    Table IV   Use and availability of tree species for spider monkey sleeping sites in January – May and March – 

    July 2014 in two unlogged (C1 and C2) and two logged (L1 and L2) sites in Calakmul, Mexico

    Sites and tree species No. of trees

    (and density)

    wi   Mean DBH (and range) (cm)   t P 

    Used Available Used Available

    C1

    Sickingia salvadorensis   1 (4.95) 7 (0.23) 0.56 30.6 17.7 (12.0 – 27.7)   — — 

    Swietenia macrophylla   7 (3.56) 10 (0.33) 2.78 40.2 (28.3 – 51.9) 37.7 (28.0 – 45.2) 0.68 0.50

     Bucida buceras   9 (4.45) 4 (0.13) 8.94 59.5 (25.5 – 114) 51.4 (36.3 – 83.7) 0.54 0.59

     Lonchocarpus castelloi   4 (1.98) 4 (0.13) 3.98 43.9 (40.4 – 47.4) 21.6 (12.4 – 33.1) 4.17 0.03

     Pouteria spp. 4 (1.98) 60 (2.00) 0.27 33.5 (29.9 – 35.0) 17.0 (10.2 – 31.2) 5.85 0.00

    Caesalpinia gaumeri   6 (2.97) 7 (0.23) 3.41 36.4 (23.9 – 

    42.0) 32.7 (11.5 – 

    67.7) 0.48 0.63 Brosimum alicastrum   1 (4.95) 46 (1.53) 0.09 49 27 (10.2 – 151.8)   — — 

     Exothea diphylla   4 (1.98) 5 (0.17) 3.18 26.3 (22.9 – 33.4) 15.4 (10.5 – 20.7) 3.48 0.01

     Ficus cotinifolia   2 (9.90) 7 (0.23) 1.14 29.1 (22.0 – 36.3) 28.4 (10.8 – 50.0) 0.06 0.95

    Cosmocalyx spectabilis   1 (4.95) 4 (0.13) 0.99 22.1 24.2 (18.4 – 35.0)   — — 

    Vitex gaumeri   1 (4.95) 5 (0.17) 0.80 82.1 24.0 (12.4 – 37.2)   — — 

    C2

     Lonchocarpus castelloi   1 (6.18) 16 (0.06) 0.15 24.4 28.9 (10.6 – 57.2)   — — 

     Lysiloma latisiliquum   3 (1.85) 3 (0.01) 2.50 32.7 (28.0 – 41.2) 48.2 (39.2 – 63.6) 1.76 0.15

    Unidentified 4 (2.47) 1 (0.00) 10.00 37.8 (25.9 – 61.8) 21.1   — — 

    Logged sites

    L1

     Brosimum alicastrum   5 (3.46) 40 (1.33) 0.40 51.9 (30.4 – 72.9) 32.2 (10.2 – 76.4) 2.41 0.02

     Lonchocarpus castelloi   7 (4.85) 8 (0.27) 2.81 32.4 (30.2 – 39.2) 30.9 (10.5 – 46.3) 0.29 0.77

    Talisia oliviformis.   2 (2.00) 3 (0.10) 3.21 27.1 (23.4 – 29.9) 25.5 (14.5 – 42.0) 1.86 0.86

     Bucida buceras   3 (2.00) 7 (0.23) 1.37 33.7 (25.4 – 40.7) 30.8 (15.6 – 65.8) 0.26 0.79

     Ficus sp. 4 (2.77) 6 (0.20) 2.14 72.9 (29.6 – 142.6) 18.6 (10.2 – 29.6) 2.47 0.03

    Swietenia macrophylla   3 (2.00) 3 (0.10) 3.21 36.9 (28.0 – 42.7) 38.4 (35.0 – 43.3) 0.29 0.78

     Lysiloma latisiliquum   1 (6.93) 2 (0.07) 1.60 148.0 34.1 (30.1 – 38.2)   — — 

     Exothea diphylla   1 (6.93) 8 (0.27) 0.40 31.6 16.9 (10.2 – 31.8)   — — 

     Protium copal    1 (6.93) 13 (0.43) 0.24 14.3 18.9 (10.3 – 41.5)   — — 

    L2

     Manilkara zapota   1 (6.23) 93 (0.40) 0.12 38.6 34.4 (10.2 – 78.8)   — — 

     Bucida buceras   4 (2.49) 24 (0.10) 1.81 44.2 (22.5 – 90.5) 35.1 (11.3 – 87.9) 0.76 0.45

