vectors in mechanics

37
Vectors in mechanics Photo: Wikimedia.org

Upload: scienceeducationexpert

Post on 02-Jul-2015

137 views

Category:

Education


3 download

DESCRIPTION

Newtonian mechanics in vector form: Elements of vectors, operations on vectors, kinematics, Laws of Newton, Momentum & Impulse

TRANSCRIPT

Page 1: Vectors in mechanics

Vectors

in mechanics

Photo: Wikimedia.org

Page 2: Vectors in mechanics

Quantities

Vectors in mechanics 2

Scalar quantities Vector quantities

mass m (kg)

energy E (J)

power P (W)

displacement 𝑠 (π‘š)

velocity 𝑣 (π‘šπ‘ βˆ’1)

acceleration π‘Ž (π‘šπ‘ βˆ’2)

force 𝐹 (𝑁)

momentum 𝑝 (π‘˜π‘”π‘šπ‘ βˆ’1) torque 𝑇 (π‘π‘š)

β€’ Magnitude β€’ Magnitudeβ€’ Directionβ€’ Point of application

Page 3: Vectors in mechanics

Vectors in mechanics 3

Vector notation

𝐹 arrow above orF bold face

6.0 π‘π‘š

30 𝑁

6.0π‘π‘š β‰œ 30𝑁

1.0π‘π‘š β‰œ 5.0𝑁 Scale

Head

Tail

Page 4: Vectors in mechanics

Point of application matters,…

Vectors in mechanics 4

𝐹

𝐹

Page 5: Vectors in mechanics

but…is often compromised…

Vectors in mechanics 5

𝐹𝑔

πΉπ‘Žπ‘–π‘Ÿ

πΉπ‘Ÿπ‘œπ‘Žπ‘‘

𝐹𝑛

𝐹𝑔

πΉπ‘Ÿπ‘œπ‘Žπ‘‘

𝐹𝑛

πΉπ‘Žπ‘–π‘Ÿ

𝐹𝑔

πΉπ‘Ÿπ‘œπ‘Žπ‘‘

𝐹𝑛

πΉπ‘Žπ‘–π‘Ÿ

…to make life easier

Page 6: Vectors in mechanics

Basic operations with vectors

Vectors in mechanics 6

Adding vectors 𝐹𝑛𝑒𝑀 = πΉπ‘œπ‘™π‘‘1 + πΉπ‘œπ‘™π‘‘2

Subtracting vectors 𝐹𝑛𝑒𝑀 = πΉπ‘œπ‘™π‘‘1 βˆ’ πΉπ‘œπ‘™π‘‘2

Multiplying a vector with a scalar 𝐹𝑛𝑒𝑀 = π‘Ž βˆ™ πΉπ‘œπ‘™π‘‘

Resolving a vector into components 𝐹𝑛𝑒𝑀1 + 𝐹𝑛𝑒𝑀2 = πΉπ‘œπ‘™π‘‘

a = 2

πœ‘πΉ βˆ™ πΆπ‘œπ‘  πœ‘

𝐹 βˆ™ 𝑆𝑖𝑛 πœ‘ 𝐹

Page 7: Vectors in mechanics

Resolve a vector along 2 working lines

Vectors in mechanics 7

𝐹𝑛𝑒𝑀1

𝐹𝑛𝑒𝑀2

πΉπ‘œπ‘™π‘‘

copy

copy

πΉπ‘œπ‘™π‘‘ = 𝐹𝑛𝑒𝑀1+ 𝐹𝑛𝑒𝑀2

𝐹𝑛𝑒𝑀1 =?

𝐹𝑛𝑒𝑀2 =?

πΉπ‘œπ‘™π‘‘

2 given working lines

Page 8: Vectors in mechanics

Displacement vs. Distance

Vectors in mechanics 8

Type equation here.

