veijo pohjola, professor i naturgeografi/ glaciologi, uppsala universitet, institutionen för...

33
Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Upload: christine-moore

Post on 17-Jan-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum

State of the Arctic

Page 2: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

The state-of-the-art from the SWIPA report published 2011

ByArctic Monitoring and Assessment Programme (AMAP)www.AMAP.no/SWIPA

Page 3: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

A warmth record in surface air temperatures in the Arctic 2005-2010

• Surface air temperatures (SAT) 2005 -2010 are higher than any other 5 yr period since SAT records began with IPY 1 in 1882

• The increase in SAT in the Arctic is twice the global average increase in SAT

• Powerful feedbacks mechanisms due to albedo effects with less sea ice cover and shorter periods with snow cover is a likely responsible agent

Page 4: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Arctic warming is pronounced winter and fall

Page 5: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Predictions for the future

Page 6: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Effects on PermafrostThreats:• Melting permafrost increases the carbon release to

the atmosphere.

• Methane (CH4) release is a positive feedback (marine permafrost),CO2 unclear mechanism.

• Between 1970 and 2005 did the permafrost ”front” move northwards with 1 km / year in Siberia .

• Thawing permafrost gives large challenges for infrastucture in areas with high retreat rates.

Page 7: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Predicted change in precipitation

Page 8: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Figure 3. Zonal mean changes of the estimated 50 year return levels (%) with respect to the period 1966–2005 in (a) winter and (b) summer under the RCP8.5 scenario. Blue and green lines represent the ensemble mean for the periods 2020–2059 and 2060–2099, respectively. Blue and green shaded areas show the intermodel variability for the periods 2020–2059 and 2060–2099, respectively. The ensemble mean and the intermodel variability are plotted only when at least six models out of eight provide at least 75% of reliable grid points for the zonal mean.

Projections of global changes in precipitation extremesToreti et al. 2014. DOI: 10.1002/grl.50940

Winter RCP8.5 Summer RCP8.5

2020-2059

2060-2099

Page 9: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Predicted change in snow

SWE = snow water equivalent SCD = snow cover duration

Page 10: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Ecological effects due to change in snow cover

Page 11: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Increased amount of ice layers in snow changes the grazing ability

Multi-Decadal Changes in Snow Characteristics in Sub-Arctic Sweden. C. Johansson, V.A.Pohjola, C.Jonasson, T.V. Callaghan. 2011. AMBIO, 40:566–574, DOI 10.1007/s13280-011-0164-2

Page 12: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Predicted loss of summer sea ice

Page 13: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Change of marine ecosystems

Page 14: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Change of marine ecosystems

Ecosystems will change; some species are losers, Some are winners, at least, temporarily.Cod and herring are twopredicted winners, while pacific salomon, some species of seals and polar bears are losers.

Page 16: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Sea Level Rise (IPCC AR5 )

Page 17: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Glacier contribution to SLR IPCC 2013

Page 18: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Mass loss from different regions

The SWIPA Report, 2011

Page 19: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Greenland Ice Sheet mass-balance IPCC AR5 (2013)

Page 20: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

a, The large-scale ocean circulation around Greenland, indicating the major currents and basins. Atlantic-origin water pathways, red to yellow; Arctic-origin freshwater pathways, blue41. The dynamic thinning of Greenland is superimposed19. b, Heat content anomaly estimates in the North Atlantic as a whole and c, separated into tropical and subtropical and d, subpolar contributions over the period 1960–2010 (ref. 32). Extremely sparse observational coverage below 700 m depths over much of the period adds significant uncertainties.

Downdraw of the Greenland Ice Sheet and SST

Page 21: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Ice-dynamic projections of the Greenland ice sheet in response to

atmospheric and oceanic warming

by J. J. Fürst, H. Goelzer, and P. Huybrechts

The Cryosphere, 9, 1039–1062, 2015www.the-cryosphere.net/9/1039/2015/doi:10.5194/tc-9-1039-2015

Page 22: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

AIS MB IPCC AR5

Page 23: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Tidewater Glacier Mechanisms (IPCC AR5)

Page 24: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate

by Cornford et al., 2015, TC,9

Abstract

We measure the grounding line retreat of glaciers draining the Amundsen Sea sector of West Antarctica using Earth Remote Sensing (ERS-1/2) satellite radar interferometry from 1992 to 2011. • Pine Island Glacier retreated 31 km at its center,

with most retreat in 2005–2009 when the glacier ungrounded from its ice plain.

• Thwaites Glacier retreated 14 km along its fast flow core and 1 to 9 km along the sides. Haynes Glacier retreated 10 km along its flanks.

