using of clinopyroxene thermobarometry for the eclogites and omphacite

1
Modified clinopyroxene thermobarometry (Ashchepkov et al., 2010) in combination with (Krogh, 1988) or (Nimis, Taylor, 2000) thermometers checked using 570 published runs in eclogite system clarified position of eclogites in Siberian and Worldwide SCLM (Ashchepkov et al, 2010; 2012; 2013). In Siberia Fe- eclogites related to Fe- basalts or TTG cumulates sediments and are found in the middle pyroxenite layer formed in Early Archean when eclogites can’t be subducted and were remelted in near 100 -130 km (3.5-4GPa) (Udachnaya, Mir, Prianabarie). In Middle and late Archean they locate _5 GPa forming several deeper levels (Udachnaya). Hi- Mg arc cumulates (Horodyskyj ea, 2007) are related to the different depth and relate to Low-T geotherms starting from 7.5 to 4 GPa. Diamond omphacite inclusions from melt metasomatized eclogites or protokimberlite cumulates often trace HT geotherm. In Siberia eclogites positions in SCLM differ. In Magan terrain abundant eclogites of varying (Mg’) correspond to different types. Majority (4-5 GPa, MaloBotupbinsky and Khramai) form several trends decreasing P- Fe corresponding to melt differentiation and reaction with kimberlites referring to high –T conditions. The 3.0-3.5 GPa lens traced by both high and low-Fe eclogites. Cold low Fe type are probably referring to subduction type eclogites (LT) but HT -to protokimberlite crystallization . In West Daldyn (Alakit) terrain eclogites locate in middle SCLM part. In Daldyn West they are distributed in all section. In Nakyn field (Markha terrane) Fe-rich eclogites dominate in lower SCLM like in Upper Muna fields. In northern Siberian craton part in Hapchan (Kuoyka) and Birekte terrain most eclogites belong to middle part. Those from Upper part may corresponds to TTG cumulates. Abundant eclogite diamond inclusions suggest that they should be also in the low SCLM. Proterozoic kimberlites commonly carry hot eclogites from middle part like in Wajrakarur field (KL-4) in India where Ca- rich eclogites and grospydites reflect reactions of Ca- rich mater with mantle peridotites. In South Africa Proterozoic Roberts Victor and Premier kimberlites HT eclogite and diamond inclusions mostly came from deeper part of SCLM 5.5-4 GPa and show Fe rising upward in section. Mz kimberlites in Lesotho carry omphacites from 5.5-4.0 GPa showing several P- Fe # trends. In Namibia diamond inclusions 5.5-7.5 GPa show Fe# rise with depth. In Angola eclogite lens is found at 5-6 GPa (Ashchepkov et al., 2013). In Wyoming craton Devonian kimberlites carry eclogites from upper SCLM forming three clusters: near Moho at Gar-Sp boundary and Fe 3.5-2.5 interval. Fe – enriched varieties locate 4.5-5 GPa interval and Mg rich at 7-6 GPa. In Slave craton Mg eclogites (Heaman ea, 2006) correspond to LSCLM while Fe-rich are from middle part. In Karelian craton eclogites of varying Fe# are in LSCLM. Spider diagrams of eclogite clinopyroxenes demonstrates four types of patterns. Smooth rounded one corresponds to protokimberlites. Flatter or inclined with HFSE troughs and U, Pb peaks are of MORB. The jugged highly inclined patterns refer to TTG cumulates showing LILE enrichments and HFSE through. TRE of metasomatic clinopyroxenes eclogites are variable . RFBR 11-05-00060 Using of clinopyroxene thermobarometry for the eclogites and omphacite diamond inclusions of Yakutian and worldwide kimberlites .. Igor Ashchepkov (1), Zdislav Spetsius (2), Hilary Downes (3), Alla Logvinova (1), Subramanian Ravi (4), Theodoros Nta os (5). Sobolev Institute of Geology and Mineralogy SD RAS, Koptyug ave 3, Novosibirsk, Russia Alrosa Stock Company, Lenina str. 6 Mirny, Russia, (3) Birkbeck College, University of London, UK, (4) Geological Survey of India, Bandlaguda Complex, Hyderabad 500068, Ind, (5) Vienna University, A-1090Vienna, Austria Fennoscandia Trace elements Eclogites Udachnaya Pkbar and T o correlations Of experimental and Calculated values 0.05 0 .10 0.15 0.20 0.25 Fe# Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 600 800 1000 1200 1400 0.0 4.0 8.0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C U dachnaya 