    Caelsalpinia mollis   2 (1.25)   —    26.5 (23.1 – 29.9)   — — — 

    Caesalpinia gaumeri   1 (6.23) 4 (0.02) 2.71 23.2 48.1 (34.3 – 62.0)   — — 

     Ficus sp. 3 (1.87) 59 (0.26) 0.55 51.3 (20.0 – 79.3) 34.7 (12.2 – 153.0) 1.26 0.21

     Licaria peckii   1 (6.23) 12 (0.05) 0.90 30.0 19.7 (10.2 – 39.4)   — — 

     Lonchocarpus castelloi   3 (1.87) 2 (0.01) 16.26 30.5 (24.5 – 34.5) 29.5 (19.3 – 38.8) 0.11 0.91

     Lysiloma latisiliquum   10 (6.23) 12 (0.05) 9.04 41.7 (16.2 – 53.8) 32.3 (12.1 – 61.0) 1.51 0.14

    Unidentified 4 (2.49) 1 (0.00) 43.37 37.8 (25.9 – 61.8) 21.1   — — 

     Pouteria sp. 1 (6.23) 130 (0.57) 0.08 24.1 15.0 (10.0 – 40.3)   — — 

    Sleeping Sites of  Ateles geoffroyi   1165

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    13/18

    Discussion

    Our findings reveal that there are 0.11 sleeping sites/ha in the study region;

    almost all of them (97.2%) were located in medium-stature semievergreen forest.

    In all study sites, sleeping sites showed an aggregated distribution, particularly incore areas within their home range, which contained a greater density of feeding

    trees. About half of the sleeping sites were composed of one single large tree

    from a small number of tree species, particularly from   Lonchocarpus castelloi,

     Bucida buceras, and  Lysiloma latisiliquum. These three species represented one-

    third of the authorized volume for logging during the period when the sites were

    logged, and in 2007 they made up 50% of the harvested volume. However,

    contrary to our predictions, the density, distribution, and composition of sleeping

    sites did not differ between logged and unlogged forests, suggesting that current 

    levels of timber extraction had no effect on the sleeping site characteristics that 

    we measured.

    The diet of spider monkeys is composed mainly of fruits (Di Fiore   et al .   2008;

    González-Zamora  et al . 2009), the availability of which is strongly variable in time and

    space. To reduce travel costs and increase their foraging efficiency, spider monkeys

    usually sleep close to their feeding areas (Chapman  et al . 1989). This means that the

    density and distribution of sleeping sites can be highly variable across sites (Asensio

    et al .  2012a ; González-Zamora  et al .  2012), depending on the distribution and avail-

    ability of food resources (Asensio et al . 2012b; Chapman et al . 1989; González-Zamora 

    et al . 2015). Consistent with these ideas, we found that the density of sleeping sites was

    strongly variable across sites (ranging from 0.04 to 0.16 sleeping sites/ha), but most 

    sleeping sites were distributed in medium-stature semievergreen forest, which is the

    vegetation type with the greatest fruit availability, i.e., with larger trees and a greater 

    number of plant species consumed by mammals, in the region (Reyna-Hurtado  et al .

    2009). Also, the occurrence of sleeping sites was positively related to the density of 

    feeding trees, and most sleeping sites were found in the cores of home ranges, which

    Table IV   (continued)

    Sites and tree species No. of trees

    (and density)

    wi   Mean DBH (and range) (cm)   t P 

    Used Available Used Available

     Protium copal    1 (6.23) 37 (0.16) 0.29 19.3 16.3 (10.2 – 85.6)   — — 

     Pseudobombax ellipticum   3 (1.87) 11 (0.01) 2.96 69.4 (52.2 – 80.3) 69.4 (12.8 – 80.3) 2.49 0.02

    Simarouba glauca   1 (6.23) 9 (0.04)   1.20   29.2 20.0 (11.7 – 47.1)   — — 

    Swartzia cubensis   2 (1.25) 13 (0.06)   1.67   26.7 (23.8 – 29.6) 33.3 (12.1 – 77.2) 0.48 0.63

    Swietenia macrophylla   1 (6.23) 5 (0.00)   2.17   51.4 31.6 (18.9 – 43.8)   — — 

    The density of trees is expressed as the number of individuals/sampled surface area. A Manly index (wi) in

     bold indicates selection by spider monkeys. We also indicate the results of the Student ’s t  — test used to identify

    differences in diameter at breast height (DBH) between used and available trees (the cases in which thisanalysis was not possible are indicated with a dash).