𝑠1

𝑠2 = 𝑠1 + βˆ† 𝑠

βˆ† 𝑠 = 𝑠2 βˆ’ 𝑠1

vector scalar

Do not interpret β€˜s’as the distance, because it represents the magnitude of the displacement vector 𝑠

Page 9: Vectors in mechanics

Velocity vs. Speed

Vectors in mechanics 9

π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ =π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘

π‘‘π‘–π‘šπ‘’π‘ π‘π‘’π‘’π‘‘ =

π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’

π‘‘π‘–π‘šπ‘’

vector scalar

Page 10: Vectors in mechanics

Average vs. Instantaneous

Vectors in mechanics 10

t(s)

s(m)

βˆ†π‘ 

βˆ†π‘‘

π‘£π‘Žπ‘£π‘” 5𝑠 β†’ 10𝑠 =𝑠 10 βˆ’ 𝑠 5

10 βˆ’ 5=βˆ†π‘ 

βˆ†π‘‘

= gradient of the secant line= difference quotient

= gradient of the tangent= differential quotient

𝑣 5𝑠 = lim𝑑𝑑→0

𝑠 5 + 𝑑𝑑 βˆ’ 𝑠(5)

5 + 𝑑𝑑 βˆ’ 5=𝑑𝑠

𝑑𝑑= 𝑠′

Page 11: Vectors in mechanics

Acceleration – notation issues

Vectors in mechanics 11

π‘Ž =βˆ†π‘£

βˆ†π‘‘=𝑣 βˆ’ 𝑒

βˆ†π‘‘

π‘Ž =βˆ†π‘£

βˆ†π‘‘=𝑣2 βˆ’ 𝑣1βˆ†π‘‘

Initial velocity = 𝑒

Initial velocity = 𝑣0

Movement along a straight line:β€’ 𝑠 β†’ 𝑠 π‘œπ‘Ÿ π‘₯β€’ 𝑣 β†’ 𝑣‒ π‘Ž β†’ π‘Žβ€’ Choose an originβ€’ Choose a + direction!

𝑣

𝑠 +

me

Page 12: Vectors in mechanics

π‘Ž =βˆ†π‘£

βˆ†π‘‘β‡’ βˆ†π‘£ = π‘Ž βˆ™ βˆ†π‘‘ β‡’ 𝑣 βˆ’ 𝑣0 = π‘Ž βˆ™ 𝑑 βˆ’ 𝑑0 β‡’ 𝑣 = 𝑣0 + π‘Ž 𝑑 βˆ’ 𝑑0

Uniformly accelerated motion - I

Vectors in mechanics 12

𝑑

𝑣

π‘‘π‘œ

π‘£π‘œ

π‘Ž > 0

𝑑

𝑣

π‘‘π‘œ

π‘£π‘œ

π‘Ž < 0

Page 13: Vectors in mechanics

Uniformly accelerated motion - II

Vectors in mechanics 13

𝑑

𝑣

𝑑1

𝑣1

𝑑2

𝑣2

π‘£π‘Žπ‘£π‘”

𝑑

𝑣

𝑑1

𝑣1

𝑑2

𝑣2

π‘£π‘Žπ‘£π‘”

π‘£π‘Žπ‘£π‘” =𝑣1 + 𝑣22

Page 14: Vectors in mechanics

π‘£π‘Žπ‘£π‘” =βˆ†π‘ 

βˆ†π‘‘β‡’ βˆ†π‘  = π‘£π‘Žπ‘£π‘” βˆ™ βˆ†π‘‘

Uniformly accelerated motion - III

Vectors in mechanics 14

π‘£π‘Žπ‘£π‘” =𝑣 + 𝑣02

βˆ†π‘  =𝑣 + 𝑣02

βˆ™ βˆ†π‘‘

𝑣 = 𝑣0 + π‘Ž βˆ™ βˆ†π‘‘

βˆ†π‘  =𝑣0 + π‘Ž βˆ™ βˆ†π‘‘ + 𝑣0

2βˆ™ βˆ†π‘‘ = 𝑣0 + 1 2π‘Ž βˆ™ βˆ†π‘‘ βˆ™ βˆ†π‘‘ β‡’ 𝑠 = 𝑠0 + 𝑣0 βˆ™ 𝑑 βˆ’ 𝑑0 + 1 2 π‘Ž βˆ™ 𝑑 βˆ’ 𝑑0