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. T iO2 in C hr 5.Cr2O3 in Ilm 1. O pxB rM c 2. O pxB rM cD iIn 3. C P x N T00 4.C pxA s 5.EclC px 6.PxtC px 7.DiC px 8.G ar K r88A s 9.G arO W 79A s 10.G arD I 11.C hrA s 12.C hrD iaInc 13.Ilm M eg 14.Ilm Xen 15.B rK o90 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 0 0.95 0.90 0.85 0 .80 0.75 0.70 0 .65 Mg' Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Fe# Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 600 800 1000 1200 1400 0.0 4.0 8.0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C Sytykanskaya 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 Diamo nd G raphite 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O3 in Cpx 4. T iO 2 in C hr 5.Cr2O3 in Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 0 0.9 5 0.90 0.85 0 .80 0.75 0.7 0 0.65 Mg' Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 5 0 .10 0.15 0.20 0.25 0.30 0.35 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 600 800 1000 1200 1400 0.0 4.0 8.0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C Y u b ileyn jaya 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 Diamond G raphite 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. TiO2 in C hr 5.Cr2O3 in Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 0 0.95 0 .90 0.8 5 0 .80 0.75 0 .70 0 .65 Mg' Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0.05 0 .10 0.15 0 .20 0.25 0.30 0.3 5 Fe# Ol in equilibrium with Cpx, Opx, Gar, C hr, Ilm 600 800 1000 1200 1400 0.0 4.0 8.0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C A ykhal 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 Diamond G raphite 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O 3 in Cpx 4. TiO2 in C hr 5.Cr2O 3 in Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 0 0.95 0 .90 0.85 0.80 0 .75 0 .70 0.65 Mg' Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 5 0 .10 0.15 0 .20 0 .25 0 .30 0.35 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 600 800 1000 1200 1400 0.0 4.0 8.0 Variationa of Cpx, Opx, Gar, Chr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C K om som olskaya 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 Diamond G raphite 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in Cpx 4. T iO 2 in C hr 5.Cr2O3 in Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 0 0 .95 0 .90 0.85 0.80 0.75 0 .70 0 .65 Mg' Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 5 0.10 0.15 0 .20 0.25 0 .30 0.35 Fe# Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 600 800 1000 1200 1400 0.0 4.0 8.0 1 2.0 Variationa of C px, Opx, Gar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C M ir 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 Diamond G raphite 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. T iO2 in C hr 5.Cr2O3 in Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 0 0.9 5 0 .90 0.8 5 0.80 0 .75 0.70 0.6 5 Mg' Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0.0 5 0.10 0.15 0 .20 0.2 5 0.30 0.3 5 Fe# Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 600 800 1000 1200 1400 0.0 4.0 8.0 1 2.0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C M ir 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 Diamo nd G raphite 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. T iO2 in Chr 5.Cr2O3 in Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 0 0 .95 0 .90 0.8 5 0 .80 0 .75 0 .70 0 .65 Mg' Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0 .05 0 .10 0.1 5 0.20 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 600 800 1000 1200 1400 0.0 4.0 8.0 Variation of C px, O px, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C G raphite Diamond K h aram ai T o g th er 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. T iO2 in C hr 5.Cr2O3 in Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 0 P(GPa) AOpxG 0 .95 0.9 0 0.8 5 0 .80 0 .75 0.7 0 0.6 5 Mg' Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0.0 5 0 .10 0.15 0.2 0 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 600 800 1000 1200 1400 0.0 4.0 8.0 Variation of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C Graphit e Diamond O bnazhennaya 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 1.C aO in G