    1166 G. Velázquez-Vázquez et al.

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    14/18

    The density of sleeping sites in our study area (0.11 sleeping sites/ha) was far 

     below the figures reported by González-Zamora   et al .   (2012) for the Lacandona 

    rainforest, Mexico (0.25 sleeping sites/ha). This may be related to the fact that spatial and temporal variation in fruit availability is greater in medium-stature

    semievergreen forests than in rainforests (A. Aguilar-Melo   et al .,   unpub. data),

    reinforcing the observation that sleeping sites are spatially more dispersed in

    semievergreen forests than in rainforests. In fact, the temporal scarcity of fruiting

    trees in seasonal forests can lead spider monkeys to stay near feeding trees until

    they are depleted (Chapman 1987). This may explain why the density of sleeping

    sites is notably lower in seasonal medium-stature semievergreen forests than in

    nonseasonal tropical rainforests. Further, we cannot rule out the possibility that 

    differences in sleeping site densities were caused by differences in the definitionof sleeping site. González-Zamora   et al .   (2012) considered all latrines that were

    located

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    15/18

    Ecological and Conservation Implications

    This study supports the idea that sleeping sites are an important resource for spider 

    monkeys. They do not select sleeping sites at random, but use large trees from a small

    subset of tree species, the architecture of which may provide them protection from predators and adverse climatic conditions (Aquino and Encarnación 1986; González-

    Zamora  et al . 2012; Reichard 1998). Also, sleeping sites are strategically located near 

    available food resources to increase foraging efficiency (Asensio   et al .   2012a ;

    Chapman 1989; González-Zamora  et al .  2014; Mendes-Pontes and Lira  2005; Smith

    et al . 2007; Teichroeb et al . 2012). In fact, sleeping sites showed a clumped distribu-

    tion, and most were separated from one another by a distance

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    16/18

    Ariyanti, N. S., Bos, M. M., Kartawinata, K., Tjitrosoedirdjo, S. S., Guhardja, E., & Gradstein, S. R. (2008).

    Bryophytes on tree trunks in natural forests, selectively logged forests and cacao agroforests in Central

    Sulawesi, Indonesia. Biological Conservation, 141, 2516 – 2527.

    Arroyo-Rodríguez, V., Andresen, E., Bravo, S. P., & Stevenson, P. R. (2015). Seed dispersal by howler 

    monkeys: Current knowledge, conservation implications, and future directions. In M. Kowalewski, P. A.

    Garber, L. Cortés-Ortiz, B. Urbani, & D. Youlatos (Eds.),   Howler monkeys: Behavior, ecology and conservation (pp. 111 – 139). New York: Springer Science+Business Media.

    Asensio, N., Lusseau, D., Schaffner, C. M., & Aureli, F. (2012a). Spider monkeys use high-quality core areas

    in a tropical dry forest. Journal of Zoology, 287 , 250 – 258.

    Asensio, N., Schaffner, C. M., & Aureli, F. (2012b). Variability in core areas of spider monkeys ( Ateles

     geoffroyi) in a tropical dry forest in Costa Rica. Primates, 53, 147 – 156.

    Asner, G. P., Knapp, D. E., Broadbent, E. N., Oliveira, P. J. C., Keller, M., & Silva, J. N. (2005). Selective

    logging in the Brazilian Amazon.  Science, 310, 480 – 481.

    Asner, G. P., Rudel, T. K., Aide, T. M., Defries, R., & Emerson, R. (2009). A contemporary assessment of 

    change in humid tropical forests.  Conservation Biology, 23, 1386 – 1395.

    Aureli, F., & Schaffner, C. M. (2008). Social interactions, social relationships and the social system of spider 

    monkeys. In C. J. Campbell (Ed.),  Spider monkeys: Behavior, ecology and evolution of the genus Ateles

    (pp. 236 – 265). New York: Cambridge University Press.

    Berry, N. J., Phillips, O. L., Lewis, S. L., Hill, J. K., Edwards, D. P., Tawatao, N. B., et al. (2010). The high

    value of logged tropical forests: Lessons from northern Borneo.  Biodiversity and Conservation, 19, 985 – 

    997.

