using the metric system a. why do scientists use the metric system? the metric system was developed...

128
Using the Metric System A. Why do scientists use the metric system? The metric system was developed in France in 1795 - used in all scientific work because it has been recognized as the world wide system of measurement since 1960. SI system is from the French for Le Systeme International d’Unites. The metric system is used in all scientific work because it is easy to use. The metric system is based upon multiples of ten. Conversions are made by simply moving the decimal point.

Upload: berenice-moore

Post on 25-Dec-2015

227 views

Category:

Documents


0 download

TRANSCRIPT

  • Slide 1
  • Using the Metric System A. Why do scientists use the metric system? The metric system was developed in France in 1795 - used in all scientific work because it has been recognized as the world wide system of measurement since 1960. SI system is from the French for Le Systeme International dUnites. The metric system is used in all scientific work because it is easy to use. The metric system is based upon multiples of ten. Conversions are made by simply moving the decimal point.
  • Slide 2
  • What is the basic unit of length? The meter a little longer than a yard
  • Slide 3
  • What do scientists use to measure the length of an object smaller than a yard? A centimeter one hundredth of a meter, so there are 100 centimeters in a meter A millimeter There are 1,000 millimeters in a meter
  • Slide 4
  • How do scientists measure long distances? The kilometer There are 1,000 meters in a kilometer
  • Slide 5
  • Which measurement to USE?
  • Slide 6
  • Base Units (Fundamental Units) QUANTITY NAME SYMBOL _______________________________________________ Length meter m ----------------------------------------------------------------------------- Mass gram g ------------------------------------------------------------------------------- Time second s ------------------------------------------------------------------------------- Temperature Kelvink -------------------------------------------------------------------------------- Volume(liquid)__________liter_____________L________________
  • Slide 7
  • SI Prefixes Prefix Symbol Multiplication Factor Term Micro u (0.000 001) one millionth Milli m (0.001) one thousandth Centi c (0.01) one hundredth Deci d (0.1) one tenth One Unit 1 one Deka dk 10 ten Hecto h 100 one hundred Kilo k 1000 one thousand Mega M 1 000 000 one million
  • Slide 8
  • Metric Units Used In This Class QUANTITY NAME SYMBOL Length meter m centimeter cm millimeter mm kilometer km Mass gram g kilogram kg centigram cg milligram mg Volume liter (liquid) L (l) milliliter (liquid) mL (ml) cubic centimeter (solid) cm3
  • Slide 9
  • Derived Units Base Units independent of other units-measure Derived Units combination of base units-calculated Examples density g/L mass / volume (grams per liter) volume m x m x m = meters cubed Velocity m/s (meters per second
  • Slide 10
  • SCIENTIFIC NOTATION Scientific Notation: Easy way to express very large or small numbers A.0 x 10 x A number with one non-zero digit before decimal x -exponent- whole number that expresses the number decimal places if x is (-) then it is a smaller if x is (+) than it is larger
  • Slide 11
  • PRACTICE Convert to NormalConvert to SN 2.3 x 10 23 m3,400,000, 3.4 x 10 -5 cm.0000000456
  • Slide 12
  • Multiplying Calculating in Scientific notation Multiplying- Multiple the numbers Add the exponents (2.0 x 10 4 ) (4.0 x 10 3 ) = 8.0 x 10 7
  • Slide 13
  • Dividing divide the numbers subtract the denominator exponent from the numerator exponent 9.0 x 10 7 3.0 x 10 2 3.0 x 10 5
  • Slide 14
  • Add Add or subtract get the exponents of all # to be the same calculate as stated make sure the final answer is in correct scientific notation form 7.0 x 10 4 + 3.0 x 10 3 = 7. 0 x 10 4 +.3 x 10 4 = 7.3 x 10 4 70,000 + 3,000 = 73000= 7.3 x10 4
  • Slide 15
  • subtract 7.0 x 10 4 - 3.0 x 10 3 = 7.0x 10 4 .30 x 10 4 = 6.7 x 10 4 70,000 - 3 000 =67,000
  • Slide 16
  • PRACTICE Add: 2.3 x 10 3 cm + 3.4 x 10 5 cm Subtract: 2.3 x 10 3 cm - 3.4 x 10 5 cm Multiply: : 2.3 x 10 3 cm X 3.4 x 10 5 cm Divide: : 2.3 x 10 3 cm / 3.4 x 10 5 cm
  • Slide 17
  • Significant figures http://www.youtube.com/watch?v=puvE8hF6zrY
  • Slide 18
  • value determined by the instrument of measurement plus one estimated digit reflects the precision of an instrument example if an instrument gives a length value to the tenth place you would estimate the value to the hundredths place Using Significant Figures (Digits)
  • Slide 19
  • Mathematical Operations Involving Significant Figures Multiplication and Division The answer must have the same number of significant figures as the measurement with the fewest significant figures.