2

Page 15: Vectors in mechanics

Uniformly accelerated motion - IV

Vectors in mechanics 15

𝑠 = 𝑠0 + 𝑣0 βˆ™ 𝑑 βˆ’ 𝑑0 + 1 2π‘Ž βˆ™ 𝑑 βˆ’ 𝑑02

𝑑

𝑣

π‘‘π‘œ

π‘£π‘œ

π‘Ž > 0

𝑣 = 𝑣0 + π‘Ž 𝑑 βˆ’ 𝑑0

𝑑

𝑠

π‘‘π‘œ

π‘ π‘œ

Gradient of tangent = 𝑣0

Page 16: Vectors in mechanics

Uniformly accelerated motion - V

Vectors in mechanics 16

𝑠 = 𝑠0 + 𝑣0 βˆ™ 𝑑 βˆ’ 𝑑0 + 1 2π‘Ž βˆ™ 𝑑 βˆ’ 𝑑02

𝑑

𝑣

π‘‘π‘œ

π‘£π‘œ

π‘Ž < 0

𝑣 = 𝑣0 + π‘Ž 𝑑 βˆ’ 𝑑0

𝑑

𝑠

π‘‘π‘œ

π‘ π‘œ

Page 17: Vectors in mechanics

Uniformly accelerated motion - VI

Vectors in mechanics 17

𝑠 = 𝑠0 + 𝑣0 βˆ™ 𝑑 βˆ’ 𝑑0 + 1 2π‘Ž βˆ™ 𝑑 βˆ’ 𝑑02

𝑣 = 𝑣0 + π‘Ž 𝑑 βˆ’ 𝑑0General equations

𝑑0 = 0 Generally

𝑠0 = 0 Accelerationfrom rest𝑣0 = 0

𝑠 = 𝑠0 + 𝑣0 βˆ™ 𝑑 + 1 2π‘Ž βˆ™ 𝑑2

𝑣 = 𝑣0 + π‘Žπ‘‘

𝑠 = 1 2π‘Ž βˆ™ 𝑑2

𝑣 = π‘Žπ‘‘

Page 18: Vectors in mechanics

The math behind kinematics

Vectors in mechanics 18

π‘Ž 𝑑 =𝑑𝑣

𝑑𝑑= 𝑣′ 𝑑 = 𝑠′′ 𝑑

𝑣 𝑑 =𝑑𝑠

𝑑𝑑= 𝑠′ 𝑑

𝑠0

𝑠

𝑑𝑠 = 𝑑0

𝑑

𝑣 βˆ™ 𝑑𝑑

𝑣0

𝑣

𝑑𝑣 = 𝑑0

𝑑

π‘Ž βˆ™ 𝑑𝑑

𝑠 𝑑 Displacement

Velocity

Acceleration π‘Ž 𝑑

Differentiation

Differentiation

Integration

Integration

Page 19: Vectors in mechanics

Displacement diagrams

Vectors in mechanics 19

𝑑

𝑠

𝑑

𝑠

βˆ†π‘‘

βˆ†π‘‘

βˆ†π‘ 

βˆ†π‘ 

Determine 𝑑 read 𝑑-axis

Determine 𝑠 read 𝑠-axis

Determine 𝑣 gradient of the tangent

Determine π‘Ž

Page 20: Vectors in mechanics

Velocity diagrams

Vectors in mechanics 20

Determine 𝑑 read 𝑑-axis

Determine 𝑠 area under the graph

Determine 𝑣 read 𝑣-axis

Determine π‘Ž gradient of the graph

𝑑

𝑣1

𝑑

𝑣

𝑑1 𝑑2

𝑑1 𝑑2

𝑣2

βˆ†π‘£

βˆ†π‘‘

Page 21: Vectors in mechanics

Acceleration diagrams

Vectors in mechanics 21

π‘Ž

π‘Ž

Determine 𝑑 read 𝑑-axis

Determine 𝑠

Determine 𝑣 area under the graph

Determine π‘Ž read π‘Ž-axis

𝑑1 𝑑2

𝑑1 𝑑2

Page 22: Vectors in mechanics

Relative velocity - I

Vectors in mechanics 22

How much time does it take A to catch up on B?

𝑣𝐴𝐡 = 𝑣𝐴 βˆ’ 𝑣𝐡 = 15 βˆ’ 10 = 5π‘šπ‘ βˆ’1 β‡’ βˆ†π‘‘ = βˆ†π‘ π΄π΅

𝑣𝐴𝐡 = 1005 = 20 𝑠

𝑣𝐴 = 15 π‘šπ‘ βˆ’1 𝑣𝐡 = 10 π‘šπ‘ 

βˆ’1

100 π‘š

How much time does it take A to β€˜meet’ B?

