usfos_jointcapacity

57
USFOS Joint Capacity Theory Description of use Verification

Upload: cbler

Post on 16-Apr-2015

28 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Usfos_JointCapacity

USFOS

Joint Capacity

Theory Description of use

Verification

Page 2: Usfos_JointCapacity

2 ________________________________________________________________________

Table of Contents 1. INTRODUCTION ...................................................................................................... 4

1.1 General ................................................................................................................ 4 1.2 MSL variants....................................................................................................... 4 1.3 Code variants ...................................................................................................... 4

2. THEORY .................................................................................................................... 6 2.1 Joint capacity formulas ....................................................................................... 6

2.1.1 General ........................................................................................................ 6 2.1.2 Basic resistance, MSL................................................................................. 7

2.1.2.1 Strength factor Qu ................................................................................... 7 2.1.2.2 Chord action factor Qf............................................................................. 9 2.1.2.3 Strength check....................................................................................... 10 2.1.2.4 Design axial resistance for X and Y joints with joint cans ................... 11

2.1.3 Basic resistance, NORSOK N-004, revision 2 ......................................... 12 2.1.3.1 Strength factor Qu ................................................................................. 12 2.1.3.2 Chord action factor Qf........................................................................... 13 2.1.3.3 Strength check....................................................................................... 14 2.1.3.4 Design axial resistance for X and Y joints with joint cans ................... 14

2.1.4 Basic resistance, ISO 19902:2007 ............................................................ 16 2.1.4.1 Strength factor Qu ................................................................................. 16 2.1.4.2 Chord action factor Qf........................................................................... 17 2.1.4.3 Strength check....................................................................................... 18 2.1.4.4 Design axial resistance for X and Y joints with joint cans ................... 18

2.1.5 Basic resistance, API RP 2A-WSD, ES3 Oct. 2007 ................................. 19 2.1.5.1 Strength factor Qu ................................................................................. 19 2.1.5.2 Chord action factor Qf........................................................................... 20 2.1.5.3 Strength check....................................................................................... 21 2.1.5.4 Design axial resistance for X and Y joints with joint cans ................... 22

2.2 Joint classification............................................................................................. 23 2.3 Joint behaviour and ductility limits................................................................... 23

2.3.1 Joint P-D curves........................................................................................ 23 2.3.2 MSL Ductility limits ................................................................................. 24 2.3.3 USFOS Specific adjustments.................................................................... 25

3. DESCRIPTION OF USE.......................................................................................... 26 3.1 General .............................................................................................................. 26 3.2 Input description ............................................................................................... 28

4. VERIFICATION....................................................................................................... 33 4.1 K-Joints ............................................................................................................. 33

4.1.1 Gamma = 10, Beta =0.8, gap/T=2.5 ......................................................... 34 4.1.2 Gamma = 10, Beta = 0.8, gap/T = -0.5 ..................................................... 36 4.1.3 Gamma = 10, Beta = 0.8, gap/T = -2.5 ..................................................... 38 4.1.4 Gamma = 25, Beta = 0.8, gap/T = 6.25 .................................................... 40

4.2 T/Y-Joints ......................................................................................................... 42 4.2.1 Gamma = 25, Beta =0.8 ............................................................................ 43

Joint Capacity 2011-06-01

Page 3: Usfos_JointCapacity

3 ________________________________________________________________________

4.2.2 Gamma = 10, Beta =0.8 ............................................................................ 46 4.3 X-Joints ............................................................................................................. 49

4.3.1 Gamma = 25, Beta =0.8 ............................................................................ 50 4.3.2 Gamma = 10, Beta =0.8 ............................................................................ 52 4.3.3 Gamma = 10, Beta =1.0 ............................................................................ 55

5. REFERENCES ......................................................................................................... 57

Joint Capacity 2011-06-01

Page 4: Usfos_JointCapacity

4 ________________________________________________________________________

1. INTRODUCTION

1.1 General The current joint capacity check included in USFOS covers simple tubular joint and is based on capacity formulas and description of the joint behaviour developed during the MSL Joint Industry Projects as described in /1/, /2/. In addition to the original MSL formulations, code variants from Norsok, ISO and API are also implemented.

1.2 MSL variants The MSL Joint Industry Projects developed several sets of capacity formulas based on a large database of laboratory test results.

The original MSL versions you find in USFOS includes:

• Mean Ultimate

• Characteristic Ultimate

• Characteristic First Crack

Mean Ultimate represents the statistical mean failure of the joints tested (top of the force-displacement curve, "the most probable failure load").

Characteristic Ultimate is based on the same data, but the as the title say, the capacity is reduced in order to account for the spreading in the test results.

Characteristic First Crack is in most cases equal to "Characteristic Ultimate" but is further reduced in some cases in order to avoid degradation of the joint for repeated loading. This version is recommended for structures subjected to repeated load actions, e.g. wave loading.

1.3 Code variants Note that the first crack characteristic capacity equations in the code variants are implemented in USFOS excluding the safety factors given in the codes. The additional safety level required by the code for the various limit states analysed must in USFOS be included on the load side (by increasing the applied loads).

Norsok , ISO The MSL capacity check formulas have been adopted and adjusted by Norsok and ISO. The code variants are based on the MSL First Crack capacity formulas. The (Qu) expressions are nearly identical, but the correction factor for chord utilisation differs from MSL. Also the interaction between axial force, in-plane and out-

Joint Capacity 2011-06-01

Page 5: Usfos_JointCapacity

5 ________________________________________________________________________

of-plane bending differs, the code variants put more weight on the out-of plane bending component.

API RP2A The formulas are also based on the MSL database, however, the database used to develop the latest joint capacity equations for API RP2A are extended using results from FE analyses. API RP2A (21’st edition) is currently (2009) the most updated code with respect to joint capacity.

