valence stability and madelung self-site potential of ... · madelung lattice site potentials in...

24
The Intnl Conf 20th AnneversaryETH,Sept.4-6,2008 Valence Stability and Madelung Valence Stability and Madelung Self-Site Potential of Self Site Potential of Alliovalent Ions in Various Oxide Lattices Masahiro YOSHIMURA (Tokyo Institute of Technology, Japan)

Upload: others

Post on 25-Sep-2020

14 views

Category:

Documents


1 download

TRANSCRIPT

  • The Intnl Conf 20th Anneversary、ETH,Sept.4-6,2008

    Valence Stability and Madelung Valence Stability and Madelung Self-Site Potential of Self Site Potential of

    Alliovalent Ions in Various Oxide Lattices

    Masahiro YOSHIMURA(Tokyo Institute of Technology, Japan)

  • The latest 20 years are displayed

    Results found: 490

    Sum of the Times Cited [?] : 8,009

    A Ci i I [?] 16 34Average Citations per Item [?] : 16.34

    h-index [?] : 44

  • Thi f dThis was referedBy R.Roy in his Orton lecture at Am Ceram SocAm.Ceram.Soc. 1976,Bull.Am.

    Ceram.Soc.(1976)

  • CeO2+(1/2)V2O5 CeVO4+(1/4)O2Ce3+[V5+O4]

    Cerium was reduced in air.

    This compd does not decompose

    Zircon structure

    TG-DTA curves for the reaction

    This compd does not decompose (oxidize) even under Po2>103 atm.

    In air (Po2=0.21 atm)(Yoshimura ’69)

  • Ce O

    The relationship between the oxygen partial pressure and the composition of Cerium oxide. (a) 1000, 1100, and 1200°C; 8b) 1153, 1200, 1249, 1310,

    Ce2O3

    and 1130°C Kitayama, et al. (’85)J. Solid State Chem.

  • e (°

    C)

    mpe

    ratu

    re

    °C

    VO2Te

    m 700°C

    10-5

    VO V2O3 VO2 V2P5

    VO – V2O5 phase diagram

  • Recent Papers on Valence Stability of Rare Earth Ions

    1) “Understanding of the Valency of Rare Earths from First-principle Theory,” P. Strange, A. Svane, W. M. Temmermann, Z. Szotek, and H Winter, Nature 399 (24 June 1999) 756-758

    2) “Valence Stability of Lanthanide Ions in Inorganic2) Valence Stability of Lanthanide Ions in Inorganic Compounds,” P. Dorenbos, Chem. Mater. 17 (2005) 6452-6456

    3) “The Eu3+ Charge Transfer Energy and the Relation with the Band Gap of Compounds,” P. Dorenbos, J. Lumin, 111 (2005) 89-104111 (2005) 89 104

    4) “Stability of Rare Earth Oxychloride Phases: Bond Valence Study,” J. Hölsä, M. Lahtinen, M. Lastusaari, J. V lk d J Vij J S lid St t Ch 165 (2002)Valkonen, and J. Vijanen, J. Solid State Chem., 165 (2002) 48-55

    5) “Critical Materials Problems in Fuel Cells: SOFC’S,” H. 5) C t ca ate a s ob e s ue Ce s SO C S,Yokokawa, Oxford, April 02, 2007

  • Figure 4. EFf for Eu2+ in oxide, chloride, and sulfide compounds. The solid triangle symbols pertain to Eu on Ba2+, Sr2+, Ca2+, or Mg2+ sites and in addition to Eu in RbCl and KCl The other data are the same data as in Figure 3 and pertain to Eu in trivalent rareKCl. The other data are the same data as in Figure 3 and pertain to Eu in trivalent rare earth oxide compounds. The box around date with EVC > 8 eV and EFf < 0.7 eV contains alkaline carth compounds in which Eu2+ can be obtained even under oxidizing conditions. P. Dorenbos, Chem. Mater. (2005) 17, 6452

  • H. Yokokawa (AIST, Japan), Apr. 2007

  • Enthalpy Diagram for the reduction of rare earth (A) Manganates; T. Nakamura (1985)a py ag a o e educ o o a e ea ( ) a ga a es; a a u a ( 985)AMnO3(s) = ½ A2O3(s) + MnO(s) + ¼ O2(g)

  • Energy Diagram for the Reaction: MO (s) + O2(g) → MO2(s) 【 ∆G°r 】32

    14

    U L tti D Di i ti A El t ffi itU: Lattice energy, D: Dissociation energy, A: Electron affinityHf°: Standard formation enthalpy, I4: 4th Ionization energy

  • MO + 1/2O = MO ··· ΔGMO3/2 + 1/2O2 = MO2 ··· ΔG

    T=TT=0

    MO3/2

    ΔG ΔGº (=ΔHº)

    MOMO2

  • sublattice

  • Madelung Lattice Site Potentials in Europium Containing Oxide

    Lattice site potential

    Madelung Lattice Site Potentials in Europium Containing Oxide

    Compound structureLattice site potential

    φEu φM φO

    EuO NaCl -1.359 1.359

    Eu2+ EuTiO3 Perovskite -1.380 -3.171 1.653

    Eu3O4 Eu3O4 -1.377 -2.076/-2.088 1.423~1.4573 4 3 4Eu2O3 B-type -2.081~-2.107 1.432~1.507