𝑣𝐴𝐡 = 𝑣𝐴 βˆ’ 𝑣𝐡 = 15 βˆ’ βˆ’10 = 25π‘šπ‘ βˆ’1 β‡’ βˆ†π‘‘ = βˆ†π‘ π΄π΅π‘£π΄π΅ = 150

25 = 6.0 𝑠

𝑣𝐴 = 15 π‘šπ‘ βˆ’1 𝑣𝐡 = 10 π‘šπ‘ 

βˆ’1

150 π‘š

A

A

B

B

Page 23: Vectors in mechanics

Relative velocity - II

Vectors in mechanics 23

How fast does A approach B? 𝑣𝐴 = 15 π‘šπ‘ βˆ’1

𝑣𝐡 = 10 π‘šπ‘ βˆ’1

B

30Β°

30Β°

𝑣𝐡

𝑣𝐴

𝑣𝐴𝐡

𝑣𝐴𝐡π‘₯

𝑣𝐴𝐡𝑦

𝑣𝐴𝐡π‘₯ = 15πΆπ‘œπ‘  30Β° βˆ’ 10 = 3.0 mπ‘ βˆ’1

𝑣𝐴𝐡𝑦 = 15𝑆𝑖𝑛 30Β° = 7.5 mπ‘ βˆ’1

𝑣𝐴𝐡 = 3.02 + 7.52 = 8.1 π‘šπ‘ βˆ’1

Page 24: Vectors in mechanics

Forces

Vectors in mechanics 24

Name Symbol Value Direction Point of application

Weight πΉπ‘Š πΉπ‘Š = m βˆ™ 𝑔 To the centre of the Earth Center of mass

Friction 𝐹𝐹 𝐹𝐹 = 𝑓 βˆ™ 𝐹𝑁 βˆ₯ to surface Contact surface

Air resistance πΉπ΄π‘–π‘Ÿ 𝐹𝐴 = 1 2πœŒπΆπ·π΄π‘£2 βˆ’ 𝑣 Front of moving object

Rolling resistance 𝐹𝑅 𝐹𝑅 = 𝐢𝑅 βˆ™ 𝐹𝑁 βˆ’ 𝑣 Contact surface

Buoyancy, Upthrust πΉπ‘ˆ πΉπ‘ˆ = 𝜌 βˆ™ 𝑉 βˆ™ 𝑔 Along pressure gradient 𝛻𝑝 Lowest point of object

Tension 𝐹𝑇 Reaction force βˆ₯ the cord End of the cord

Contact force πΉπ‘ƒπ‘’π‘ β„Ž 𝐹𝑁 Reaction force βŠ₯ surface Contact surface

Page 25: Vectors in mechanics

Tension, Compression, Shear

Vectors in mechanics 25

Compression

Tension

Shear

Page 26: Vectors in mechanics

Resultant, Net, Overall force

Vectors in mechanics 26

πΉπ‘Š

πΉπ΄π‘–π‘Ÿ

Σ 𝐹

𝐹𝑁𝐸𝑇𝑇

𝐹𝑅𝐸𝑆

Σ 𝐹1st choice

Page 27: Vectors in mechanics

Linear momentum

Vectors in mechanics 27

𝑝 = π‘š 𝑣 Momentum is conserved in an isolated system Ξ£ 𝑝 = constant

π‘šπ΄ = 5.0 𝑔

𝑣𝐴 = 300 π‘šπ‘ βˆ’1

π‘šπ΅ = 1.0 π‘˜π‘”

𝑣𝐡 = 0

𝑣𝑒𝑛𝑑 ?

Ξ£π‘π‘π‘’π‘“π‘œπ‘Ÿπ‘’ = Ξ£π‘π‘Žπ‘“π‘‘π‘’π‘Ÿ β‡’ π‘šπ΄ βˆ™ 𝑣𝐴 +π‘šπ΅ βˆ™ 𝑣𝐡 = π‘šπ΄ +π‘šπ΅ βˆ™ 𝑣𝑒𝑛𝑑

5.0 βˆ™ 10βˆ’3 βˆ™ 300 + 1.0 βˆ™ 0 = 5.0 βˆ™ 10βˆ’3 + 1.0 βˆ™ 𝑣𝑒𝑛𝑑 β‡’ 𝑣𝑒𝑛𝑑 = 1.5 π‘šπ‘ βˆ’1

Page 28: Vectors in mechanics

Newton’s laws

Vectors in mechanics 28

For each separate object:

Between objects:

Ξ£ 𝐹 =Ξ” 𝑝

Δ𝑑Σ 𝐹 = π‘š

Ξ” 𝑣

Δ𝑑⇒ Ξ£ 𝐹 = π‘š π‘Ž

Constant mass2

If the resultant force on an object is zero, the object is in β€œtranslational equilibrium”1

3 βˆ† 𝑝𝐴 = βˆ’βˆ† 𝑝𝐡 β‡’βˆ† π‘π΄βˆ†π‘‘=βˆ† π‘π΅βˆ†π‘‘

β‡’ 𝐹𝐴𝐡 = βˆ’ 𝐹𝐡𝐴

𝐹𝐡𝐴 𝐹𝐴𝐡

A B

β€œForce by A on B”

Wikimedia.org

Page 29: Vectors in mechanics

Newton’s laws – Example (1/5)

Vectors in mechanics 29

Neglect air resistance in this problem.