Joint Capacity 2011-06-01

Page 6: Usfos_JointCapacity

6 ________________________________________________________________________

2. THEORY

2.1 Joint capacity formulas

2.1.1 General The validity range for capacity equations given in Chapter 2 and implemented in USFOS are as follows:

0.2 ≤ β ≤ 1.0 10 ≤ γ ≤ 50 30° ≤ θ ≤ 90° fy ≤ 500 MPa

joints)K (for 6.0Dg

−≥

The above geometry parameters are defined as

Ddβ = ,

2TDγ = ,

Ttτ =

Where d = brace diameter, D = Chord diameter, t = brace wall thickness, T = Chord thickness and g = gap between the two braces (for K-joints).

saddleD

T

crown crown

L

t

d

Θ

T

t

d

D

Θ

Joint Capacity 2011-06-01

Page 7: Usfos_JointCapacity

7 ________________________________________________________________________

T

BRACE A

D

g

d

BRACE B

A

t A

Bt

dB

AΘΘB

AB

T

t

d

B

A t

BC

D

B

t

C

d

d

B

B

C

CA

A

A C

ΘΘ Θ

g g

Figure 2-1 Definition of joint geometry parameters

2.1.2 Basic resistance, MSL The resistances for simple tubular joints are defined as follows:

fu

2y

Rd QQsin

TfN

θ=

fu

2y

Rd QQsin

dTfM

θ=

Where

NRd = the joint axial resistance MRd = the joint bending moment resistance fy = the yield strength of the chord member at the joint

For braces with axial forces with a classification that is a mixture of K, Y and X joints, a weighted average of NRd based on the portion of each in the total action is used to calculate the resistance.

2.1.2.1 Strength factor Qu Qu varies with the joint and action type, as given in Table 2-1 to Table 2-3.

Joint Capacity 2011-06-01

Page 8: Usfos_JointCapacity

8 ________________________________________________________________________

Table 2-1 Values for Qu, MSL Mean Ultimate Brace action Joint Classification

Axial Tension Axial Compression In-plane Bending

Out-of-plane bending

K ( ) yyg0.5 QQQ199.13.1 ββ+ ( ) yyg

0.5 QQQ199.13.1 ββ+ 5.05.5 γβ 25.02.4 βγ

Y 6.173.42 +β ( ) 0.5Q199.127.1 ββ+ 5.05.5 γβ 25.02.4 βγ

X

( )( ) 0.9for 3646.370.9-400.9for 6.63.37

>−+≤+

βγβββ

( ) ββ Q148.216.1 + 5.05.5 γβ 25.02.4 βγ

Mean Ultimate represents the statistical mean failure of the joints tested (top of the force-displacement curve, "the most probable failure load").

Table 2-2 Values for Qu, MSL Characteristic Ultimate Brace action Joint Classification

Axial Tension Axial Compression

In-plane Bending

Out-of-plane bending

K ( ) yyg0.5 QQQ199.1 ββ+ ( ) yyg

0.5 QQQ199.1 ββ+

5.05.4 γβ 25.02.3 βγ

Y 1.442 −β ( ) 0.5Q199.1 ββ+ 5.05.4 γβ 25.02.3 βγ

X

( )( ) 0.9for 285320.9-350.9for 2.241

>−+≤−

βγβββ

( ) ββ Q148.2 + 5.05.4 γβ 25.02.3 βγ

Characteristic Ultimate is based on the same data as for Mean Ultimate, the capacity is reduced in order to account for the spreading in the test results.

Table 2-3 Values for Qu, MSL Characteristic First Crack Brace action Joint Classification

Axial Tension Axial Compression

In-plane Bending

Out-of-plane bending

K ( ) yyg0.5 QQQ199.1 ββ+ ( ) yyg

0.5 QQQ199.1 ββ+

5.05.4 γβ 25.02.3 βγ

Y β30 ( ) 0.5Q199.1 ββ+ 5.05.4 γβ 25.02.3 βγ

X

( )( ) 0.9for 220170.9-210.9for 23

>−+≤

βγβββ

( ) ββ Q148.2 + 5.05.4 γβ 25.02.3 βγ

Characteristic First Crack is in most cases equal to "Characteristic Ultimate" but is further reduced in some cases in order to avoid degradation of the joint for repeated loading. This version is recommended for structures subjected to repeated load actions, e.g. wave loading.

Qβ is a geometric factor defined by:

Joint Capacity 2011-06-01

Page 9: Usfos_JointCapacity

9 ________________________________________________________________________

( )βββ 833.013.0Q

−= 0.6for >β

0.1Q =β 0.6for ≤β

Qg is a gap factor defined by: 5.0

g Dg9.1Q

−= 0.1Qbut ,0.2

Tgfor g ≥≥

5.0g 65.013.0Q φγ+= 0.2

Tgfor −≤

cy,

by,

fTft

where =φ

fy,b = yield strength of brace (or brace stub if present)

fy,c = yield strength of chord (or chord can if present)

Qg = linear interpolated value between the limiting values of the above expressions for

0.2Tg0.2 ≤≤−

Qyy is an angle correction factor defined by:

0.1Qyy = °−≤ 904when ct θθ

200

4110Q tc

yy °−+°

=θθ

°−> 904when ct θθ

where θc and θt is the angle between the compression / tension brace and the chord respectively.

2.1.2.2 Chord action factor Qf Qf is a factor to account for the presence of factored actions in the chord.

2f U0.1Q λ−=

where:

λ = 0.030 for brace axial tension or compression = 0.045 for brace in-plane bending moment = 0.021 for brace out-of-plane bending moment

Joint Capacity 2011-06-01

Page 10: Usfos_JointCapacity

10 ________________________________________________________________________

The parameter U is defined as follows: 5.02

P2

2

P2

2

P1 MMN

1

+

+

Γ

=opbipbq

MCMCPCU

where:

P = axial load in chord M = bending moment in chord, (ipb and opb) NP = axial capacity of chord MP = bending capacity of chord C1, C2 = coefficients depending on joint and load type Γq = assessment factor of safety, not to be taken greater than unity

Table 2-4 Values for C1 and C2, MSL Joint Classification C1 C2 T/Y joints under brace axial loading 25 11 DT/X joints under brace axial loading 25 43 K joints under balanced loading 14 43 All joints under brace moment loading 25 43 The chord thickness at the joint should be used in the above calculations. The highest value of U for the chord on either side of the brace intersection should be used. Apart from X joints with β > 0.9, Qf may be set to unity if the magnitude of the chord axial tension stress is greater than the maximum combined stress due to chord moments.

2.1.2.3 Strength check Joint resistance shall satisfy the following interaction equation for axial force and/or bending moments in the brace:

1MM

MM

NN

2

Rdz,

Sdz,

2

Rdy,

Sdy,

Rd

Sd ≤

+

+

Where:

NSd = axial force in the brace member NRd = the joint axial resistance My,Sd = in-plane bending moment in the brace member Mz,Sd = out-of-plane bending moment in the brace member My,Rd = in-plane bending resistance Mz,Rd = out-of-plane bending resistance

Joint Capacity 2011-06-01

Page 11: Usfos_JointCapacity

11 ________________________________________________________________________

2.1.2.4 Design axial resistance for X and Y joints with joint cans For Y and X joints with axial force and where a joint can is specified, the joint design resistance should be calculated as follows:

( ) Rdcan,

2

c

nRd N

TTr-1rN

+=

Where

Ncan,Rd = NRd based on chord can geometric and material properties Tn = nominal chord member thickness Tc = chord can thickness DT/X Joints: r = Lc/(2.5D) for joints with β ≤ 0.9 = [ ( DLc 5.1/)34( − )]β for joints with β > 0.9 Y/T Joints: r = Lc/(2.0D) for joints with β ≤ 0.9 = [ ]DLc /)13/5( −β for joints with β > 0.9 Lc = effective total length of chord can, excluding taper, see Figure 2-2

In no case shall r be taken as greater than unity.