ar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. TiO2 in C hr 5.Cr2O3 in Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 0 P(GPa) AOpxG 0 .95 0.9 0 0 .85 0.80 Mg' Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.05 0.10 0.1 5 0.20 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 600 800 1000 1200 1400 0.0 4.0 8.0 Variation of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C Graph it e Diamond G ornaya 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. TiO 2 in C hr 5.Cr2O3 in Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 0 P(GPa) AOpxG 0.95 0.9 0 0 .85 0.80 Mg' Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.05 0.1 0 0 .15 0.2 0 0.25 0.3 0 0.35 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0.0 2.0 4.0 6.0 8.0 10 .0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C G raphite Diamond C a to ca clu ster to g eth er 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 O p x M cG r74 C p x A s10 C p x N iT a0 0 C p x A s10 P xt C p x A s10 E cl G a rn A s10 C h r A s10 Ilm A s10 8 7 6 5 4 3 2 1 0 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 0 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O3 in C px 4. T iO 2 in C hr 5.Cr2O3 in Ilm 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O3 in C px 4. T iO 2 in C hr 5.Cr2O3 in Ilm 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O 3 in C px 4. TiO 2 in C hr 5.Cr2O 3 in Ilm 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O 3 in Cpx 4. T iO 2 in Chr 5.Cr2O 3 in Ilm 0.05 0.1 0 0.15 0 .20 0.25 0 .30 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 2.0 4.0 6.0 8.0 10.0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O3 in C px 4. T iO 2 in C hr 5.Cr2O3 in Ilm SEA T o C Graphite Diamond 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 K im berley 1.O px 2.O PXD ia 3.C pxN iTa00 4.C pxA sh10 5.C pxA sh10E cl 6.C pxA sh10D ia 7.C p xA s h 1 0 P X t 8.G arA sh10 9.G a r A sh 10 D ia 10.C h rA sh 10 11 . C h r A sh10D ia 12 . Ilm Ashch10 13 . B rK o 90 8 7 6 5 4 3 2 1 0 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 0 0.05 0.10 0.15 0.20 0.25 0.30 0.3 5 0.40 0 .45 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0.0 2.0 4.0 6.0 8.0 10.0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C Graph ite Diam ond 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 F insch 8 7 6 5 4 3 2 1 0 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 0 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O 3 in Cpx 4. T iO 2 in C hr 5.Cr2O 3 in Ilm 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O 3 in Cpx 4. TiO 2 in C hr 5.Cr2O 3 in Ilm 0 .05 0.10 0.15 0 .20 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 2.0 4.0 6.0 8.0 10.0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C G raphite Diam o nd J a g erso n tein 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 8 7 6 5 4 3 2 1 0 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 0 0.0 5 0.10 0 .15 0 .20 0.2 5 0.30 0 .35 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0.0 8.0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O 3 in Cpx 4. TiO 2 in C hr 5.Cr2O 3 in Ilm SEA T o C G raphite Diamond 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 D eB eers P ool 8 7 6 5 4 3 2 1 0 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 0 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O 3 in C px 4. TiO 2 in C hr 5.Cr2O 3 in Ilm 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O 3 in C px 4. TiO 2 in Chr 5.Cr2O 3 in Ilm 0.05 0.10 0.1 5 0.20 0.25 0.30 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 2.0 4.0 6.0 8.0 10 .0 V ariationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C G raphite Diamond 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 O rapa 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 0 P(Gpa) 0 .05 0.1 0 0 .15 0.20 0.2 5 0.30 0.35 600 800 1000 1200 1400 Fe# Ol in equilibrium with Cpx, Opx, Gar, Chr, Ilm 0.0 2.0 4.0 6.0 8.0 10 .0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 1.C aO in G ar 2. Al2O 3 in Opx 3. Cr2O 3 in C px 4. TiO 2 in C hr 5.Cr2O 3 in Ilm SEA T o C G raphite Diamond L etlh ak an e 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 0 P(Gpa) 8 7 6 5 4 3 2 1 0 1.C aO in G ar 