A caravan (820 kg) is pulled by a car. The combination accelerates with π‘Ž = 0.60 π‘šπ‘ βˆ’2.The caravan is subject to a rolling resistance of πΉπ‘Ÿπ‘œπ‘™π‘™ = 1.2 βˆ™ 10

2𝑁

Question 1: Calculated the pulling force by the car on the caravan.

The car with passengers (total 1580 kg) is subject to a rolling resistance of 1.6 βˆ™ 102𝑁 during the acceleration.

Question 2: Calculate the forward force by the road on the car.

Page 30: Vectors in mechanics

Newton’s laws – Example (2/5)

Vectors in mechanics 30

A

B

π‘šπ΄ = 1580 π‘˜π‘”

π‘šπ΅ = 820 π‘˜π‘”

π‘Ž = 0.60π‘šπ‘ βˆ’2

+

Preparation: Make sketch of the connected car & caravan. Designate them β€˜A’ & β€˜B’.List the information given in the text: mass, acceleration and define a PLUS direction!

Page 31: Vectors in mechanics

Newton’s laws – Example (3/5)

Vectors in mechanics 31

A

B

π‘šπ΄ = 1580 π‘˜π‘”

π‘šπ΅ = 820 π‘˜π‘”

π‘Ž = 0.60π‘šπ‘ βˆ’2

+

𝐹𝐴𝐡

πΉπ‘Ÿπ‘œπ‘™π‘™,𝐡 = βˆ’1.2 βˆ™ 102𝑁

1: Draw the relevant force vectors on the caravan

Question 1

2: Apply 2nd law on B

Ξ£ 𝐹𝐡 = π‘šπ΅ π‘Ž β‡’ 𝐹𝐴𝐡 + πΉπ‘Ÿπ‘œπ‘™π‘™,𝐡 = π‘šπ΅ π‘Ž β‡’ 𝐹𝐴𝐡 + βˆ’1.2 βˆ™ 102 = 820 βˆ™ +0.60 β‡’ 𝐹𝐴𝐡 = 612𝑁

Round result to 6.1 βˆ™ 102𝑁

Page 32: Vectors in mechanics

Newton’s laws – Example (4/5)

Vectors in mechanics 32

A

B

π‘šπ΄ = 1580 π‘˜π‘”

π‘šπ΅ = 820 π‘˜π‘”

π‘Ž = 0.60π‘šπ‘ βˆ’2

+

𝐹𝐴𝐡 = 612𝑁

πΉπ‘Ÿπ‘œπ‘™π‘™,𝐡 = βˆ’1.2 βˆ™ 102𝑁

1: Add the relevant force vectors on the car

Question 2

3: Apply 2nd law on A

Round result to 1.7 βˆ™ 103𝑁

𝐹𝐡𝐴

πΉπ‘Ÿπ‘œπ‘™π‘™,𝐴 = βˆ’1.6 βˆ™ 102𝑁

πΉπ‘Ÿπ‘œπ‘Žπ‘‘,𝐴

2: Apply 3rd law on A: 𝐹𝐡𝐴 = βˆ’ 𝐹𝐡𝐴 = βˆ’612𝑁

Ξ£ 𝐹𝐴 = π‘šπ΄ π‘Ž β‡’ πΉπ‘Ÿπ‘œπ‘Žπ‘‘,𝐴 + 𝐹𝐡𝐴 + πΉπ‘Ÿπ‘œπ‘™π‘™,𝐴 = π‘šπ΅ π‘Ž β‡’ πΉπ‘Ÿπ‘œπ‘Žπ‘‘,𝐴 βˆ’ 612 βˆ’ 1.6 βˆ™ 102 = 1580 βˆ™ 0.60 β‡’ πΉπ‘Ÿπ‘œπ‘Žπ‘‘,𝐴 = 1720𝑁