Figure 2-2 Calculation of Lc

The reduction for short can sections is currently not implemented in USFOS, and should be accounted for when selecting effective can section thickness.

Joint Capacity 2011-06-01

Page 12: Usfos_JointCapacity

12 ________________________________________________________________________

2.1.3 Basic resistance, NORSOK N-004, revision 2 The resistances for simple tubular joints are defined as follows:

fu

2y

Rd QQsin

TfN

θ=

fu

2y

Rd QQsin

dTfM

θ=

Where

NRd = the joint axial resistance MRd = the joint bending moment resistance fy = the yield strength of the chord member at the joint

For braces with axial forces with a classification that is a mixture of K, Y and X joints, a weighted average of NRd based on the portion of each in the total action is used to calculate the resistance.

2.1.3.1 Strength factor Qu Qu varies with the joint and action type, as given in Table 2-3.

Table 2-5 Values for Qu Brace action Joint Classification

Axial Tension Axial Compression

In-plane Bending

Out-of-plane bending

K ( ) g0.5QQ199.1 ββ+ ( ) g

0.5QQ199.1 ββ+ 5.05.4 γβ 25.02.3 βγ

Y β30 ( ) 0.5Q199.1 ββ+ 5.05.4 γβ 25.02.3 βγ

X

( )( ) 0.9for 220170.9-210.9for 23

>−+≤

βγβββ

( ) ββ Q148.2 + 5.05.4 γβ 25.02.3 βγ

Qβ is a geometric factor defined by:

( )βββ 833.013.0Q

−= 0.6for >β

0.1Q =β 0.6for ≤β

Qg is a gap factor defined by: 5.0

g Dg9.1Q

−= 0.1Qbut ,0.2

Tgfor g ≥≥

Joint Capacity 2011-06-01

Page 13: Usfos_JointCapacity

13 ________________________________________________________________________

5.0g 65.013.0Q φγ+= 0.2

Tgfor −≤

cy,

by,

fTft

where =φ

fy,b = yield strength of brace (or brace stub if present)

fy,c = yield strength of chord (or chord can if present)

Qg = linear interpolated value between the limiting values of the above expressions for

0.2Tg0.2 ≤≤−

2.1.3.2 Chord action factor Qf Qf is a factor to account for the presence of factored actions in the chord.

2f U0.1Q λ−=

Where:

λ = 0.030 for brace axial tension or compression = 0.045 for brace in-plane bending moment = 0.021 for brace out-of-plane bending moment

The parameter U is defined as follows: 5.02

P2

2

P2

2

P1 MMN

+

+

=

opbipb

MCMCPCU

where:

P = axial load in chord M = bending moment in chord, (ipb and opb) NP = axial capacity of chord MP = bending capacity of chord C1, C2 = coefficients depending on joint and load type

Table 2-6 Values for C1 and C2, NORSOK N-004 r2 Joint Classification C1 C2 T/Y joints under brace axial loading 25 11 DT/X joints under brace axial loading 20 22 K joints under balanced loading 20 22 All joints under brace moment loading 25 30

Joint Capacity 2011-06-01

Page 14: Usfos_JointCapacity

14 ________________________________________________________________________

The chord thickness at the joint should be used in the above calculations. The highest value of U for the chord on either side of the brace intersection should be used.

2.1.3.3 Strength check Joint resistance shall satisfy the following interaction equation for axial force and/or bending moments in the brace:

1MM

MM

NN

Rdz,

Sdz,

2

Rdy,

Sdy,

Rd

Sd ≤+

+

where:

NSd = axial force in the brace member NRd = the joint axial resistance My,Sd = in-plane bending moment in the brace member Mz,Sd = out-of-plane bending moment in the brace member My,Rd = in-plane bending resistance Mz,Rd = out-of-plane bending resistance

2.1.3.4 Design axial resistance for X and Y joints with joint cans For Y and X joints with axial force and where a joint can is specified, the joint design resistance should be calculated as follows:

( ) Rdcan,

2

c

nRd N

TTr-1rN

+=

Where

Ncan,Rd = NRd based on chord can geometric and material properties Tn = nominal chord member thickness Tc = chord can thickness r = Lc/(2.5D) for joints with β ≤ 0.9 = [ ( DLc 5.1/)34( − )]β for joints with β > 0.9 Lc = effective total length of chord can, excluding taper, see Figure 2-3.

In no case shall r be taken as greater than unity.

Joint Capacity 2011-06-01

Page 15: Usfos_JointCapacity

15 ________________________________________________________________________

Figure 2-3 Calculation of Lc

The reduction for short can sections is currently not implemented in USFOS, and should be accounted for when selecting effective can section thickness.

Joint Capacity 2011-06-01

Page 16: Usfos_JointCapacity

16 ________________________________________________________________________

2.1.4 Basic resistance, ISO 19902:2007 The resistances for simple tubular joints are defined as follows:

fu

2y

Rd QQsin

TfN

θ=

fu

2y

Rd QQsin

dTfM

θ=

Where

NRd = the joint axial resistance MRd = the joint bending moment resistance fy = the yield strength of the chord member at the joint

For braces with axial forces with a classification that is a mixture of K, Y and X joints, a weighted average of NRd based on the portion of each in the total action is used to calculate the resistance.