2. Al2O 3 in Opx 3. Cr2O 3 in C px 4. TiO 2 in C hr 5.Cr2O 3 in Ilm 1.C aO in G ar 2. Al2O 3 in Opx 3. Cr2O 3 in C px 4. TiO 2 in Chr 5.Cr2O 3 in Ilm 0 .05 0.10 0.1 5 0.20 0.25 0.3 0 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 2.0 4.0 6.0 8.0 1 0.0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O3 in C px 4. T iO 2 in C hr 5.Cr2O3 in Ilm SEA T o C Graphite Diamond Prem ier 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 8 7 6 5 4 3 2 1 0 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 0 0.05 0.1 0 0 .15 0 .20 0 .25 0 .30 0.3 5 0.40 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 2.0 4.0 6.0 8.0 10 .0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O 3 in C px 4. TiO 2 in C hr 5.Cr2O 3 in Ilm SEA T o C Graphite Diamond 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 R ob erts V icto r 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 0 P(Gpa) 0 .05 0.10 0.1 5 0.2 0 0.2 5 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 2.0 4.0 6.0 8.0 10 .0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. TiO2 in C hr 5.Cr2O3 in Ilm SEA T o C G raphite Diamond V enetia 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 0 P(Gpa) 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. TiO2 in C hr 5.Cr2O3 in Ilm 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O 3 in C px 4. TiO2 in C hr 5.Cr2O 3 in Ilm 0 .05 0.1 0 0.15 0.20 0 .25 0 .30 0.3 5 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0.0 8.0 Variationa of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C Gr aphite D iamond 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 N am ibia 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 0 P(Gpa) 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O 3 in Cpx 4. T iO 2 in Chr 5.Cr2O 3 in Ilm Yakutia 0.05 0.10 0.1 5 0 .20 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 4.0 8.0 Variation of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C G ra phite Dia mond 45 mw/m2 35 mw/m2 Sp Gar 40 mw/m2 1.C aO in G ar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. T iO 2 in C hr 5.Cr2O3 in Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 0 P(GPa) T ersk y coast FG 0.05 0.1 0 0.15 0 .20 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, Gar, C hr, Ilm 0.0 4.0 8.0 Variation of C px, Opx, G ar, C hr, Ilm -6.0 -4.0 -2.0 0.0 - LogF O 2 SEA T o C G raphite Di amond 45 mw/m2 35 mw/m2 Sp Gar 40 mw/m2 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. T iO2 in C hr 5.Cr2O3 in Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 0 P(GPa) F inland 0.05 0.1 0 0.15 0 .20 0 .25 0.3 0 0.3 5 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 8.0 -6.0 -4.0 -2.0 0.0 SEA T o C S loa n Sp Gr G raphite Diam ond 45 mv/m2 35 mv/m2 40 mv/m2 - LogF O 2 Variation of C px, Opx, G ar, C hr, Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 0 1.O pxBrM c 2.C P x N T00 3.C pxA s 4.EclC px 5.P xtC px 6.C pxDiaInc 7.G a r K r88A s 8.G arO W 79A s 9.G arD iaInc 10.C hrA s 11 . C hrD iaInc 12 . Ilm 13 . B rK o 90 0.05 0.10 0 .15 0 .20 0.25 0.30 0 .35 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 8.0 -6.0 -4.0 -2.0 0.0 SEA T o C K elsey L ak e -1 Sp Gr G rap hit e Diamond 45 mv/m2 35 mv/m2 40 mv/m2 8 7 6 5 4 3 2 1 0 - LogF O 2 Variation of C px, Opx, G ar, C hr, Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 0.05 0 .10 0 .15 0 .20 0.2 5 0.30 0.3 5 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 8.0 -6.0 -4.0 -2.0 0.0 SEA T o C J erich o Sp Gr Graph i te Diamond 45 mv/m2 35 mv/m2 40 mv/m2 8 7 6 5 4 3 2 1 0 - LogF O 2 Variation of C px, Opx, G ar, C hr, Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 0.0 5 0 .10 0.15 0 .20 0.25 0.30 0.3 5 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 8.0 -6.0 -4.0 -2.0 0.0 SEA T o C L ac D e G ras Sp Gr G raphite Di amond 45 mv/m2 35 mv/m2 40 mv/m2 8 7 6 5 4 3 2 1 0 - LogF O 2 Variation of C px, Opx, G ar, C hr, Ilm 8 7 6 5 4 3 2 1 0 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 8 7 6 5 4 3 2 1 P(GPa) 0 .05 0.1 0 0 .15 0 .20 0.2 5 0 .30 0 .35 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 2.0 4.0 6.0 8.0 10 .0 -6.0 -4.0 -2.0 0.0 SEA T o C Graphit e Diamond 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 