    Beyer, H. L. (2004). Hawth’s analysis tools for ArcGIS.   http://www.spatialecology.com/htools  (Accessed

    September 15, 2014).

    Bicknell, J. E., Struebig, M. J., & Davies, Z. G. (2015). Reconciling timber extraction with biodiversity

    conservation in tropical forests using reduced-impact logging.  Journal of Applied Ecology, 52, 379 – 388.

    Bolland, L. P., Dren, A. P., & Vergara-Tenorio, C. (2006). Analysis of a natural resources management system

    in the Calakmul Biosphere Reserve.  Landscape and Urban Planning, 74, 223 – 241.

    Bravo, S. P. (2012). The impact of seed dispersal by black and gold howler monkeys on forest regeneration.

     Ecological Research, 27 , 311 – 

    321.Brown, K. A., & Gurevitch, J. (2004). Long-term impacts of logging on forest diversity in Madagascar.

     Proceedings of the National Academy of Sciences of the USA, 101, 6045 – 6049.

    Byers, C. R., Steinhorst, R. K., & Krausman, P. R. (1984). Clarification of a technique for analysis of 

    utilization-availability data. Journal of Wildlife Management, 48, 1050 – 1053.

    Chapman, C. A. (1987). Patch use and patch depletion by the spider and howling monkeys of Santa Rosa 

     National Park, Costa Rica. Behaviour, 105, 99 – 116.

    Chapman, C. A. (1989). Spider monkey sleeping sites: Use and availability.  American Journal of Primatology,

    18, 53 – 60.

    Chapman, C. A., Balcom, S. R., Gillespie, T. R., Skorupa, J. P., & Struhsaker, T. T. (2000). Long-term effects

    of logging on African primate communities: A 28-year comparison from Kibale National Park, Uganda.

    Conservation Biology, 14, 207 – 217.

    Chapman, C. A., Chapman, L. J., & McLaughlin, R. L. (1989). Multiple central place foraging by spider 

    monkeys: Travel consequences of using many sleeping sites.  Oecologia, 79, 506 – 511.

    Chaves, O. M., Stoner, K. E., Arroyo-Rodríguez, V., & Estrada, A. (2011). Effectiveness of spider monkeys

    ( Ateles geoffroyi vellerosus) as seed dispersers in continuous and fragmented rainforests in southern

    Mexico. International Journal of Primatology, 32, 177 – 192.

    Connell, J. H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine

    animals and in rainforest trees. In P. J. den Boer & D. R. Gradwell (Eds.),  Dynamics of populations (pp.

    298 – 313). Wageningen: Center for Agricultural Publishing and Documentation.

    Cui, L. W., Quan, R. C., & Xiao, W. (2006). Sleeping sites of black-and-white snub-nosed monkeys

    ( Rhinopithecus bieti) at Baima Snow Mountain, China. Journal of Zoology, 270, 192 – 198.

    de Winter, J. C. F. (2013). Using the Student ’s t -test with extremely small sample sizes. Practical Assessment,

    Research & Evaluation, 18. http://pareonline.net/getvn.asp?v=18&n=10.Di Bitetti, M. S., Luengos Vidal, E. M., Baldovino, M. C., & Benesovsky, V. (2000). Sleeping site preferences

    in tufted capuchin monkeys (Cebus apella nigritus). American Journal of Primatology, 274, 257 – 274.

    Di Fiore, A., Link, A., & Dew, J. L. (2008). Diets of wild spider monkeys. In C. J. Campbell (Ed.),  Spider 

    monkeys: Behavior, ecology and evolution of the genus Ateles   (pp. 81 – 137). New York: Cambridge

    University Press.

    Fredericksen, N. J., & Fredericksen, T. S. (2002). Terrestrial wildlife responses to logging and fire in a 

    Bolivian tropical humid forest. Biodiversity and Conservation, 11, 27 – 38.

    Sleeping Sites of  Ateles geoffroyi   1169

    http://www.spatialecology.com/htoolshttp://pareonline.net/getvn.asp?v=18&n=10http://pareonline.net/getvn.asp?v=18&n=10http://www.spatialecology.com/htools

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    17/18

    FSC (Forest Stewardship Council A.C.) (1996). FSC principles and criteria for forest stewardship. FSC-STD-

    01-001 (version 4-0) EN. https://ic.fsc.org/principles-and-criteria.34.htm (Accessed October 6, 2015).