2.1.4.1 Strength factor Qu Qu varies with the joint and action type, as given in Table 2-5.

Table 2-7 Values for Qu Brace action Joint Classification

Axial Tension Axial Compression

In-plane Bending

Out-of-plane bending

K ( ) g0.5QQ199.1 ββ+ ( ) g

0.5QQ199.1 ββ+ 5.05.4 γβ 25.02.3 βγ

Y β30 ( ) 0.5Q199.1 ββ+ 5.05.4 γβ 25.02.3 βγ

X

( )( ) 0.9for 220170.9-20.70.9for 23

>−+≤

βγβββ

( ) ββγ Q)1.012(8.2 ++

5.05.4 γβ 25.02.3 βγ

Qβ is a geometric factor defined by:

( )βββ 833.013.0Q

−= 0.6for >β

0.1Q =β 0.6for ≤β

Qg is a gap factor defined by: 5.0

5.0g T

g7.09.1Q

−= −γ 0.1Qbut ,0.2

Tgfor g ≥≥

Joint Capacity 2011-06-01

Page 17: Usfos_JointCapacity

17 ________________________________________________________________________

5.0g 65.013.0Q φγ+= 0.2

Tgfor −≤

cy,

by,

fTft

where =φ

fy,b = yield strength of brace (or brace stub if present)

fy,c = yield strength of chord (or chord can if present)

Qg = linear interpolated value between the limiting values of the above expressions for

0.2Tg0.2 ≤≤−

2.1.4.2 Chord action factor Qf Qf is a factor to account for the presence of factored actions in the chord.

2f U0.1Q λ−=

Where:

λ = 0.030 for brace axial tension or compression = 0.045 for brace in-plane bending moment = 0.021 for brace out-of-plane bending moment

The parameter U is defined as follows: 5.02

P2

2

P2

2

P1, MMN

+

+

=

opbipbqR

MCMCPCU γ

where:

P = axial load in chord M = bending moment in chord, (ipb and opb) NP = axial capacity of chord MP = bending capacity of chord C1, C2 = coefficients depending on joint and load type γRq = is the partial resistance factor for yield ( set to 1.0 in USFOS)

Table 2-8 Values for C1 and C2, ISO 19902:2007 Joint Classification C1 C2 T/Y joints under brace axial loading 25 11 DT/X joints under brace axial loading 20 22 K joints under balanced loading 14 43 All joints under brace moment loading 25 43

Joint Capacity 2011-06-01

Page 18: Usfos_JointCapacity

18 ________________________________________________________________________

The chord thickness at the joint should be used in the above calculations. The highest value of U for the chord on either side of the brace intersection should be used.

2.1.4.3 Strength check Joint resistance shall satisfy the following interaction equation for axial force and/or bending moments in the brace:

1MM

MM

NN

Rdz,

Sdz,

2

Rdy,

Sdy,

Rd

Sd ≤+

+

where:

NSd = axial force in the brace member NRd = the joint axial resistance My,Sd = in-plane bending moment in the brace member Mz,Sd = out-of-plane bending moment in the brace member My,Rd = in-plane bending resistance Mz,Rd = out-of-plane bending resistance

2.1.4.4 Design axial resistance for X and Y joints with joint cans For Y and X joints with axial force and where a joint can is specified, the joint design resistance should be calculated as follows:

( ) Rdcan,

2

c

nRd N

TTr-1rN

+=

where

Ncan,Rd = NRd based on chord can geometric and material properties Tn = nominal chord member thickness Tc = chord can thickness r = Lc/(2.5D) for joints with β ≤ 0.9 = [ ( DLc 5.1/)34( − )]β for joints with β > 0.9 Lc = effective total length of chord can, excluding taper, see Figure 2-4.

In no case shall r be taken as greater than unity.

Joint Capacity 2011-06-01

Page 19: Usfos_JointCapacity

19 ________________________________________________________________________

Figure 2-4 Calculation of Lc

The reduction for short can sections is currently not implemented in USFOS, and should be accounted for when selecting effective can section thickness.

2.1.5 Basic resistance, API RP 2A-WSD, ES3 Oct. 2007 The resistances for simple tubular joints are defined as follows:

fu

2y

Rd QQsinTf

NθFS

=

fu

2y

Rd QQsin

dTfM

θFS=

Where

NRd = the joint axial resistance MRd = the joint bending moment resistance fy = the yield strength of the chord member at the joint (or 0.8 of the tensile

strength, if less) FS = is the safety factor (Default set to 1.0 in USFOS for characteristic

capacity) For braces with axial forces with a classification that is a mixture of K, Y and X joints, a weighted average of NRd based on the portion of each in the total action is used to calculate the resistance.

2.1.5.1 Strength factor Qu Qu varies with the joint and action type, as given in Table 2-9.

Joint Capacity 2011-06-01

Page 20: Usfos_JointCapacity

20 ________________________________________________________________________

Table 2-9 Values for Qu Brace action Joint Classification

Axial Tension Axial Compression In-plane Bending

Out-of-plane bending

K g1.2 Qβ)γ2.116( +

but ≤ g

1.2 Qβ40

g1.2 Qβ)γ2.116( +

but ≤ g

1.2 Qβ40

1.2γ)β0.7(5 + 6.2β)γ2.05.4(5.2 ++

Y β30 1.6β)γ8.020(8.2 ++ but ≤ 1.6β368.2 +

1.2γ)β0.7(5 + 6.2β)γ2.05.4(5.2 ++

X

( )( ) 0.9for 220170.9-20.70.9for 23

>−+≤

βγβββ

[ ] ββγ Q)1.012(8.2 ++ 1.2γ)β0.7(5 + 6.2β)γ2.05.4(5.2 ++

Qβ is a geometric factor defined by:

( )βββ 833.013.0Q

−= 0.6for >β

0.1Q =β 0.6for ≤β

Qg is a gap factor defined by:

0.1Qbut ,05.0for]8.21[2.01Q g3

g ≥≥−+= DgDg

-0.05Dgfor65.013.0Q 5.0g ≤+= φγ

cy,

by,

fTft

where =φ

fy,b = yield strength of brace (or brace stub if present)

fy,c = yield strength of chord (or chord can if present)

Qg = linear interpolated value between the limiting values of the above expressions for 05.005.0 ≤≤− Dg

2.1.5.2 Chord action factor Qf Qf is a factor to account for the presence of factored actions in the chord.

+= 2

321f 0.1Q ACMMFS

CN

PFSC

p

ipb

p

Joint Capacity 2011-06-01

Page 21: Usfos_JointCapacity

21 ________________________________________________________________________

The parameter A is defined as follows: 5.02

P

2

P

2

P MMN

+

+

= opbipb MFSMFSPFSA

and:

P = axial load in chord Mipb = inplane bending moment in chord Mopb = out of plane bending moment in chord NP = axial capacity of chord MP = bending capacity of chord C1 = coefficient depending on joint and load type, see Table 2-10 C2 = coefficient depending on joint and load type, see Table 2-10 C3 = coefficient depending on joint and load type, see Table 2-10 FS = is the safety factor (Default set to 1.0 in USFOS for characteristic

capacity)

Table 2-10 Values for C1 C2 and C3 Joint Classification C1 C2 C3 T/Y joints under brace axial loading 0.3 0 0.8 DT/X joints under brace axial loading b≤0.9* 0.2 0 0.8 DT/X joints under brace axial loading b=1* -0.2 0 0.2 K joints under balanced loading 0.2 0.2 0.3 All joints under brace moment loading 0.2 0.0 0.4 *) Linear interpolation for 0.9 ≤b≤ 1.0

The chord thickness at the joint should be used in the above calculations. The average of the chord loads and bending moments on either side of the brace intersection should be used. Chord axial load is positive in tension, chord in-plane bending moment is positive when it produces compression on the joint footprint.