• Smith/Kohler glaciers retreated the most, 35 km along its ice plain, and its ice shelf pinning points are vanishing.

• These rapid retreats proceed along regions of retrograde bed elevation. Upstream of the 2011 grounding line positions, we find no major bed obstacle that would prevent the glaciers from further retreat and draw down the entire basin.

Thwaites

Smith / Kohler

Pine Island

Page 25: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate

by Cornford et al., 2015, TC,9

Figure 8. Change in volume above flotation (V (t)) in the Amundsen Sea Embayment during the melt rate anomaly experiments. Our most extreme simulation of widespread dynamic thinning in West Antarctica’s fast-flowing ice streams results in 200mm of eustatic sea level rise by 2100 and 475mm by 2200. Pine Island and Thwaites Glaciers see their grounding lines retreat by hundreds of kilometers, as do the Möller, Institute, Evans, MacAyeal, Bindschadler, Whillans and Mercer ice streams and to a lesser extent Carlson Inlet and the Rutford Ice Stream.

Page 26: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Figure 2. Antarctic contribution to Global Mean Sea Level. a, Predicted sea-level contribution from the Antarctic ice sheet for ‘high’ and ‘low’ simulations (coloured lines) under each of the four RCP scenarios (darker shading), based on coeval climatic and oceanic perturbations. The forced response (grey shading) represents 20% to 36% of the committed response by 5000 ce. Lighter shading between coloured lines shows rates of sea-level-equivalent ice loss for each scenario.

The multi-millennial Antarctic commitment to future sea-level rise by Golledge et al. 2015

Nature 526(15 October 2015) DOI:doi:10.1038/nature15706

Page 27: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Prognostics for the future

RangebyIPCC2013

Page 28: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

RangebyIPCC2013+WAIS?

Prognostics for the future

Page 29: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic
Page 30: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate

by Cornford et al., 2015, TC,9

Page 31: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

a, Predicted sea-level contribution from the Antarctic ice sheet for ‘high’ and ‘low’ simulations (coloured lines) under each of the four RCP scenarios (darker shading), based on coeval climatic and oceanic perturbations. The forced response (grey shading) represents 20% to 36% of the committed response by 5000 ce. Lighter shading between coloured lines shows rates of sea-level-equivalent ice loss for each scenario. b, Long-term sea-level commitment as a function of atmospheric warming (blue shading with squares). Intermediate response curves for the ‘low’ simulations are shown as dotted lines. Red shading with triangles shows the relationship between ice-shelf area and atmospheric warming for the near-equilibrium response and for intermediate stages (dotted lines). All curves in b are based on data from the four RCP scenario simulations, further constrained by two additional experiments whose maximum air temperature forcings are 1.5 °C and 3.35 °C. Pink shading defines the temperature range within which an ice shelf extent that is less than 50% of the present extent is simulated.

The multi-millennial Antarctic commitment to future sea-level rise by Golledge et al. 2015Nature Volume: 526, Pages:421–425 Date published:(15 October 2015) DOI:doi:10.1038/nature15706

Page 32: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

The multi-millennial Antarctic commitment to future sea-level rise by Golledge et al. 2015Nature Volume: 526, Pages:421–425 Date published:(15 October 2015) DOI:doi:10.1038/nature15706

Emissions-forced climate warming to 2100 ce (a, d, g, j) and 2300 ce (b, e, h, k) results in initial sea-level contributions from Antarctica that are only a small proportion of the total sea-level commitment by 5000 ce (c, f, i, l). Magnitudes and rates of sea-level contributions are shown for each panel. Leading values and those in parentheses relate to ‘low’ and ‘high’ scenarios respectively. Ice extent for ‘low’ simulations is shown in white; blue lines show grounding-line locations for ‘high’ simulations. Pale blue shading shows grounded ice lost in ‘high’ simulations but present in the ‘low’ scenario. Note the increasing divergence between ‘high’ and ‘low’ beyond 2300 ce. Grey texturing indicates areas of relatively faster-flowing ice. WAIS, West Antarctic Ice Sheet; EAIS, East Antarctic Ice Sheet; FRIS, Filchner–Ronne Ice Shelf.

Page 33: Veijo Pohjola, professor i naturgeografi/ glaciologi, Uppsala universitet, Institutionen för geovetenskaper, Geocentrum State of the Arctic

Ice-dynamic projections of the Greenland ice sheet in response to

atmospheric and oceanic warming

by J. J. Fürst, H. Goelzer, and P. Huybrechts