Page 33: Vectors in mechanics

Newton’s laws – Example (5/5)

Vectors in mechanics 33

A

B

π‘šπ΄ = 1580 π‘˜π‘”

π‘šπ΅ = 820 π‘˜π‘”

π‘Ž = 0.60π‘šπ‘ βˆ’2

+

𝐹𝐴𝐡

πΉπ‘Ÿπ‘œπ‘™π‘™,𝐡 = βˆ’1.2 βˆ™ 102𝑁

1: Add the relevant force vectors on the car

Question 2: Alternative solution: treat A & B as combination AB

3: Apply 2nd law on A and B together

Round result to 1.7 βˆ™ 103𝑁

𝐹𝐡𝐴

πΉπ‘Ÿπ‘œπ‘™π‘™,𝐴 = βˆ’1.6 βˆ™ 102𝑁

πΉπ‘Ÿπ‘œπ‘Žπ‘‘,𝐴

2: Regard the combination as a whole. Now 𝐹𝐴𝐡 and 𝐹𝐡𝐴 are internal forces and cancel out !

Ξ£ 𝐹𝐴𝐡 = π‘šπ΄ +π‘šπ΅ π‘Ž β‡’ πΉπ‘Ÿπ‘œπ‘Žπ‘‘,𝐴 + πΉπ‘Ÿπ‘œπ‘™π‘™,𝐴 + πΉπ‘Ÿπ‘œπ‘™π‘™,𝐡 = π‘šπ΄ +π‘šπ΅ π‘Ž β‡’

β‡’ πΉπ‘Ÿπ‘œπ‘Žπ‘‘,𝐴 βˆ’ 1.2 βˆ™ 102 βˆ’ 1.6 βˆ™ 102 = 1580 + 820 βˆ™ 0.60 β‡’ πΉπ‘Ÿπ‘œπ‘Žπ‘‘,𝐴 = 1720𝑁

AB

Page 34: Vectors in mechanics

Impulse

Vectors in mechanics 34

𝐹 =βˆ† 𝑝

βˆ†π‘‘β‡’ βˆ† 𝑝 = 𝐹 βˆ™ βˆ†π‘‘

π‘š βˆ™ βˆ† 𝑣 = 𝐹 βˆ™ βˆ†π‘‘

π‘š βˆ™ 𝑣2 βˆ’ 𝑣1 = 𝑑0

𝑑1 𝐹 𝑑 βˆ™ 𝑑𝑑

Constant mass

𝐹

𝑑𝑑1 𝑑2

Constant force

Photo: Wikimedia.org

Page 35: Vectors in mechanics

Impulse – Example (1/2)

Vectors in mechanics 35

𝐹 𝑁

𝑑

1000

A baseball (145 g) is thrown and flies with 155 m/s. The hitter’s club hits the ball frontally. Assume that the ballFlies back in the opposite direction. The force by the club on the ball is drawn in the diagram below.

Question: Determine the speed after the hit.

105π‘šπ‘ 

Page 36: Vectors in mechanics

Impulse – Example (2/2)

Vectors in mechanics 36

𝐹 𝑁

𝑑

1000

95π‘šπ‘ 

3: βˆ† 𝑝 = 𝐹 βˆ™ βˆ†π‘‘ β‡’ π‘š 𝑣2 βˆ’ 𝑣1 = βˆ’42.3

2: The impulse 𝐹 βˆ™ βˆ†π‘‘ equals the area under the graph. It can be approximated by the dashed triangle

𝐹 βˆ™ βˆ†π‘‘ =1

2Γ— 0.095 Γ— βˆ’900 = βˆ’42.3𝑁𝑠

1: make sketch and choose PLUS direction 𝑣1 = +155π‘šπ‘ 

βˆ’1

𝑣2

βˆ† 𝑝 = 𝐹 βˆ™ βˆ†π‘‘

Tock!

+ 𝐹

0.145 βˆ™ 𝑣2 βˆ’ 155 = βˆ’42.3

𝑣2 = βˆ’140π‘šπ‘ βˆ’1

4: Round to βˆ’1.4 βˆ™ 102π‘šπ‘ βˆ’1

(graph area reading uncertainty)

Page 37: Vectors in mechanics

END

Vectors in mechanics 37

DisclaimerThis document is meant to be apprehended through professional teacher mediation (β€˜live in class’) together with a physics text book, preferably on IB level.