  • Slide 20
  • Making Unit Conversions Make conversions by moving the decimal point to the left or the right using: king henry died unit drinking chocolate milk Examples 1. 10.0 cm = __________m 2. 34.5 mL = __________L 3. 28.7 mg = __________kg
  • Slide 21
  • Factor label method / Dimensional analysis Use equalities to problem solve converting units. quantity desired = quantity given x conversion factor (equality) A-given unit B-desired unit C-given unit A x B C B C must equal 1 use equality sheet
  • Slide 22
  • Equalities You Need To Know 1 km = 1000 m 1 m = 100 cm 1 m = 1000 mm 1L = 1000 mL 1kg = 1000g 1 g = 100cg 1 g = 1000 mg
  • Slide 23
  • ENGLISH TO METRIC 1 inch=2.5 centimeters 1 gal=3.8 liters 1lb= 4.4 Newtons 1qt =.94 Liters 1 ft =.30 meters 12 in =.30 meters 1 mi = 1.6 Km
  • Slide 24
  • Four-step approach When using the Factor-Label Method it is helpful to follow a four-step approach in solving problems: 1.What is question How many sec in 56 min 2. What are the equalities- 1 min = 60 sec 3. Set up problem (bridges) 56 min 60 sec 1 min 4. Solve the math problem -multiple everything on top and bottom then divide 56 x 60 / 1
  • Slide 25
  • Motion Describing and Measuring Motion How do you recognize motion? An object is in motion when its distance from another object is changing Movement depends on your point of view
  • Slide 26
  • Distance We all know what the distance between two objects is... So what is it? What is distance? What is length? ALSO - you can't use the words "distance" or "length" in your definition; that would be cheating.
  • Slide 27
  • Distance As you can see from your efforts, it is impossible to define distance. Distance is a fundamental part of nature. It is so fundamental that it's impossible to define. Everyone knows what distance is, but no one can really say what it is. However, distances can be compared.
  • Slide 28
  • Distance We can compare the distance between two objects to the distance between two other objects. For convenience, we create standard distances so that we can easily make comparisons... and tell someone else about them. This doesn't define distance, but it allows us to work with it.
  • Slide 29
  • Distance We'll be using meter as our standard for measuring distance. The symbol for distance is "d". And the unit for the meter is "m. d = 0.2 m
  • Slide 30
  • Distance Activity 1. Work in partners create a difference in position between you and a partner. Use a meter stick to determine the distance between you and your partner.( position A) 2. Now move to a different position. Measure the difference in your position now. ( Position B) make note of the distance you have traveled?
  • Slide 31
  • Time Similarly, everyone knows what time is... But try defining it; what is time? Remember you can't use the word "time" or an equivalent to the word "time", in your definition.
  • Slide 32
  • Time Like distance, time is a fundamental aspect of nature. It is so fundamental that it's impossible to define. Everyone knows what time is, but no one can really say what it is... However, like distances, times can be compared.