K alyandurg 8 7 6 5 4 3 2 1 0 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 0 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. T iO2 in C hr 5.Cr2O3 in Ilm 1.CaO in Gar 2. Al2O 3 in Opx 3. Cr2O3 in Cpx 4. T iO 2 in C hr 5.Cr2O3 in Ilm - LogF O 2 Variation of C px, Opx, G ar, C hr, Ilm 0.0 5 0.10 0 .15 0.20 0.2 5 0.3 0 0 .35 600 800 1000 1200 1400 Fe# Ol in equilibrium with C px, Opx, G ar, C hr, Ilm 0.0 2.0 4.0 6.0 8.0 10 .0 -6.0 -4.0 -2.0 0.0 SEA T o C G raphite Diamond 45 mw/m2 35 mw/m2 Sp Gr 40 mw/m2 W a jra k a ru r 8 7 6 5 4 3 2 1 0 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 P(Gpa) 8 7 6 5 4 3 2 1 0 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in Cpx 4. T iO2 in C hr 5.Cr2O3 in Ilm 1.CaO in Gar 2. Al2O3 in Opx 3. Cr2O3 in C px 4. TiO2 in C hr 5.Cr2O3 in Ilm - LogF O 2 Variation of C px, Opx, G ar, C hr, Ilm La Pr Eu Tb Ho Tm Lu 0.01 0.10 1.00 10.00 100.00 S ample/C 1 Rb Th Nb La Pb Nd Sm Zr Gd Ho Er Lu 0.01 0.10 1.00 10.00 100.00 Sample/PM Eclogites India Ce Nd Sm Gd Dy Er Yb Cs Ba U Ta Ce Pr Sr Hf Eu Dy Y Yb Ce Nd Sm Gd Dy Er Yb Cs Ba U Ta Ce Pr Sr Hf Eu Dy Y Yb Cs Ba U Ta Ce Pr Sr Hf Eu Dy Y Yb La Pr Eu Tb Ho Tm Lu 0.01 0.10 1.00 10.00 100.00 Sample/C1 Ce Nd Sm Gd Dy Er Yb Rb Th Nb La Pb Nd Sm Zr Gd Ho Er Lu 0.00 0.00 0.01 0.10 1.00 10.00 100.00 Sample/PM 1. 2. 3. 4. 5. 6. 7. 8. La Pr Eu Tb Ho Tm Lu 0.00 0.01 0.10 1.00 10.00 100.00 Sample/C1 Rb Th Nb La Pb Nd Sm Zr Gd Ho Er Lu 0.00 0.01 0.10 1.00 10.00 100.00 S ample/PM 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Garnets, eclogites Clinopyroxens, eclogites Africa Fig. 1. PTXFO 2 estimates for the minerals from xenocrysts and xenoliths from Udachnaya pipe, Daldyn field. Fe# is calculate Fe number of olivines, coexisting with Garnets, pyroxenes chromite and ilmenites. 1. Clinopyroxene thermobarometry T o C (Nimis and Taylor, 2000) - P(GPa) (Ashchepkov, 2003) for xenoliths (Boyd et al., 1997; Pokhilenko et al., 2000; Malygina et al., 2005; Pokhilenko et al., 2007). 2. The same for Cr-diopsides from heavy mineral separates. 3. The same for pyroxenites (Kuligin, 1997). 4. The same for common eclogites. 5. The same for diamond inclusions of eclogite affinity (Beard et al., 1996; Snyder et al .,1997; Taylor et al., 2003). 6. The same for diamond inclusions peridotite affinity (Sobolev et al., 1997; 2003; 2004; Logvinova et al., 2005). 7. The same for diamond eclogites (Jacob et al., 1999; etc). 8. Orthopyroxene thermobarometry: T o C (Brey, Kohler, 1990) - P(GPa) (McGregor, 1974) for peridotites. 9. The same for diamond inclusions. 10. Garnet thermobarometry for peridotites (Ashchepkov, 2006). 11. The same for garnets from heavy mineral separates. 12. The same for diamond inclusions. 13. Cr-spinel thermobarometry: T o C (Taylor et al., 1998) - P(GPa) (Ashchepkov, Vishnyakova, 2006) for xenoliths. 14. The same for grains from heavy mineral separates; 15. the same for diamond inclusions. 16. Ilmenite thermobarometry: T o C (Taylor et al., 1998) – P(GPa) (Ashchepkov, Vishnyakova, 2006) for grains from heavy mineral separates. 17. The same for ilmenites from xenoliths India Eclogite System y = 0.9835x R 2 = 0.6887 n= 235 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Sam ple/PM Pexp Линейны й (Pexp) C orrelation N im is,Taylor,2000(corrected)- Ellis,G reen ,1979 y = 0.9864x R 2 = 0.8394 600 800 1000 1200 1400 1600 1800 600 800 1000 1200 1400 1600 1800 Sample/PM EllisG reen79C pG A Л инейны й (EllisG reen79C pG A ) Trace elements Eclogites KL4 India North America Basalt Eclogite HydratedPeridotite Dry Perido tite 8 GPar(270km) Ultramafic Plum Hydrated Peridotite 4 130 GPa( km) Hydrated Peridotite U lt r a m afic P lum 1.25 GPa410km) 8 GPa(270km) 4 130 GPa( km) Dr y P e r id o tit e D r y P e r id o t i te Dr y P e r id o tit e D r y P e r id o t i te Basaltic Plum M iddle Paleozoic stage D-C 355 -360 m a M esozoic Low Triassic stage 250 -220 m a Late Archean E arly Proterozoic stage Middle Archean stage Late Archean stage E arlyA rchean stage pyroxenitelayer ( km) 130 1.25 GPa410km) 8 GPa(270km) 4 130 GPa( km) A) B) C) D) E) F) Basalt Eclogite HydratedPeridotite Basalt Eclogite Hydrated Peridotite Dry P er ido ti t e Dry P er ido ti t e