    García, G., Palacio-Prieto, J. L., & Ortíz-Pérez, M. A. (2002). Reconocimiento geomorfológico e hidrográfico

    de la Reserva de la Biosfera de Calakmul, México.  Investigaciones Geográficas, 48, 7 – 23.

    González-Zamora, A., Arroyo-Rodríguez, V., Chaves, O. M., Sánchez-López, S., Stoner, K. E., & Riba-

    Hernández, P. (2009). Diet of spider monkeys ( Ateles geoffroyi) in Mesoamerica: Current knowledge andfuture directions. American Journal of Primatology, 71, 8 – 20.

    González-Zamora, A., Arroyo-Rodríguez, V., Escobar, F., Oyama, K., Aureli, F., & Stoner, K. E. (2015).

    Sleeping tree fidelity of the spider monkeys shapes community-level seed rain patterns in continuous and

    fragmented rain forests.  Journal of Tropical Ecology, 31, 305 – 313.

    González-Zamora, A., Arroyo-Rodríguez, V., Escobar, F., Rös, M., Oyama, K., Ibarra-Manríquez, G., et al.

    (2014). Contagious deposition of seeds in spider monkeys sleeping trees limits effective seed dispersal in

    fragmented landscapes. PLoS ONE, 9, e89346.

    González-Zamora, A., Arroyo-Rodríguez, V., Oyama, K., Sork, V., Chapman, C. A., & Stoner, K. E. (2012).

    Sleeping sites and latrines of spider monkeys in continuous and fragmented rainforests: implications for 

    seed dispersal and forest regeneration. PLoS ONE, 7 , e46852.

    Gutiérrez-Granados, G., & Dirzo, R. (2010). Indirect effects of timber extraction on plant recruitment and

    diversity via reductions in abundance of frugivorous spider monkeys.  Journal of Tropical Ecology, 26 ,

    45 – 52.

    Heydon, M. J., & Bulloh, P. (1997). Mousedeer densities in a tropical rainforest: The impact of selective

    logging. Journal of Applied Ecology, 34, 484 – 496.

    Heymann, E. W. (1995). Sleeping habits of tamarins,  Saguinus mystax and  Saguinus fuscicollis (Mammalia:

    Primates: Callitrichidae), in north-eastern Peru.  Journal of Zoology, 237 , 211 – 226.

    Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests.  American Naturalist, 104,

    501 – 528.

    Johns, A. D. (1992). Effects of   Bselective^ timber extraction on rain forest structure and composition and some

    consequences for frugivores and folivores.  Biotropica, 20, 31 – 37.

    Kernohan, B. J., Gitzen, R. A., & Millspaugh, J. J. (2001). Analysis of animal space use and movement. In J.

    J. Millspaugh & J. M. Marzluff (Eds.), Radio tracking and animal populations (pp. 125 – 

    166). San Diego:Academic Press.

    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R., & Zelazowski, P. (2014). Tropical forests in the

    Anthropocene. Annual Review of Environmental Resources, 39, 125 – 159.

    Manly, B. F., McDonald, L. L., Thomas, D. L., McDonald, T. L., & Erickson, W. P. (2002). Resource selection

    by animals: Statistical design and analysis for field studies. Norwell: Kluwer Academic.

    Mendes-Pontes, A. R., & Lira, S. M. (2005). Sleeping sites of common marmosets (Callithrix jacchus) in

    defaunated urban forest fragments: A strategy to maximize food intake. Journal of Zoology, 266 , 55 – 63.

    Milton, K. (1980). The foraging strategy of howler monkeys. New York: Columbia University Press.

    Mitchell, A. (2005). The ESRI guide to GIS analysis, Vol. 2: Spatial Measurements and Statistics. Redlands:

    ESRI Press.

     Nunes, A. (1995). Foraging and ranging patterns in white-bellied spider monkeys. Folia Primatologica, 65,

    85 – 99.

    Plumptre, A. J., & Reynolds, V. (1994). The effect of selective logging on the primate populations in the

     budongo Forest Reserve, Uganda. Journal of Applied Ecology, 31, 631 – 641.

    Pozo, W. E. (2005). Caracterización de los dormideros usados por   Ateles belzebuth   en el parque Nacional

    Yasuní, Ecuador. Neotropical Primates, 13, 27 – 34.