  • Slide 33
  • Time We can say that in the time it took to run around the track, the second hand of my watch went around once...so my run took 60 seconds. When we compare the time between two events to the time between two other events, we are measuring time. This doesn't define time, but it allows us to work with it.
  • Slide 34
  • Time We will be using the second as our standard for measuring time. The symbol for time is "t" The unit for a second is "s". t = 10s click here for a "minute physics" on measuring time and distance
  • Slide 35
  • Time Activity Repeat previous distance activity Use a timer use seconds as the unit 1. Determine the time it took to go from position A to position B Draw a diagram of your activity List the known information- Distance: between position A to position B Time: it took to go from A to B
  • Slide 36
  • How do scientists calculate speed? Speed the distance the object travels in one unit of time Rate tells you the amount of something that occurs or changes in one unit of time Speed = distance time
  • Slide 37
  • Speed s = d t meters second m s The units of speed can be seen by substituting the units for distance and time into the equation We read this unit as "meters per second"
  • Slide 38
  • SPEED = Distance / time Use the information from the previous two activities to calculate your speed. Use these steps 1. draw a diagram 2. list known and unknown data 3. write the formula you will use 4. plug in data 5. solve the problem using the correct units
  • Slide 39
  • 1 A car travels at a constant speed of 10m/s. This means the car: A increases its speed by 10m every second. B decreases its speed by 10m every second. Cmoves with an acceleration of 10 meters every second. Dmoves 10 meters every second. c c c c
  • Slide 40
  • 2 A rabbit runs a distance of 60 meters in 20 s; what is the speed of the rabbit?
  • Slide 41
  • How can you calculate the distance an object has moved? Rearrange the speed formula Speed = distance/time Distance = Speed x Time
  • Slide 42
  • Rearrange the following formula Speed =distance time Find-distance: what you do to one side you do to the other time x speed = distance x time time distance=time x speed Find- time: what you do to one side you do to the other distance= time x speed speed speed Time =distance speed
  • Slide 43
  • 3 A car travels at a speed of 40 m/s for 4.0 s; what is the distance traveled by the car?
  • Slide 44
  • 4 You travel at a speed of 20m/s for 6.0s; what distance have you moved?
  • Slide 45
  • 5 An airplane on a runway can cover 500 m in 10 s; what is the airplane's average speed?
  • Slide 46
  • Solve for time:
  • Slide 47
  • 6 You travel at a constant speed of 20 m/s; how much time does it take you to travel a distance of 120m?
  • Slide 48
  • 7 You travel at a constant speed of 30m/s; how much time does it take you to travel a distance of 150m?
  • Slide 49
  • Graphing graph a visual representation of data that reveals a pattern Bar- comparison of different items that vary by one factor Circle depicts parts of a whole Line graph- depicts the intersection of data for 2 variables Independent variable- factor you change Dependent variable the factor that is changed when independent variable changes
  • Slide 50
  • Graphing Creating a graph- must have the following points 1. Title graph 2. Independent variable on the X axis horizontal- abscissa 3. Dependent variable on Y axis vertical- ordinate 4. Must label the axis and use units 5. Plot points 6. Scale use the whole graph 7. Draw a best fit line- do not necessarily connect the dots and it could be a curved line.
  • Slide 51
  • Interpreting a graph Slope- rise Y2 Y1 Run X2 X1 relationship direct a positive slope inverse- a negative slope equation for a line y = mx + b m-slope b y intercept extrapolate-points outside the measured values- dotted line interpolate- points not plotted within the measured values-dotted line
  • Slide 52
  • WORK ON GRAPHING EXERCISES Graphical analysis click and go
  • Slide 53
  • What is average speed? Most objects do not move at constant speeds for very long To find average speed divide the total distance by the total time Car trip
  • Slide 54
  • How do you graph motion? You can show the motion of an object on a line graph in which you plot distance against time Time is along the x- axis independent variable and distance on the y-axis dependent variable
  • Slide 55
  • How do you interpret motion graphs? A straight line indicates a constant speed The steepness depends on how quickly or slowly the object is moving The faster the motion the steeper the slope
  • Slide 56
  • Bulldozer Lab
  • Slide 57
  • Return to Table of Contents Average Speed
  • Slide 58
  • The speed we have been calculating is a constant speed over a short period of time. Another name for this is instantaneous speed. If a trip has multiple parts, each part must be treated separately. In this case, we can calculate the average speed for a total trip. Determine the average speed by finding the total distance you traveled and dividing that by the total time it took you to travel that distance.