Upload: hetal

Post on 24-Feb-2016

35 views

Category:

Documents


4 download

DESCRIPTION

Using of clinopyroxene thermobarometry for the eclogites and omphacite diamond inclusions of Yakutian and worldwide kimberlites .. Igor Ashchepkov (1), Zdislav Spetsius (2), Hilary Downes (3), Alla Logvinova (1), Subramanian Ravi (4), T heodoros Ntaflos (5). - PowerPoint PPT Presentation

TRANSCRIPT

1

Modified clinopyroxene thermobarometry (Ashchepkov et al., 2010) in combination with (Krogh, 1988) or (Nimis, Taylor, 2000) thermometers checked using 570 published runs in eclogite system clarified position of eclogites in Siberian and Worldwide SCLM (Ashchepkov et al, 2010; 2012; 2013). In Siberia Fe- eclogites related to Fe- basalts or TTG cumulates sediments and are found in the middle pyroxenite layer formed in Early Archean when eclogites cant be subducted and were remelted in near 100 -130 km (3.5-4GPa) (Udachnaya, Mir, Prianabarie). In Middle and late Archean they locate _5 GPa forming several deeper levels (Udachnaya). Hi- Mg arc cumulates (Horodyskyj ea, 2007) are related to the different depth and relate to Low-T geotherms starting from 7.5 to 4 GPa. Diamond omphacite inclusions from melt metasomatized eclogites or protokimberlite cumulates often trace HT geotherm. In Siberia eclogites positions in SCLM differ. In Magan terrain abundant eclogites of varying (Mg) correspond to different types. Majority (4-5 GPa, MaloBotupbinsky and Khramai) form several trends decreasing P- Fe corresponding to melt differentiation and reaction with kimberlites referring to high T conditions. The 3.0-3.5 GPa lens traced by both high and low-Fe eclogites. Cold low Fe type are probably referring to subduction type eclogites (LT) but HT -to protokimberlite crystallization .In West Daldyn (Alakit) terrain eclogites locate in middle SCLM part. In Daldyn West they are distributed in all section. In Nakyn field (Markha terrane) Fe-rich eclogites dominate in lower SCLM like in Upper Muna fields. In northern Siberian craton part in Hapchan (Kuoyka) and Birekte terrain most eclogites belong to middle part. Those from Upper part may corresponds to TTG cumulates. Abundant eclogite diamond inclusions suggest that they should be also in the low SCLM.Proterozoic kimberlites commonly carry hot eclogites from middle part like in Wajrakarur field (KL-4) in India where Ca- rich eclogites and grospydites reflect reactions of Ca- rich mater with mantle peridotites. In South Africa Proterozoic Roberts Victor and Premier kimberlites HT eclogite and diamond inclusions mostly came from deeper part of SCLM 5.5-4 GPa and show Fe rising upward in section. Mz kimberlites in Lesotho carry omphacites from 5.5-4.0 GPa showing several P- Fe # trends. In Namibia diamond inclusions 5.5-7.5 GPa show Fe# rise with depth. In Angola eclogite lens is found at 5-6 GPa (Ashchepkov et al., 2013).In Wyoming craton Devonian kimberlites carry eclogites from upper SCLM forming three clusters: near Moho at Gar-Sp boundary and Fe 3.5-2.5 interval. Fe enriched varieties locate 4.5-5 GPa interval and Mg rich at 7-6 GPa.In Slave craton Mg eclogites (Heaman ea, 2006) correspond to LSCLM while Fe-rich are from middle part. In Karelian craton eclogites of varying Fe# are in LSCLM. Spider diagrams of eclogite clinopyroxenes demonstrates four types of patterns. Smooth rounded one corresponds to protokimberlites. Flatter or inclined with HFSE troughs and U, Pb peaks are of MORB. The jugged highly inclined patterns refer to TTG cumulates showing LILE enrichments and HFSE through. TRE of metasomatic clinopyroxenes eclogites are variable . RFBR 11-05-00060

