using piezoelectric printing to pattern nanoparticle thinfilmsusing piezoelectric printing to...

48
Using Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara, California USA

Upload: others

Post on 23-Apr-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Using Piezoelectric Printing to Pattern Nanoparticle Thinfilms

Jan Sumerel, Ph.D.FUJIFILM Dimatix, Inc.Santa Clara, California

USA

Page 2: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Acknowledgements

• Vanderbilt University– David Wright– Leila Deravi– Sarah Sewell– Aren Gerdon

• University of North Carolina, Chapel Hill– Roger Narayan– Andy Doraiswamy

• NASA Ames– Cattien Nguyen

• Santa Clara University– Angel Islas– John Choy

Page 3: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Nanoscale Engineering"Nanotechnology is the understanding and control of matter at dimensions of roughly 1 to 100 nanometers, where unique phenomena enable novel applications."

(U.S. National Nanotechnology Initiative: www.nano.gov)

Therefore nanoscale engineering is the design, analysis, and/or construction of materials containing nanostructures.

Page 4: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Dimatix Materials Printer

Page 5: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Simple Biosensor

A hybrid device with both inorganic and organic materials

Page 6: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Using Ink Jet Printing as Straightforward Technique for Nanomaterial Thinfilm Production

Drop on DemandmwCNTs

Page 7: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Contact angle determines wettability(drop spread) of mwCNTs

13.10

Contact Angle (º)

Page 8: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Bioinks

•Bacterial Cells•Yeast•Proteins•Nucleic Acids•DNA scaffolds

Page 9: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Piezoelectric Ink Jetting Biological MaterialsAre there obstacles?

• Often aqueous solutions– High surface tension – Water = 72.8 dynes/cm

• Low viscosity – 0.89 – 3.00 centipoise

• “Friendly”surfactants?– CMC

http://serve.me.nus.edu.sg/siggi/marangoni_instability_of_a_water.htm

Water on glycerin

Page 10: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

BioinksAre they non-Newtonian fluids?

www.wikipedia.com

Page 11: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

What happens to a Fluid in the Shear Field Environment?

Page 12: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Relative sizes of Matter and Order of Magnitude

http://micro.magnet.fsu.edu/cells/index.html

Page 13: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Piezoelectric Inkjet Printing of 3.2 kBplasmid DNA

Page 14: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Repeatability of Ink Jetted Genomic DNA and PCR amplification

Page 15: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Streptavidin Printed in Methyl Cellulose Gel Retains Tertiary Structure

Fourier Transform Infrared Spectroscopy

Page 16: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Cy3 IgG Protein Array

No

Page 17: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

DH10B Bacterial Cells

Page 18: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Other Sensor Components

• Quantum Dots• Electroinks

– Conductive Silver Precursor Fluids– PEDOT/PSS– Carbon Nanotubes

Page 19: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Ink Jet Printing Quantum Dots Inks

• Quantum Dots from UT Dots

• TEM from UT Dots• 2.6 nm green

emission• 4.0 nm

yellow/orange emission

Page 20: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Contact Angles of Quantum Dot Inks

2.6 nm 6 mg/mL 4.0 nm 3 mg/mL

Page 21: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Fluid Characteristics After Printing 2.6 nm 6 mg/mL

4.0 nm 3 mg/mL

Page 22: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Quantum Dot Inks on Substrate

Contributions to 3D structure dependent on particle concentration and particle size

Page 23: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Ink Jets Print Conductive Patterns for RFID, Electronics, PCBs, and Displays

• Conductive Silver Precursors• PEDOT/PSS• Carbon Nanotubes

Page 24: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Nanoparticle Polydispersity of ANP Conductive Silver Precursor Fluid as Shown by TEM

Page 25: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

254 μm Grid Spacing Matrix55% Silver Conductive Ink

10 pL 1 pL

Page 26: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Waveform Employed for ANP Conductive Silver Fluid Precursor

Page 27: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

A. B.

Resulting Conductive Silver Thinfilms on Teslin

Before Annealing After Annealing

Page 28: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Atomic Force Microscopy Shows Silver Nanoparticle Film Feature Sizes on Silicon Wafer

Feature width = 40.6 μmFeature height = 1.6 μ m

Page 29: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Feature Sizes Obtained with ANP Conductive Silver Precursor on Kapton®

Page 30: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Surface Measurements of 1 pL drop

Before annealing

After annealing

Page 31: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

A. B.

Resistance Measurements for Commercially Available Conductive Silver Precursors

Cabot Conductive Silver Precursor InkANP Conductive Silver Precursor Ink

Page 32: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Gold Nanoparticle InkApplications in Nanobioengineering