  • Slide 59
  • In physics we use subscripts in order to avoid any confusion with different distances and time intervals. For example: if an object makes a multiple trip that has three parts we present them as d 1, d 2, d 3 and the corresponding time intervals t 1, t 2, t 3. Distance and Time Intervals
  • Slide 60
  • The following pattern of steps will help us to find the average speed: Find the total distance d total = d 1 + d 2 + d 3 Find the total time t total = t 1 + t 2 + t 3 Use the average speed formula Average Speed & Non-Uniform Motion s avg = d total t total
  • Slide 61
  • Average Speed - Example 1 You ride your bike home from school by way of your friends house. It takes you 7 minutes (420 s) to travel the 2500 m to his house. You spend 10 minutes there, before traveling 3500 m to your house in 9 minutes (540 s). What was your average speed for this trip? To keep things clear, we can use a table to keep track of the information...
  • Slide 62
  • Example 1 - Step 1 You ride your bike home from school by way of your friends house. It takes you 7 minutes (420 s) to travel the 2500 m to his house. You spend 10 minutes there, before traveling 3500 m to your house in 9 minutes (540 s). What was your average speed for this trip? SegmentDistanceTimeSpeed (m)(s)(m/s) I II III Total /Avg. Write the given information in the table below:
  • Slide 63
  • Example 1 - Step 2 You ride your bike home from school by way of your friends house. It takes you 7 minutes (420 s) to travel the 2500 m to his house. You spend 10 minutes there, before traveling 3500 m to your house in 9 minutes (540 s). What was your average speed for this trip? SegmentDistanceTimeSpeed (m)(s)(m/s) I 2500m420 s II 0 m600 s III 3500m540 s Total /Avg. Next, use the given information to find the total distance and total time
  • Slide 64
  • Example 1 - Step 2 You ride your bike home from school by way of your friends house. It takes you 7 minutes (420 s) to travel the 2500 m to his house. You spend 10 minutes there, before traveling 3500 m to your house in 9 minutes (540 s). What was your average speed for this trip? SegmentDistanceTimeSpeed (m)(s)(m/s) I 2500m420 s II 0 m600 s III 3500m540 s Total /Avg. 6000m1560s Next, use the given information to find the total distance and total time
  • Slide 65
  • Example 1 - Step 3 You ride your bike home from school by way of your friends house. It takes you 7 minutes (420 s) to travel the 2500 m to his house. You spend 10 minutes there, before traveling 3500 m to your house in 9 minutes (540 s). What was your average speed for this trip? SegmentDistanceTimeSpeed (m)(s)(m/s) I 2500m420 s II 0 m600 s III 3500m540 s Total /Avg. 6000m1560s Next use total distance and time to find average speed.
  • Slide 66
  • Example 1 - Solution You ride your bike home from school by way of your friends house. It takes you 7 minutes (420 s) to travel the 2500 m to his house. You spend 10 minutes there, before traveling 3500 m to your house in 9 minutes (540 s). What was your average speed for this trip? SegmentDistanceTimeSpeed (m)(s)(m/s) I 2500m420 s II 0 m600 s III 3500m540 s Total /Avg. 6000m1560s3.85 m/s Next use total distance and time to find average speed.
  • Slide 67
  • Example 2 SegmentDistanceTimeSpeed (m)(s)(m/s) I II III Total /Avg. You run a distance of 210 m at a speed of 7 m/s. You then jog a distance of 200 m in a time of 40s. Finally, you run for 25s at a speed of 6 m/s. What was the average speed of your total run?