    Putz, F. E., Blate, G. M., Redford, K. H., Fimbel, R., & Robinson, J. (2001). Tropical forest management and

    conservation of biodiversity: An overview. Conservation Biology, 15, 7 – 20.

    Ramos-Fernández, G., Smith-Aguilar, S. E., Schaffner, C. M., Vick, L. G., & Aureli, F. (2013). Site fidelity in

    space use by spider monkeys ( Ateles geoffroyi) in the Yucatan Peninsula, Mexico. PLoS ONE, 8, e62813.

    Ramos-Fernández, G., & Wallace, R. B. (2008). Spider monkey conservation in the twenty-first century:

    Recognizing risks and opportunities. In J. C. Campbell (Ed.),  Spider monkeys. The biology, behavior and 

    ecology of the genus Ateles (pp. 351 – 

    372). New York: Cambridge University Press.Reichard, U. (1998). Sleeping sites, sleeping places, and presleep behavior of gibbons ( Hylobates lar ).

     American Journal of Primatology, 62, 35 – 62.

    Reyna-Hurtado, R., Rojas-Flores, E., & Tanner, G. W. (2009). Home range and habitat preferences of white-

    lipped peccary groups (Tayassu pecari) in a seasonal tropical forest of the Yucatan Peninsula, Mexico.

     Journal of Mammalogy, 90, 1199 – 1209.

    Russo, S. E., & Augspurger, C. K. (2004). Aggregated seed dispersal by spider monkeys limits recruitment to

    clumped patterns in Virola calophylla. Ecology Letters, 7 , 1058 – 1067.

    1170 G. Velázquez-Vázquez et al.

    https://ic.fsc.org/principles-and-criteria.34.htmhttps://ic.fsc.org/principles-and-criteria.34.htm

  • 8/18/2019 Velazquez-Vazquez Etal 2015 IJP SleepingSites

    18/18

    Russo, S. E., & Chapman, C. A. (2011). Primate seed dispersal: Linking behavioral ecology with forest 

    community structure. In C. J. Campbell, A. F. Fuentes, K. C. MacKinnon, M. Panger, & S. Bearders

    (Eds.), Primates in perspective (pp. 523 – 534). Oxford: Oxford University Press.

    Russo, S. E., Portnoy, S., & Augspurger, C. K. (2006). Incorporating animal behavior into seed dispersal

    models: Implications for seed shadows. Ecology, 87 , 3160 – 3174.

    Smith, A. C., Knogge, C., Huck, M., Löttker, P., Buchanan-Smith, H. M., & Heymann, E. W. (2007). Long-term patterns of sleeping site use in wild saddleback (Saguinus fuscicollis) and mustached tamarins

    (S. mystax): Effects of foraging, thermoregulation, predation, and resource defense constraints.  American

     Journal of Physical Anthropology, 134, 340 – 353.

    Snook, L. K. (2003). Regeneration, growth, and sustainability of mahogany in Mexico's Yucatán forests. In A.

    E. Lugo, J. C. Figueroa Colón, & M. Alayón (Eds.),   Big-leaf mahogany: Genetics, ecology, and 

    management  (pp. 169 – 192). New York: Springer.

    Teichroeb, J. A., Holmes, J. A., & Sicotte, P. (2012). Use of sleeping trees by ursine colobus monkeys

    (Colobus vellerosus) demonstrates the importance of nearby food.  Primates, 53, 287 – 296.

    Vester, H. F. M., Lawrence, D., Eastman, J. R., Turner, B. L., II, Calmé, S., Pozo, C., et al. (2007). Land

    change in the southern Yucatan and Calakmul Biosphere Reserve: Effects on habitat and biodiversity.

     Ecological Applications, 17 , 989 – 1003.

    Weisstein, E. W. (2005). Moore neighborhood. MathWorld-A Wolfram Web Resource.   http://mathworld.wolfram.com/MooreNeighborhood.html (Accessed September 15, 2015).

    Youlatos, D. (2002). Positional behavior of black spider monkeys ( Ateles paniscus) in French Guiana.

     International Journal of Primatology, 23, 1071 – 1093.

    Sleeping Sites of  Ateles geoffroyi   1171

    http://mathworld.wolfram.com/MooreNeighborhood.htmlhttp://mathworld.wolfram.com/MooreNeighborhood.htmlhttp://mathworld.wolfram.com/MooreNeighborhood.htmlhttp://mathworld.wolfram.com/MooreNeighborhood.html