vanadium

4
An Investigation of the Various Oxidation States of Vanadium Introduction Vanadium has a range of oxidation states from 0 to 5. The following experiments are designed to identify the colours of vanadium solutions for the various oxidation states, the ease with which the oxidation states can be formed and the stability of the compound once made. The practical work is divided into 2 sections. Table 1 Standard reduction potential, E o * -1.0 * Zn 2+ (aq) + 2e == Zn(s) * -0.8 <----------> * * -0.6 Fe 2+ (aq) + 2e == Fe(s) * <----------> * -0.4 V 3+ (aq) + e == V 2+ (aq) * <----> * -0.2 Sn 2+ (aq) + 2e ==== Sn * <---------> * 0.0 * SO 4 2- (aq)+4H + (aq)+2e==2H 2 O(l)+SO 2 (aq) * 0.2 <-----------> * VO 2+ +2H + +2e==2H 2 O+V 3+ Cu 2+ (aq)+2e==Cu(s) * 0.4 <----> <----------> * S 2 O 6 2- +4H + +2e==2H 2 O+2SO 2 I 2 (aq)+2e===2I - (aq) * 0.6 <----> <----> * Fe 3+ (aq)+e===Fe 2+ (aq) * 0.8 <----> * VO 2 + (aq)+2H + (aq)+e==VO 2+ (aq)+H 2 O(l) * 1.0 <----> Br 2 (aq)+2e=2Br - (aq) * <----> * 1.2 * * 1.4 MnO 4 - (aq)+8H + (aq)+5e===Mn 2+ (aq)+H 2 O(l) * <-----------------------------> * 1.6 * * * * * * * * * * * +-----+-----+-----+-----+----- +-----+-----+-----+-----+ 7 6 5 4 3 2 1 0 -1 -2 Oxidation number Apparatus: Test tubes and rack, bunsen burner, filter funnel and filter paper. Chemicals: Solid ammonium vanadate, sodium sulphate(III), Na 2 SO 3 ,

Upload: kasun1237459

Post on 30-Jan-2016

5 views

Category:

Documents


0 download

DESCRIPTION

about vanadium

TRANSCRIPT

Page 1: Vanadium

An Investigation of the Various Oxidation States of Vanadium

Introduction

Vanadium has a range of oxidation states from 0 to 5. The following experiments are designed to

identify the colours of vanadium solutions for the various oxidation states, the ease with which the

oxidation states can be formed and the stability of the compound once made. The practical work is

divided into 2 sections.

Table 1

Standard reduction potential, Eo

* -1.0

* Zn2+(aq) + 2e == Zn(s)

* -0.8 <---------->

*

* -0.6 Fe2+(aq) + 2e == Fe(s)

* <---------->

* -0.4 V3+(aq) + e == V2+(aq)

* <---->

* -0.2 Sn2+(aq) + 2e ==== Sn

* <--------->

* 0.0

* SO42-(aq)+4H+(aq)+2e==2H2O(l)+SO2(aq)

* 0.2 <----------->

* VO2+ +2H++2e==2H2O+V3+ Cu2+(aq)+2e==Cu(s)

* 0.4 <----> <---------->

* S2O62- +4H+ +2e==2H2O+2SO2 I2(aq)+2e===2I-(aq)

* 0.6 <----> <---->

* Fe3+(aq)+e===Fe2+(aq)

* 0.8 <---->

* VO2+(aq)+2H+(aq)+e==VO2+(aq)+H2O(l)

* 1.0 <----> Br2(aq)+2e=2Br-(aq)

* <---->

* 1.2

*

* 1.4 MnO4-(aq)+8H+(aq)+5e===Mn2+(aq)+H2O(l)

* <----------------------------->

* 1.6

* * * * * * * * * * * +-----+-----+-----+-----+-----+-----+-----+-----+-----+

7 6 5 4 3 2 1 0 -1 -2

Oxidation number

Apparatus: Test tubes and rack, bunsen burner, filter funnel and filter paper.

Chemicals: Solid ammonium vanadate, sodium sulphate(III), Na2SO3, crystals (for preparing SO2(aq),

tin (powder), zinc(powder), copper.

Bench solution: sodium thiosulphate, iron(II) sulphate potassium iodide, potassium bromide, iodine in

potassium iodide solution, sulphuric acid, iron(III) nitrate.

Page 2: Vanadium

Procedure

Begin the experiment with a solution of ammonium metavanadate; this is best made by dissolving

little of the solid in bench sulphuric acid. Mix solutions of substances as indicated in the following

table and carefully record your observations. In each case add the other solution to the vanadium

solution, or boil the solid with the vanadium solution and centrifuge or filter quickly.

Table 2

Substances to be mixed Observations

1. Ammonium metavanadate + iron(II) sulphate

2. Ammonium metavanadate + potassium iodide

3. Ammonium metavanadate + sulphuric acid + Na2SO3(s)

4. Ammonium metavanadate + tin

5. Ammonium metavanadate + zinc

Use the table of Eo values given in Table 1, and your observations made and recorded in Table 2, to

deduce the colours of the various oxidation states of vanadium. Record your deductions in Table 3.

(You must be careful to deduce colours bearing in mind the colours of other solutions likely to be

present. For instance, mixing blue and yellow will produce a green solution even if no chemical

reaction occurs.) If iodine is present; the colour of the other products can only be seen if the iodine is

converted to colourless iodide ions or removed in a solution of tetrachloromethane.

Table 3

Oxidation state V(V) V(IV) V(III) V(II)

Colour in solution

Again using value Eo in Table 1 and your deductions in Table 3, predict the likely experimental result

when substances are mixed as in Table 4. Your predictions should cover the expected oxidation state of

vanadium in the final solution and the likely observations.

Questions for discussion

1. Explain how you derived your prediction in table 4 (question 1,3, 5 only)

2. How did you make your solutions of V(II), V(III) and V(IV) for the experiment in table 4?

3. Comment on the stability of various oxidation state of vanadium.

4. After completing your predictions, test your predictions by carrying out the actual experiments.

After completing your prediction, show them to your teacher. After marking, test your prediction by

carrying out the actual experiments.

Table 4

Substances

to be mixed

Prediction Experimental result

1. V(IV) + V(II)

2. V(V) + V(III)

3. V(V) + V(II)

4. V(IV) + Fe(III)

5. V(III) + Fe(III)

6. V(IV) + I(-1)

7. V(V) + Br(-1)

Page 3: Vanadium

8. V(III) + I(0)

9. V(IV) + I(0)

10. V(V) + Cu(0)

1. Explain the term 'electrochemical force (e.m.f.) of a chemical cell'.

2. What is the oxidation state of vanadium in ammonium metavanadate?

3. What is the ion present (in table 2) when vanadium has an oxidation number of 4?

4. Why is standard electrode important in electrochemistry?

5. If the standard reduction potential of an electrode A is negative while the standard reduction

potential of an electrode B is positive, what physical significance should be observed? What

experimental data should you search for the confirmation of the physical significance?

6. If you predict that the position of a redox equilibrium favours the product side but no product is

found, what explanation can you give?

End