  • Slide 68
  • Example 2 - Reflection SegmentDistanceTimeSpeed (m)(s)(m/s) I 210307 m/s II 200405 m/s III 150256 m/s Total /Avg. 560955.89 m/s What happens when you take the 'average' (arithmetic mean) of the speed for each leg of the trip? Is it the same as the average speed? Why do you think this happens?
  • Slide 69
  • Return to Table of Contents Position and Reference Frames
  • Slide 70
  • Speed, distance and time didn't require us to define where we started and where we ended up. They just measure how far we traveled and how long it took to travel that far. However, much of physics is about knowing where something is and how its position changes with time. To define position we have to use a reference frame.
  • Slide 71
  • Position and Reference Frames A reference frame lets us define where an object is located, relative to other objects. For instance, we can use a map to compare the location of different cities, or a globe to compare the location of different continents. However, not every reference frame is appropriate for every problem.
  • Slide 72
  • Reference Frame Activity Send a volunteer out of the classroom to wait for further instructions. Place an object somewhere in your classroom. Write specific directions for someone to be able to locate the object Write them in a way that allows you to hand them to someone who can then follow them to the object. Test your directions out on your classmate, (who is hopefully still in the hallway!) Remember: you can't tell them the name of something your object is near, just how they have to move to get to it. For instance 'walk to the SmartBoard' is not a specific direction.
  • Slide 73
  • Reference Frame Activity - Reflection In your groups, make a list of the things you needed to include in your directions in order to successfully locate the object in the room. As a class, discuss your findings.
  • Slide 74
  • You probably found that you needed: A starting point (an origin) A set of directions (for instance left-right, forward-backward, up-down) A unit of measure (to dictate how far to go in each direction) Results - Reference Frames
  • Slide 75
  • In this course, we'll usually: Define the origin as a location labeled "zero" Create three perpendicular axes : x, y and z for direction Use the meter as our unit of measure Results - Reference Frames
  • Slide 76
  • In this course, we will be solving problems in one-dimension. Typically, we use the x-axis for that direction. +x will usually be to the right -x would then be to the left We could define it the opposite way, but unless specified otherwise, this is what we'll assume. We also can think about compass directions in terms of positive and negative. For example, North would be positive and South negative. The symbol for position is "x". The Axis +x- x
  • Slide 77
  • 8 All of the following are examples of positive direction except: Ato the right B north Cwest Dup
  • Slide 78
  • Return to Table of Contents Displacement
  • Slide 79
  • Now that we understand how to define position, we can talk about a change in position; a displacement. The symbol for "change" is the Greek letter "delta" "". So "x" means the change in x or the change in position
  • Slide 80
  • -x +y -y +x Displacement Displacement describes how far you are from where you started, regardless of how you got there.
  • Slide 81
  • -x +y -y +x Displacement For instance, if you drive 60 miles from Pennsylvania to New Jersey... x0x0 (In physics, we label the starting position x 0 )
  • Slide 82
  • -x +y -y +x Displacement and then 20 miles back toward Pennsylvania. x0x0 xfxf (We also label the final position x f )
  • Slide 83
  • -x +y -y +x Displacement You have traveled: a distance of 80 miles, and a displacement of 40 miles, since that is how far you are from where you started x0x0 xfxf we can calculate displacement with the following formula: x = X f - X o
  • Slide 84
  • Displacement Measurements of distance can only be positive values (magnitudes) since it is impossible to travel a negative distance. Imagine trying to measure a negative length with a meter stick...
  • Slide 85
  • xfxf xoxo -x +y -y +xxoxo xfxf -x +y -y +x Displacement However, displacement can be positive or negative since you can end up to the right or left of where you started. Displacement is positive.Displacement is negative.
  • Slide 86
  • Vectors and Scalars Scalar - a quantity that has only a magnitude (number or value) Vector - a quantity that has both a magnitude and a direction QuantityVectorScalar Time Distance Displacement Speed Which of the following are vectors? Scalars?