2.1.5.3 Strength check Joint resistance shall satisfy the following interaction equation for axial force and/or bending moments in the brace:

1MM

MM

NN

Rdz,

Sdz,

2

Rdy,

Sdy,

Rd

Sd ≤+

+

where:

NSd = axial force in the brace member

Joint Capacity 2011-06-01

Page 22: Usfos_JointCapacity

22 ________________________________________________________________________

NRd = the joint axial resistance My,Sd = in-plane bending moment in the brace member Mz,Sd = out-of-plane bending moment in the brace member My,Rd = in-plane bending resistance Mz,Rd = out-of-plane bending resistance

2.1.5.4 Design axial resistance for X and Y joints with joint cans For Y and X joints with axial force and where a joint can is specified, the joint design resistance should be calculated as follows:

( ) Rdcan,

2

c

nRd N

TTr-1rN

+=

where

Ncan,Rd = NRd based on chord can geometric and material properties Tn = nominal chord member thickness Tc = chord can thickness r = Lc/(2.5D) for joints with β ≤ 0.9 = [ ( DLc 5.1/)34( − )]β for joints with β > 0.9 Lc = effective total length of chord can, excluding taper, see Figure 2-4.

In no case shall r be taken as greater than unity.

Figure 2-5 Calculation of Lc

The reduction for short can sections is currently not implemented in USFOS, and should be accounted for when selecting effective can section thickness.

Joint Capacity 2011-06-01

Page 23: Usfos_JointCapacity

23 ________________________________________________________________________

2.2 Joint classification The joints are classified based on the axial force flow in the joint. This means that a brace in a joint with a K-joint topology can be classified as a T-joint if only one of the braces carry axial loads. Typically braces in complex joints will be classified as partly K, X and T joints. The ultimate capacity of each individual brace is based on the classification. The joint classification may change during an analysis if the axial force flow changes.

2.3 Joint behaviour and ductility limits

2.3.1 Joint P-D curves The following expressions show the original MSL proposed relationship between the joint force/moments and joint displacements/rotations as described in /2/.

+−−=

2

exp1111DFQ

BA

APPyf

u φδφ

+−−=

2

exp1111yf

u FQB

AAMM

φθφ

Table 2-11 Coefficients A and B

Joint Capacity 2011-06-01

Page 24: Usfos_JointCapacity

24 ________________________________________________________________________

Coefficient Joint Type

Load Type

A B Compression 62/)sin)4(( 3 θγ − 13500600 +β

Tension 0.001 120012000 +β

IPB 0.001 67009700 +β

T/Y

OPB 0.001 12008600 +β

Compression 100/)10( +γ 4.090000 −βγ

Tension 0.001

0.19.0

800006000000)9.0(8510

9.050003900

≤<

−−+

≤+

βγ

β

ββ

for

for

IPB 0.001 67009700 +β

DT/X

OPB 0.001 12008600 +β

Balanced axial

25.0025.01.0

18/)7(

<<−=

ϕζϕ

γϕ

butwhere

320170450320

)413(

≤≤−=

+

ψζψ

γψ

butwhere

IPB 0.001 67009700 +β

K

OPB 0.001 12008600 +β

P, M = brace load at joint

Pu, Mu = mean strength

φ = strength scaling factor (Pchar/Pu)

δ = joint deformation (pr brace)

θ = joint rotation (radians, pr brace)

D = chord diameter

A = constant for given joint geometry and load type

B = dimensional constant in units of MPa for given joint geometry and load type

γ = D/(2T) chord diameter / (2 chord wall thickness)

ζ = (g/D) gap between brace toes / chord diameter

2.3.2 MSL Ductility limits

Table 2-12 show the MSL proposed ductility limits as described in /2/.

Table 2-12 Ductility limits for axial deflection

Joint Capacity 2011-06-01

Page 25: Usfos_JointCapacity

25 ________________________________________________________________________

Joint Type Mean Characteristic X

βδ 11.013.0 −=D

βδ 075.0089.0 −=D

T/Y 076.0=

044.0=Dδ

K 026.0=

015.0=Dδ

In USFOS, the ductility limit is implemented by reducing the axial joint capacity to a small number for deformations larger than the ductility limit.

No formulations are identified for mean and characteristic fracture criteria related to other degrees of freedom.

2.3.3 USFOS Specific adjustments The Joint load-deformation curves described in 2.3.1 are developed with the mean capacity in mind. The scaling factor φ is intended to scale the curve when characteristic capacities are used, in a way that preserves the initial joint stiffness. However in some cases the produced curves are much softer near the characteristic capacity and the ductility limit is reached before the characteristic capacity. In order to avoid this, the B factors are increased for axial tension for the Norsok, API and ISO variants. B’ = B 1.5 is used.

Joint Capacity 2011-06-01

Page 26: Usfos_JointCapacity

26 ________________________________________________________________________

3. DESCRIPTION OF USE

3.1 General When using the USFOS CHJOINT record, additional elements are inserted in the FE- model, see Figure 3-1 The elements have properties representing both the stiffness and capacity of the tubular joint braces according to the selected rule.

Two extra nodes

Beam

Beam

Two extra elements

Beam

Beam

Conventional joint model Joint with capacity check included Figure 3-1 Tubular joint representation

A sample input for the joint given in Figure 3-2 is shown in

Table 3-1.

Section 3.2 describes the most relevant input records in order to include joint check in an USFOS analysis.

Joint Capacity 2011-06-01

Page 27: Usfos_JointCapacity

27 ________________________________________________________________________

Figure 3-2 Tubular Joint

Table 3-1 Joint check input

' nodex chord1 chord2 geono CapRule CapLevel

CHJOINT 12 14 15 0 MSL FCrack

'

JNTCLASS 1 ! 0=OFF 1=ON

Joint Capacity 2011-06-01

Page 28: Usfos_JointCapacity

28 ________________________________________________________________________

3.2 Input description Below is given a selection of the most relevant input records in order to include joint check in an USFOS analysis.