    EuFeO3 Perovskite -2.051 -2.500 1.576/1.602

    Eu3+

    3

    EuMnO3 Perovskite -2.055 -2.495 1.574/1.633

    EuScO Perovskite -2 038 -2 382 1 543/1 557EuScO3 Perovskite -2.038 -2.382 1.543/1.557

    Eu2Ti2O7 Pyrochlore -2.167 -3.100 1.523/1.640

    EuPO Zircon 2 116 4 160 1 882~1 970EuPO4 Zircon -2.116 -4.160 1.882~1.970

  • Madelung Lattice Site Potentials in Cerium Containing Oxide

    Compound structureLattice site potential

    φCe φM φO

    Ce2O3 A-type -2.036 1.400/1.405

    CeAlO3 Perovskite -1.965 -2.738 1.578/1.582

    Ce3+

    CeCrO3 Perovskite -1.908 -2.659 1.535

    CeGaO3 Perovskite -1.915 -2.669 1.540/1.547Ce

    CeVO4 Zircon -2.103 -3.697 1.803

    CeTaO4 d-Sheelite -2.136 -3.595 1.52~1.79

    LiCeO2 NaFeO2 -1.962 -1.080 1.438/1.474

    CeTa3O9 Layered Perovskite -2.126 -3.646/-3.660 1.679~1.808

    Ce4+

    CeO2 Fluorite -2.797 1.504

    BaCeO3 Perovskite -2.816 -1.226 1.468

    SrCeO3 Perovskite -2.893 -1.256 1.503

  • |ΦB| |ΦB|

    |ΦO| |ΦA|

    V V kit

    |ΦA| |ΦO|

    VA Vo no perovskite

    -ΦB

    Site self-potential and Madelung constant

    Φ

    For ideal Perovskite lattice, a = 3.881 Å

    ΦO

    1.20.03

    Φ Mqipiφi

    -ΦA Ma=-a2k

    U=332(Ma/a)

  • U=Ne2qp2k

  • 1/2La2O3+1/2Al2O3 LaAlO3ΔU=-35Kcal/mol

    Loss

    GainSite self potential change for the formation of LaMO3 from La2O3+M2O33 2 3 2 3

    Φ for Co2O3 and Ni2O3 in High-Spin & Low-Spin states are estimeated from pionic radii.

    Co3+, Ni3+ etc. stabilized by strong ΦMCo , Ni etc. stabilized by strong ΦM

    B-ion has a 6-coordination in LaMO3 aswell as in M2O3 (MO2, MO, ……..)

  • -1.2 1.2

    -1.6

    -1.4 OSrO , Sr SrO

    OO SrMO3

    Sr SrMO3

    1.6

    1.4

    2 0

    -1.8

    OMO2

    2 0

    1.8

    -2.2

    -2.0

    & φ

    M/Å

    2.2

    2.0

    φO

    / Å

    SrO+MO2=SrMO3

    -2.6

    -2.4

    φSr

    &

    2.6

    2.4

    ÅChange of Lattice Site P t ti l f E Sit

    -3 0

    -2.8

    MMO23 0

    2.8

    Potentials of Every Site in the ReactonSrO + MO2 = SrMO3

    3.9 4.0 4.1 4.2 4.3

    -3.2

    3.0

    M SrMO33.2

    3.0

    CoFe

    Ti Mo Sn PbTb Ce3.9 4.0 4.1 4.2 4.3

    a0

    of SrMO3

    /Å

    Fe

  • Lattice energy change in the formation of EuTiO3

    a) EuO + TiO2 = Eu2+Ti4+O3 + Q(-902) + (-3256) = (-4210) + (-52)( ) ( ) ( ) ( )

    (-4158)

    b) (1/2)Eu2O3+(1/2)Ti2O3=Eu3+Ti3+O3+Q(1/2)( 3570) + (1/2)( 4031) ( 3806) + ( 6)(1/2)(-3570) + (1/2)(-4031) = (-3806) + (-6)

    (-3800)

  • Perovskitee o s teCe3+Fe3+O3Is not compativle withCe2O3 nor Fe2O3!!Ce2O3 nor Fe2O3!!

    FeO Fe3O4 Fe2O3

    (’85)

  • Summary(1) Valence stability is different in ternary systems from binary

    systems.X P T di i ROX-PO2 – T diagram in ROxX-y-PO2 – T diagram in RMyOx

    (2) Valence stability is directly related to electrostatic lattice-site (2) Valence stability is directly related to electrostatic lattice site potential (φ),

    pqpqNeU 98.3312 φφ Σ⇒Σ=

    (3) for example:φ ≈ 1 36 1 38 for Eu2+ φ ≈ 2 04 2 17 for Eu3+

    kkNeU

    298.331

    2Σ⇒Σ

    [kcal/mol] for φ [Å]

    φ ≈ 1.36-1.38 for Eu2 , φ ≈ 2.04-2.17 for Eu3

    φ ≈ 1.8-2.1 for Ce3+, φ ≈ 2.8-2.9 for Ce4+

    (4) In perovskite (ABO3) lattice, High valency state in B-site & ( ) p ( 3) , g ydifficult defect formation in B-site due to strong φB potential.

    (5) CeO2 may be reduced during the reaction with MOx when M is high valent small ion and MO -rich parthigh valent, small ion and MOx-rich part.

    Oxysalt : Ce3+[MOy]x

  • Thanking Thanking

    Prof. Sata Prof. Somiya

    Colleagues