  • Slide 87
  • 9 How far your ending point is from your starting point is known as: Adistance Bdisplacement Ca positive integer Da negative integer
  • Slide 88
  • 10 A car travels 60m to the right and then 30m to the left. What distance has the car traveled? +x- x
  • Slide 89
  • 11 You travel 60m to the right and then 30m to the left. What is the magnitude (and direction) of your displacement? +x- x
  • Slide 90
  • 12 Starting from the origin, a car travels 4km east and then 7 km west. What is the total distance traveled? A3 km B-3 km C7 km D11 km
  • Slide 91
  • 13 Starting from the origin, a car travels 4km east and then 7 km west. What is the net displacement from the original point? A 3 km west B3 km east C 7 km west D11 km east
  • Slide 92
  • 14 You run around a 400m track. At the end of your run, what is the distance that you traveled?
  • Slide 93
  • 15 You run around a 400m track. At the end of your run, what is the displacement you traveled?
  • Slide 94
  • 16Which of the following is a vector quantity? Atime B velocity C distance Dspeed c c
  • Slide 95
  • Return to Table of Contents Average Velocity
  • Slide 96
  • What is Velocity? Speed in a given direction When you know the speed and direction of an objects motion, you know the velocity of the object Example 15 km/hour westward
  • Slide 97
  • Average Velocity Speed is defined as the ratio of distance and time Similarly, velocity is defined as the ratio of displacement and time s = d t xx tt v = Average velocity = time elapsed displacement Average speed = distance traveled time elapsed
  • Slide 98
  • Average Velocity Speeds are always positive, since speed is the ratio of distance and time; both of which are always positive. But velocity can be positive or negative, since velocity is the ratio of displacement and time; and displacement can be negative or positive. s = d t xx tt v = Usually, right is positive and left is negative. Average speed = distance traveled time elapsed Average velocity = time elapsed displacement
  • Slide 99
  • 17 Average velocity is defined as change in ______ over a period of ______. Adistance, time Bdistance, space Cdisplacement, time Ddisplacement, space c c c c
  • Slide 100
  • 18 Velocity is a vector. True False c c
  • Slide 101
  • 19 You travel 60 meters to the right in 20 s; what is your average velocity?
  • Slide 102
  • 20 You travel 60 meters to the left in 20 s; what is your average velocity?
  • Slide 103
  • 21 You travel 60 meters to the left in 20 s and then you travel 60 meters to the right in 30 s; what is your average velocity?
  • Slide 104
  • 22 You travel 60 meters to the left in 20 s and then you travel 60 meters to the right in 30 s; what is your average speed?
  • Slide 105
  • 25 You travel 160 meters in 60 s; what is your average speed?
  • Slide 106
  • DOT DIAGRAM GO TO PHYSICS CLASSROOM TO PRACTICE DOT DIAGRAM EXAMPLES. Ticker Tape Diagrams- dot diagram The distance between dots on a ticker tape represents the object's position change during that time interval. A large distance between dots indicates that the object was moving fast during that time interval. A small distance between dots means the object was moving slow during that time interval. Ticker tapes for a fast- and slow-moving object are depicted below.
  • Slide 107
  • Dot diagram-
  • Slide 108
  • Slide 109
  • Return to Table of Contents Instantaneous Velocity
  • Slide 110
  • Sometimes the average velocity is all we need to know about an object's motion. For example: A race along a straight line is really a competition to see whose average velocity is the greatest. The prize goes to the competitor who can cover the displacement in the shortest time interval. But the average velocity of a moving object can't tell us how fast the object moves at any given point during the interval t.
  • Slide 111
  • Instantaneous Velocity Average velocity is defined as change in position over time. This tells us the 'average' velocity for a given length or span of time. Watch what happens when we look for the instantaneous velocity by reducing the amount of time we take to measure displacement. Instantaneous Velocity- velocity of an object at a specific point in time If we want to know the speed or velocity of an object at a specific point in time (with this radar gun for example), we want to know the instantaneous velocity...