CHJOINT nodex elnox1 elnox2 geono irule

Parameter Description Default

nodex External node number referring to the joint where shell effects should be considered

elnox1 External element number defining one of the two elements connected to the node

elnox2 External element number defining the second CHORD element

geono irule

Geometry reference number defining the diameter and thickness of the chord at the joint (canned joint). If omitted or equal to 0, the data for elnox1 is used. Capacity rule switch: irule = MSL : MSL non-linear joint characteristics, (see next pages). irule = Norsok : Norsok N-004, rev 2 non-linear joint characteristics. irule = ISO: ISO 19902:2007 non-linear joint characteristics. irule = API-WSD: API RP 2A WSD ES3 (non-linear joint characteristics. Historic, not recommended: irule = -1 : API-LRFD (no more data required) irule = -2 : DoE (no more data required) irule = -3 : User defined capacity and surface definition, more data

required, (see next pages). Irule = -101 : User defined Joint Springs, more data required, (see next

pages).

0

Norsok

With this record, the capacity of each brace/chord connection at the tubular joint will be checked according to a selected joint capacity formulation. This check will impose restrictions on the load transfer through each brace/chord connection at the specified joint. The generated capacities are printed in the '.jnt' or the ‘.out’ – file (Historic options), and the peak capacities will be printed using the Verify/Element/Information option in Xact.

Joint Capacity 2011-06-01

Page 29: Usfos_JointCapacity

29 ________________________________________________________________________

Two extra nodes

Beam

Beam

Two extra elements

Beam

Beam

Conventional joint model Joint with capacity check included

Joint Capacity 2011-06-01

Page 30: Usfos_JointCapacity

30 ________________________________________________________________________

CHJOINT nodex elnox1 elnox2 geono CapRule CapLevel Qf_SafetyCoeff

Parameter Description Default

nodex External node number referring to the joint where joint capacity and non-linear joint behaviour should be considered

elnox1 External element number defining one of the two CHORD elements connected to the node

elnox2 External element number defining the second CHORD element

geono Geometry reference number defining the diameter and thickness of the chord at the joint (canned joint). If omitted or equal to 0, the data for elnox1 is used.

CapRule Capacity rule:

MSL : MSL non-linear joint characteristics

CapLevel Capacity level or capacity multiplier. mean : use mean ultimate joint capacities char : use characteristic ultimate joint capacities fcrack : use characteristic first crack joint capacities

scalfact : joint capacities are set to mean value capacities multiplied by scalfact, (where “scalfact“ is a positive real number).

This option is only available with the MSL joint formulation.

fCrack

Qf_Safety Coeff

The Qf factor for joint capacities includes a safety factor (or partial safety coefficient) in the chord stress utilization factor.

1.0

With this record, the capacity of each brace/chord connection at the tubular joint will be checked according to a selected joint capacity equation This check will impose restrictions on the load transfer through each brace/chord connection at the specified joint, and the non-linear joint characteristics will be included in the USFOS analysis. Extra elements will be introduced in the FE model, and the behavior of these elements assigned according to the selected joint capacity rule or specified joint capacity, and the FE formulation selected for the “joint elements”. The joint capacity rule or joint capacity is specified by the CHJOINT record(s). The FE formulation for the “joint elements” is selected automatically. (JNT_FORM record is not needed to specify).

-

Joint Capacity 2011-06-01

Page 31: Usfos_JointCapacity

31 ________________________________________________________________________

JOINTGAP Gap NodeID Brace1 Brace2 ……

Parameter Description Default

Gap Actual Gap specified in current length unit

NodeID Actual Joint, (CHJOINT must be specified for this joint) Brace_i . .

The actual gap should be applied to the Braces (Elem ID’s) specified. NOTE 1: If no node is specified, all joints defined get the actual gap. NOTE 2: If no braces are specified, all braces get the actual gap.

With this record the user may override the gaps between braces, which are computed based on the structural model, (member coordinates and offsets). This is a useful option if the structural model does not describe correct gaps (f ex a model without member eccentricities/offsets). This record may be repeated. ‘ Gap (NodID) Example 1: JOINTGAP 0.050 This will force a gap = 0.050 to be used in all relevant capacity calculations for all joints with CHJOINT applied (does not influence T/Y capacities). ‘ Gap NodID Example 2: JOINTGAP 0.050 JOINTGAP 0.070 1010 JOINTGAP 0.070 2010 JOINTGAP 0.070 3010 This will force a gap = 0.050 to be used in all relevant capacity calculations for all joints except for joints 1010, 2010 and 3010, which will use a gap of 0.070. ‘ Gap NodID Brace1 Brace2 Brace3 Example 3: JOINTGAP 0.050 JOINTGAP 0.070 1010 20100 20101 20102 This will force a gap = 0.050 to be used in all relevant capacity calculations for all joints except for joint 1010, where the braces 20100, 20101 and 20102, which will use a gap of 0.070. The other braces connected to joint 1010 will use a gap of 0.050. ‘ Gap NodID Brace1 Brace2 Brace3 Example 4: JOINTGAP 0.070 1010 20100 20101 20102 This will force a gap=0.070 to be used for joint 1010, braces 20100, 20101 and 20102. The other braces connected to joint 1010 as well as all other joints with ChJoint specified will use the gap computed on basis on the structural model (coordinates and eventual offsets).

Joint Capacity 2011-06-01

Page 32: Usfos_JointCapacity

32 ________________________________________________________________________

JNTCLASS interval

Parameter Description Default

interval Joints will be (re)classified according to geometry and force state at specified intervals during the analysis. The joint capacities will be updated according to the revised classification, P-δ curves for each joint degree of freedom and the Qf factor will be updated.

1

0 : No joint classification. 1 : Continuous joint (re)classification. Joint capacities, non-

linear joint characteristics and the Qf factor will be updated at every step in the USFOS analysis.

n >1 : Joints will be (re)classified at every n’th step. Joint capacities, non-linear joint characteristics and the Qf factor will be updated at every n’th step in the USFOS analysis.