Gold binds to proteins via two different mechanisms

•Cysteine residue•Serine, Threonine residues

Braun, Sarikaya and Schulten, Univ. IL

Page 33: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

PEDOT/PSS Array on Glass Wafer

Other Sensor Components

Page 34: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

PEDOT/PSS as the Fluid Leaves the Nozzles and Time of Flight

In flight(9.26 m/s)

Page 35: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

A. B. C.

Contact Angles of PEDOT/PSS and ANP Silver Ink

A. B. C.Glass Wafer Kapton® Polyimide Teslin synthetic film

Page 36: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Electric Luminescence of Polyflourene printed on Silicon Wafer

Bright Field Dark Field + UV

Page 37: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Using Ink Jet Printing as Straightforward Technique for Nanomaterial Thinfilm Production

Drop on DemandmwCNTs

Page 38: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Contact angle determines wettability(drop spread) of mwCNTs

13.10

Contact Angle (º)

Page 39: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Multiwall Carbon Nanotube Scaffold for DNA

Bright Field DAPI

A B

Page 40: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Self-Assembling Biomaterials• Length scale

– Atoms (10-10)– Molecules (10-10-10-9) – Polymers (10-9)– Viruses (10-8)– Cells (10-5)– Multicellular organisms (10-5-101)

• Polymers– DNA – RNA– Proteins– Lipid bilayers self-assemble into membranes– Higher level organization (protein insertion into

membrane)– Trafficking– Extracellular matrices– Support structures (skeleton, teeth, antlers, husks)

• SECRETIONwww.azonano.com

Page 41: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Harnessing Nature’s Methods to Produce 3D Inorganic Materials

• Diatoms• Glass Sponges• Teeth• Bones

Page 42: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Silaffin of the Cylindrotheca fusiformis diatom

Using Ink Jet Printing for Thinfilm PatterningSilica Precipitating Amine Templates

N N

HN O

HN O

NHO

NHO

N

N

N

N

HN

HN

HN

HN

NH

NH

NH

NH

O

O

O O

O

O

OO

H2N

NH2

H2N

NH2

NH2

NH2

NH2

H2N

Polyamidoamino (PAMAM) Dendrimer

Kroger, N., et al. Science, 1999, 286, 1129.Knecht, M. R., Wright, D. W. Langmuir. 2004, 20, 4728.

H3N S S K K S G S Y

HO3PO OPO3H OPO3H

NH2

NH2

N

NH

NH

n = 4 - 9

S G S K G S K COO

Page 43: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

33% G4 PAMAM Dendrimer

39.25785.333.1

Horizontal length (µm)

Vert height (nm)

Contact Angle (º)

Page 44: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

100 µm

Stroboscopic View of the Dendrimer Ink Droplets.

Page 45: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Patterned Dendrimers

360 µm

360 µm

96 µm spacing, printed 4x with 35 seconds of lag time in between each printing cycle followed by 2 printing cycles s p a c e d a t 6 4 µ m .

1. 64 µm spacing, printed 2x with no lag time. 2. 56 µm spacing, printed 2x with no lag time.

1.

2.

Page 46: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Dendrimer ReactivityDendrimer Reactivity

• Once printed, we propose a “single spot”reaction vessel, wherein printed NH2 -terminated dendrimers will reproducibly yield concentrated areas of SiO2 nanospheres.

++

+ ++

+ +

+ +

+++

++-Si(OH)-Si(OH)

-Si(OH)

-Si(OH)

-Si(OH)

-Si(OH)-Si(OH)

-Si(OH)

Page 47: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Patterned Silica 160 nm Thinfilm Using Ink Jetted Dendrimers as Biomimetic Catalyst

15 20 25 30 35 400

200

400

600

800

1000

1200

1400

1600

nmol

es o

f sili

ca p

rodu

ced

total area of printed material (mm2)

Post-Si condensation

Pre-Si condensation

Page 48: Using Piezoelectric Printing to Pattern Nanoparticle ThinfilmsUsing Piezoelectric Printing to Pattern Nanoparticle Thinfilms Jan Sumerel, Ph.D. FUJIFILM Dimatix, Inc. Santa Clara,

Conclusions• Nanoparticle Inks

– Conductive Silver Precursor Fluids

– PEDOT/PSS – Carbon Nanotubes

• Bioinks– Proteins – Nucleic Acids– Scaffolding materials

• Templating Organic Materials– Inorganic/organic thinfilms

• Modern Building Materials based on Biomimetics– Surfaces– Structures