using homogeneous weights for approximating the partial cover problem reuven bar-yehuda

38
Using Homogeneous Weights for Using Homogeneous Weights for Approximating Approximating the Partial Cover Problem the Partial Cover Problem Reuven Bar-Yehuda

Post on 21-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Using Homogeneous Weights for Using Homogeneous Weights for Approximating Approximating

the Partial Cover Problemthe Partial Cover Problem

Reuven Bar-Yehuda

The partial set cover problem 2

The Partial Set Cover problemThe Partial Set Cover problemGiven:

Find: min

s.t.

Rt

REl

RV

EVH

:

:

),(

)(C

tCEl

VC

))((

The partial set cover problem 3

Minimal t-coverMinimal t-cover

C is a t-cover (a feasible solution)

if and

C is a minimal t-cover

if , is not a t-coverCv

VC tCEl ))((

}{\ vC

The partial set cover problem 4

Example (a simple graph)Example (a simple graph)

3

4

2

1

1 1

26

1

1

7

4 3

7

5

6

13t

The partial set cover problem 5

Example: 13-coverExample: 13-cover

3

4

2

1

1 1

26

1

1

7

4 3

7

5

6

The partial set cover problem 6

Example: minimal 13-coverExample: minimal 13-cover

3

4

2

1

1 1

26

1

1

7

4 3

7

5

6

The partial set cover problem 7

Example: optimal 13-coverExample: optimal 13-cover

3

4

2

1

1 1

26

1

1

7

4 3

7

5

6

The partial set cover problem 8

Example (a hyper-graph)Example (a hyper-graph)

7

5

10

2

1

6

2

2

1

4

VE

a

b

c

de={a,b,c,d}

11t

The partial set cover problem 9

Example: minimal 11-coverExample: minimal 11-cover

7

5

10

2

1

6

2

2

1

4

VE

a

b

c

d

The partial set cover problem 10

Example: optimal 11-coverExample: optimal 11-cover

7

5

10

2

1

6

2

2

1

4

VE

a

b

c

d

The partial set cover problem 11

Homogeneous Weight functionHomogeneous Weight function

Definition:

Property: any minimal cover is

a “good” approximation

))}((,min{)( vEltvVv

The partial set cover problem 12

Homogeneous Weight functionHomogeneous Weight function

Given:

Claim: C is a minimal t-cover

(define: )

Rt

REl

RV

EVH

:

:

),(

tCt E )(

eEeE max

The partial set cover problem 13

Proof:Proof:

Lemma 1: If C is a t-cover then

Lemma 2: If C is a minimal t-cover then

tC )(

tC E )(

The partial set cover problem 14

Proof:Proof:

Lemma 1: If C is a t-cover then

If √

Else

tC )(

Cv Cv

tCElvElvC ))(())(()()(

tvCv )(

The partial set cover problem 15

Proof:Proof:

Lemma 2 (a simple graph): If C is a minimal t-cover then

Case 1:

Case 2:

(case 1)

tC 2)(

2C

ttCvCvC CvCv

2)(max)()(

tvCv )(

}{vC

The partial set cover problem 16

Proof:Proof:

Lemma 2 (a simple graph): If C is a minimal t-cover then

Case 3:

tC 2)(

))(()2( tvC Cv

The partial set cover problem 17

L2: If C is a minimal t-cover then

Case 3:

Define:

tC 2)(

))(()2( tvC Cv

))('2(2

)()'(2

)())((2

)()(2))((

)(

}2:{},1:{

,)(

1

1

1

12

21

2121

Eltt

Eltt

ElCEl

ElElvEl

C

CeeECeeE

EEEECE

Cv

tCElt ))(('

The partial set cover problem 18

To complete the proof:

Let , and

C is a minimal t-cover

But

'2)( 1 tEl

Cv )()( 11 vEEvE

tvCEl })){\((

tvElvCEl ))((})){\(( 1

'))(( 1 tvEl

'2')( 1 ttCEl

The partial set cover problem 19

Example: hyper-graph, Example: hyper-graph, C is a minimal t-cover, C is a minimal t-cover, δ(C) > 2tδ(C) > 2t

1,9

1,9

2,5

3,5

4

4

1

1

1

1

VE

a

b

c

d

5,4e

12t

The partial set cover problem 20

Proof:Proof:

Lemma 2 (hyper-graph): If C is a minimal t-cover then

Case 1:

Case 2:

(case 1)

tC E )(

EC

ttCvCvC ECvCv

)(max)()(

tvCv )(

}{vC

The partial set cover problem 21

L2: If C is a minimal t-cover then

Case 3:

Define:

tC E )(

))(()( tvC CvE

))('(

)()'(

)()1()'(

)()1())((

)()())((

)(

}1:{},1:{

,)(

1

1

1

1

12

21

2121

Eltt

Eltt

Eltt

ElCEl

ElElvEl

C

CeeECeeE

EEEECE

EE

E

EE

EE

CvE

tCElt ))(('

The partial set cover problem 22

To complete the proof:

Let , and

C is a minimal t-cover

But

')( 1 tEl E

Cv )()( 11 vEEvE

tvCEl })){\((

tvElvCEl ))((})){\(( 1

'))(( 1 tvEl

'')( 1 ttCEl E

The partial set cover problem 23

Homogeneous Weight functionHomogeneous Weight function

Claim: C is a minimal t-cover, C* optimal

Proof:By Lemma 2:

By Lemma 1:

)()( *CC E

tC E )(

)( *CE

The partial set cover problem 24

Weight DecompositionWeight Decomposition

Local-Ratio Theorem:

C is an approximation w.r.t.

C is an approximation w.r.t.

C is an approximation w.r.t.

( )

0

E

E

E

The partial set cover problem 25

Algorithm Cover ( )Algorithm Cover ( )

If return

If return “no solution”

If return Cover( )

If return

Cover( )

0t

E

}0)(:{0 vvV 0V

tlEV ,,,,

tlVEEVV ,,),(\,\ 00

}0)(:{0 vvV 0V

))((,,),(\,\ 000 VEltlVEEVV 0V

The partial set cover problem 26

For each

C = Cover( )

For each

If is a t-cover

Return C

tlEV ,,,, 2

)()(min vvVv

Vv

)()()(

)()(

12

1

vvv

vv

Cv

}{\ vC }{\ vCC

The partial set cover problem 27

ExampleExample

1

1

2

1

1

10

1

4

2 23

1

199t

3

The partial set cover problem 28

ExampleExample

1

1

2

1

1

10

1

4,4

2,3 23,9

1,6

19,9

)(

)(min

9

v

v

t

Vv

3 ω,δ

The partial set cover problem 29

ExampleExample

1

1

2

1

1

10

1

10/3

3/2 43/2

0

35/2

9t

3 ω2

The partial set cover problem 30

ExampleExample

1

1

2

10

10/3,3

3/2,2 43/2,3

35/2,3

ω,δ

)(

)(min

369

v

v

t

Vv

The partial set cover problem 31

ExampleExample

1

1

2

10

13/12

0 77/4

61/4

ω2

3t

The partial set cover problem 32

ExampleExample

2

10

13/12,1

77/4,1

61/4,1

ω,δ

)(

)(min

123

v

v

t

Vv

The partial set cover problem 33

ExampleExample

1

1

2

1

1

10

1

4

2 23

1

199t

3

The partial set cover problem 34

ExampleExample

1

1

2

1

1

10

1

4

2 23

1

199t

3

The partial set cover problem 35

Algorithm CoverAlgorithm Cover

Claim: Algorithm Cover is a approximation

for the t-cover problem

Proof:

(L3: Algorithm Cover has at most iterations)

By induction on the number of iterations.

Base: for the empty set is optimal

Step: by the Local-Ratio Theorem

E

V2

0t

The partial set cover problem 36

Time complexityTime complexity

Lemma 4: Algorithm Cover can be implemented

in time

Proof:

vertex deletion adjacent edges deletion

For each such edge,

l(e) is subtracted from its |e| vertices

At most iterations, each iteration

)(2

HVO

)( HO

V2 )(VO

The partial set cover problem 37

Related workRelated work

t-VC: (simple graph)

Bshouty and Burroughs, 1998, 2-approximation

Hochbaum, 1998 Here: t-VC with edge lengths: (simple graph)

Hochbaum, 1998, 3-approximation

Here: 2-approximation

))log()log((2

VEVVEO

)(2

VO

)(2

VO

The partial set cover problem 38

Related workRelated work

t-SC:

Burroughs, 1998, ( )-approximation

t-SC with edge lengths:

Here: approximation time

)ln( V

)(2

HVO E