Using of clinopyroxene thermobarometry for the eclogites and omphacitediamond inclusions of Yakutian and worldwide kimberlites .. Igor Ashchepkov (1), Zdislav Spetsius (2), Hilary Downes (3), Alla Logvinova (1), Subramanian Ravi (4), Theodoros Ntaos (5). Sobolev Institute of Geology and Mineralogy SD RAS, Koptyug ave 3, Novosibirsk, RussiaAlrosa Stock Company, Lenina str. 6 Mirny, Russia, (3) Birkbeck College, University of London, UK,(4) Geological Survey of India, Bandlaguda Complex, Hyderabad 500068, Ind, (5) Vienna University, A-1090Vienna, Austria

FennoscandiaTrace elementsEclogites UdachnayaPkbar and To correlationsOf experimental and Calculated values

Yakutia

AfricaFig. 1. PTXFO2 estimates for the minerals from xenocrysts and xenoliths from Udachnaya pipe, Daldyn field. Fe# is calculate Fe number of olivines, coexisting with Garnets, pyroxenes chromite and ilmenites. 1. Clinopyroxene thermobarometry ToC (Nimis and Taylor, 2000) - P(GPa) (Ashchepkov, 2003) for xenoliths (Boyd et al., 1997; Pokhilenko et al., 2000; Malygina et al., 2005; Pokhilenko et al., 2007). 2. The same for Cr-diopsides from heavy mineral separates. 3. The same for pyroxenites (Kuligin, 1997). 4. The same for common eclogites. 5. The same for diamond inclusions of eclogite affinity (Beard et al., 1996; Snyder et al .,1997; Taylor et al., 2003). 6. The same for diamond inclusions peridotite affinity (Sobolev et al., 1997; 2003; 2004; Logvinova et al., 2005). 7. The same for diamond eclogites (Jacob et al., 1999; etc). 8. Orthopyroxene thermobarometry: ToC (Brey, Kohler, 1990) - P(GPa) (McGregor, 1974) for peridotites. 9. The same for diamond inclusions. 10. Garnet thermobarometry for peridotites (Ashchepkov, 2006). 11. The same for garnets from heavy mineral separates. 12. The same for diamond inclusions. 13. Cr-spinel thermobarometry: ToC (Taylor et al., 1998) - P(GPa) (Ashchepkov, Vishnyakova, 2006) for xenoliths. 14. The same for grains from heavy mineral separates; 15. the same for diamond inclusions. 16. Ilmenite thermobarometry: ToC (Taylor et al., 1998) P(GPa) (Ashchepkov, Vishnyakova, 2006) for grains from heavy mineral separates. 17. The same for ilmenites from xenolithsIndia

Trace elementsEclogites KL4 IndiaNorth America