  • Slide 112
  • Instantaneous Velocity DisplacementTime 100m10 s Velocity In an experiment, an object travels at a constant velocity. Find the magnitude of the velocity using the data above.
  • Slide 113
  • Instantaneous Velocity What happens if we measure the distance traveled in the same experiment for only one second? What is the velocity? 10 m 1 s DisplacementTimeVelocity 100m10 s10 m/s
  • Slide 114
  • Instantaneous Velocity What happens if we measure the distance traveled in the same experiment for a really small time interval? What is the velocity? 10 m 1 s10 m/s 0.001m0.0001 s DisplacementTimeVelocity 100m10 s10 m/s
  • Slide 115
  • DisplacementTimeVelocity 100 m10 s10 m/s 10 m1 s10 m/s 1.0 m0.10 s10 m/s 0.10 m0.010 s10 m/s 0.010 m0.0010 s10 m/s 0.0010 m0.00010 s10 m/s 0.00010 m0.000010 s10 m/s Instantaneous Velocity Since we need time to measure velocity, we can't know the exact velocity "at" a particular time... but if we imagine a really small value of time and the distance traveled, we can estimate the instantaneous velocity.
  • Slide 116
  • To describe the motion in greater detail, we need to define the velocity at any specific instant of time or specific point along the path. Such a velocity is called instantaneous velocity. Note that the word instant has somewhat different meaning in physics than in everyday language. Instant is not necessarily something that is finished quickly. We may use the phrase "It lasted just an instant" to refer to something that lasted for a very short time interval. Instantaneous Velocity
  • Slide 117
  • In physics an instant has no duration at all; it refers to a single value of time. One of the most common examples we can use to understand instantaneous velocity is driving a car and taking a quick look on the speedometer. Instantaneous Velocity At this point, we see the instantaneous value of the velocity.
  • Slide 118
  • Instantaneous Velocity The instantaneous velocity is the same as the magnitude of the average velocity as the time interval becomes very very short. xx t as t 0 close to zero v =
  • Slide 119
  • Instantaneous Velocity (a) When the velocity of a moving object is a constant the instantaneous velocity is the same as the average. v (m/s) t (s) v (m/s) t (s) These graphs show (a) constant velocity and (b) varying velocity. (b) When the velocity of a moving object changes its instantaneous velocity is different from the average velocity.
  • Slide 120
  • Slow, Rightward(+) Constant Velocity Fast, Rightward(+) Constant Velocity MOTION GRAPHS
  • Slide 121
  • Positive Velocity Positive Velocity Changing Velocity (acceleration) Constant velocity to Speeding up
  • Slide 122
  • Slow, Leftward(-) Constant Velocity Fast, Leftward(-) Constant Velocity Slowing down
  • Slide 123
  • Velocity time graphs CONSTANT VELOCITY Calculate distance using v=d/t for 3 and 5 secs
  • Slide 124
  • Position time graph Constant Velocity Calculate velocity using v=d/t for 3 and 5 secs
  • Slide 125
  • Constant Positive Velocity Observe that the object below moves with a constant velocity in the positive direction. The dot diagram shows that each consecutive dot is the same distance apart (i.e., a constant velocity). The position-time graph shows that the slope is both constant (meaning a constant velocity) and positive (meaning a positive velocity). The velocity-time graph shows a horizontal line with zero slope (meaning that there is zero acceleration); the line is located in the positive region of the graph (corresponding to a positive velocity). The acceleration-time graph shows a horizontal line at the zero mark (meaning zero acceleration). http://www.physicsclassroom.com/mmedia/kinem a/cpv.gif
  • Slide 126
  • v (m/s) t (s) The graph below shows velocity versus time. How do you know the velocity is constant? Velocity Graphing Activity
  • Slide 127
  • v (m/s) t (s) The graph below shows velocity versus time. When is the velocity increasing? Decreasing? Constant? Velocity Graphing Activity
  • Slide 128
  • TEST