If the record is not given, the default value of one (classified every step) is used for the MSL, Norsok, ISO and API-WSD variants. This record is given once

Joint Capacity 2011-06-01

Page 33: Usfos_JointCapacity

33 ________________________________________________________________________

4. VERIFICATION

4.1 K-Joints

PP

Axgap

PP

Axgap

Figure 4-1 Simple K-Joint with gap

Joint Capacity 2011-06-01

Page 34: Usfos_JointCapacity

34 ________________________________________________________________________

4.1.1 Gamma = 10, Beta =0.8, gap/T=2.5

Table 4-1 Joint data

Input Value Joint type K

Geometry [mm]db 320tb 20Dc 400Tc 20theta 90gap 50Material [MPa]fyb 350fy 350Chord loads [N]-Axial -1.30E+06Chord Capacity Np 8.357E+06Mp 1.012E+09

Table 4-2 Expected capacities [N, mm]

Results for Joint Type: K MSL Mean MSL Char MSL

Fcrack Norsok ISO API

Nrd.c 5.103E+06 3.925E+06 3.925E+06 3.925E+06 3.925E+06 3.164E+06Qf 0.99 0.99 0.99 0.99 0.99 0.96Nrd.c*Qf 5.051E+06 3.886E+06 3.886E+06 3.869E+06 3.886E+06 3.043E+06

Nrd.t 5.103E+06 3.925E+06 3.925E+06 3.925E+06 3.925E+06 3.164E+06Qf 0.99 0.99 0.99 0.99 0.99 0.96Nrd.t*Qf 5.051E+06 3.886E+06 3.886E+06 3.869E+06 3.886E+06 3.043E+06

Mipb 6.233E+08 5.100E+08 5.100E+08 5.100E+08 5.100E+08 4.113E+08Qf 0.97 0.97 0.97 0.97 0.97 0.96Mipb*Qf 6.065E+08 4.962E+08 4.962E+08 4.962E+08 4.962E+08 3.946E+08

Mopb 3.931E+08 2.995E+08 2.995E+08 2.995E+08 2.995E+08 2.750E+08Qf 0.99 0.99 0.99 0.99 0.99 0.96Mopb*Qf 3.882E+08 2.957E+08 2.957E+08 2.957E+08 2.957E+08 2.638E+08

Joint Capacity 2011-06-01

Page 35: Usfos_JointCapacity

35 ________________________________________________________________________

Table 4-3 USFOS results [N, m]

NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 5.103E+06 6.233E+05 3.931E+05 29% T 3.224E+06 6.233E+05 3.931E+05 100% => 4.552E+06 6.233E+05 3.931E+05 0.99 0.97 0.99 12 45 K 11 0.050 7.113E+06 8.815E+05 5.560E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 3.925E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 3.519E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 0.050 4.720E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 3.925E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 3.519E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 0.050 4.720E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 3.925E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 3.519E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 45 K 11 0.050 5.263E+06 7.213E+05 4.236E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 3.925E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 3.519E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 0.050 5.258E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 3.164E+06 4.113E+05 2.750E+05 29% T 3.135E+06 4.113E+05 2.750E+05 100% => 3.155E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 45 K 11 0.050 4.387E+06 5.817E+05 3.889E+05 0.96 0.96 0.96

Joint Capacity 2011-06-01

Page 36: Usfos_JointCapacity

36 ________________________________________________________________________

4.1.2 Gamma = 10, Beta = 0.8, gap/T = -0.5

Table 4-4 Joint data

Input Value Joint type K

Geometry [mm]Db 320Tb 20Dc 400Tc 20Theta 90gap -10Material [MPa]fyb 350fy 350Chord loads [N]-Axial -1.30E+06Chord Capacity Np 8.357E+06Mp 1.012E+09

Table 4-5 Expected capacities [N, mm]

Results for Joint Type: K MSL Mean MSL Char MSL

Fcrack Norsok ISO API

Nrd.c 6.467E+06 4.974E+06 4.974E+06 4.974E+06 4.974E+06 5.761E+06Qf 0.99 0.99 0.99 0.99 0.99 0.96Nrd.c*Qf 6.402E+06 4.924E+06 4.924E+06 4.903E+06 4.924E+06 5.541E+06

Nrd.t 6.467E+06 4.974E+06 4.974E+06 4.974E+06 4.974E+06 5.761E+06Qf 0.99 0.99 0.99 0.99 0.99 0.96Nrd.t*Qf 6.402E+06 4.924E+06 4.924E+06 4.903E+06 4.924E+06 5.541E+06

Mipb 6.233E+08 5.100E+08 5.100E+08 5.100E+08 5.100E+08 4.113E+08Qf 0.97 0.97 0.97 0.97 0.97 0.96Mipb*Qf 6.065E+08 4.962E+08 4.962E+08 4.962E+08 4.962E+08 3.946E+08

Mopb 3.931E+08 2.995E+08 2.995E+08 2.995E+08 2.995E+08 2.750E+08Qf 0.99 0.99 0.99 0.99 0.99 0.96Mopb*Qf 3.882E+08 2.957E+08 2.957E+08 2.957E+08 2.957E+08 2.638E+08

Joint Capacity 2011-06-01

Page 37: Usfos_JointCapacity

37 ________________________________________________________________________

Table 4-6 USFOS Results [N, m] NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.010 6.467E+06 6.233E+05 3.931E+05 29% T 3.224E+06 6.233E+05 3.931E+05 100% => 5.517E+06 6.233E+05 3.931E+05 0.99 0.97 0.99 12 45 K 11 -0.010 9.958E+06 8.815E+05 5.560E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.010 4.974E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.261E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 -0.010 7.035E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.010 4.974E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.261E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 -0.010 7.035E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.010 4.974E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.261E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 45 K 11 -0.010 7.035E+06 7.213E+05 4.236E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.010 4.974E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.261E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 -0.010 7.035E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.010 5.761E+06 4.113E+05 2.750E+05 29% T 3.135E+06 4.113E+05 2.750E+05 100% => 4.992E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 45 K 11 -0.010 8.147E+06 5.817E+05 3.889E+05 0.96 0.96 0.96

Joint Capacity 2011-06-01

Page 38: Usfos_JointCapacity

38 ________________________________________________________________________

4.1.3 Gamma = 10, Beta = 0.8, gap/T = -2.5

Table 4-7 Joint data

Input Value Joint type K

Geometry [mm]db 320tb 20Dc 400Tc 20theta 90gap -50Material [MPa]fyb 350fy 350Chord loads [N]-Axial -1.30E+06Chord Capacity Np 8.357E+06Mp 1.012E+09

Table 4-8 Expected Capacities [N,mm]

Results for Joint Type: K MSL Mean MSL Char MSL

Fcrack Norsok ISO API

Nrd.c 7.211E+06 5.547E+06 5.547E+06 5.547E+06 5.547E+06 6.555E+06Qf 0.99 0.99 0.99 0.99 0.99 0.96Nrd.c*Qf 7.139E+06 5.491E+06 5.491E+06 5.467E+06 5.491E+06 6.304E+06

Nrd.t 7.211E+06 5.547E+06 5.547E+06 5.547E+06 5.547E+06 6.555E+06Qf 0.99 0.99 0.99 0.99 0.99 0.96Nrd.t*Qf 7.139E+06 5.491E+06 5.491E+06 5.467E+06 5.491E+06 6.304E+06

Mipb 6.233E+08 5.100E+08 5.100E+08 5.100E+08 5.100E+08 4.113E+08Qf 0.97 0.97 0.97 0.97 0.97 0.96Mipb*Qf 6.065E+08 4.962E+08 4.962E+08 4.962E+08 4.962E+08 3.946E+08

Mopb 3.931E+08 2.995E+08 2.995E+08 2.995E+08 2.995E+08 2.750E+08Qf 0.99 0.99 0.99 0.99 0.99 0.96Mopb*Qf 3.882E+08 2.957E+08 2.957E+08 2.957E+08 2.957E+08 2.638E+08

Joint Capacity 2011-06-01

Page 39: Usfos_JointCapacity

39 ________________________________________________________________________

Table 4-9 USFOS Results [N, m] NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.050 7.211E+06 6.233E+05 3.931E+05 29% T 3.224E+06 6.233E+05 3.931E+05 100% => 6.043E+06 6.233E+05 3.931E+05 0.99 0.97 0.99 12 45 K 11 -0.050 1.110E+07 8.815E+05 5.560E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.050 5.547E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.666E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 -0.050 7.845E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.050 5.547E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.666E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 -0.050 7.845E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.050 5.547E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.666E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 45 K 11 -0.050 7.845E+06 7.213E+05 4.236E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.050 5.547E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.666E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 -0.050 7.845E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.050 6.555E+06 4.113E+05 2.750E+05 29% T 3.135E+06 4.113E+05 2.750E+05 100% => 5.553E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 45 K 11 -0.050 9.269E+06 5.817E+05 3.889E+05 0.96 0.96 0.96

Joint Capacity 2011-06-01

Page 40: Usfos_JointCapacity

40 ________________________________________________________________________

4.1.4 Gamma = 25, Beta = 0.8, gap/T = 6.25

Table 4-10 Joint data

Input Value Joint type K

Geometry [mm]db 320tb 8Dc 400Tc 8theta 90gap 50Material [MPa]fyb 350fy 350Chord loads [N]-Axial -1.05E+06Chord Capacity Np 3.448E+06Mp 4.303E+08

Table 4-11 Expected Capacities [N,mm]

Results for Joint Type: K MSL Mean MSL Char MSL

Fcrack Norsok ISO API

Nrd.c 8.164E+05 6.280E+05 6.280E+05 6.280E+05 6.280E+05 7.232E+05Qf 0.96 0.96 0.96 0.94 0.96 0.91Nrd.c*Qf 7.845E+05 6.035E+05 6.035E+05 5.930E+05 6.035E+05 6.589E+05

Nrd.t 8.164E+05 6.280E+05 6.280E+05 6.280E+05 6.280E+05 7.232E+05Qf 0.96 0.96 0.96 0.94 0.96 0.91Nrd.t*Qf 7.845E+05 6.035E+05 6.035E+05 5.930E+05 6.035E+05 6.589E+05

Mipb 1.577E+08 1.290E+08 1.290E+08 1.290E+08 1.290E+08 1.234E+08Qf 0.90 0.90 0.90 0.90 0.90 0.90Mipb*Qf 1.412E+08 1.155E+08 1.155E+08 1.155E+08 1.155E+08 1.113E+08

Mopb 8.433E+07 6.425E+07 6.425E+07 6.425E+07 6.425E+07 5.604E+07Qf 0.95 0.95 0.95 0.95 0.95 0.90Mopb*Qf 8.021E+07 6.111E+07 6.111E+07 6.111E+07 6.111E+07 5.054E+07

Joint Capacity 2011-06-01

Page 41: Usfos_JointCapacity

41 ________________________________________________________________________

Table 4-12 USFOS Results [N, m] NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 8.164E+05 1.577E+05 8.433E+04 29% T 5.158E+05 1.577E+05 8.433E+04 100% => 7.284E+05 1.577E+05 8.433E+04 0.95 0.89 0.95 12 45 K 11 0.050 1.257E+06 2.230E+05 1.193E+05 0.95 0.88 0.94 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 6.280E+05 1.290E+05 6.425E+04 29% T 4.061E+05 1.290E+05 6.425E+04 100% => 5.630E+05 1.290E+05 6.425E+04 0.95 0.89 0.95 12 45 K 11 0.050 8.879E+05 1.825E+05 9.087E+04 0.95 0.88 0.94 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 6.280E+05 1.290E+05 6.425E+04 29% T 4.061E+05 1.290E+05 6.425E+04 100% => 5.630E+05 1.290E+05 6.425E+04 0.95 0.89 0.95 12 45 K 11 0.050 8.879E+05 1.825E+05 9.087E+04 0.95 0.88 0.94 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 6.280E+05 1.290E+05 6.425E+04 29% T 4.061E+05 1.290E+05 6.425E+04 100% => 5.630E+05 1.290E+05 6.425E+04 0.94 0.89 0.95 12 45 K 11 0.050 8.882E+05 1.825E+05 9.087E+04 0.94 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 6.280E+05 1.290E+05 6.425E+04 29% T 4.061E+05 1.290E+05 6.425E+04 100% => 5.630E+05 1.290E+05 6.425E+04 0.95 0.89 0.95 12 45 K 11 0.050 8.882E+05 1.825E+05 9.087E+04 0.96 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 7.232E+05 1.234E+05 5.604E+04 29% T 6.270E+05 1.234E+05 5.604E+04 100% => 6.950E+05 1.234E+05 5.604E+04 0.88 0.90 0.90 12 45 K 11 0.050 1.023E+06 1.745E+05 7.925E+04 0.90 0.90 0.90

Joint Capacity 2011-06-01

Page 42: Usfos_JointCapacity

42 ________________________________________________________________________

4.2 T/Y-Joints

P

Ax

P

Ax

Figure 4-2 Simple T/Y-Joint

Joint Capacity 2011-06-01

Page 43: Usfos_JointCapacity

43 ________________________________________________________________________

4.2.1 Gamma = 25, Beta =0.8

Table 4-13 Joint data

Input Value Joint type T/Y Geometry [mm]db 320tb 8Dc 400Tc 8theta 90gap 0Material fyb 350fy 350Chord loads [N]-Axial -1.03E+06Chord Capacity Np 3.448E+06Mp 4.303E+08

Table 4-14 Expected capacities [N, mm]

Results for Joint Type: T/Y MSL Mean MSL Char MSL Fcrack Norsok ISO API

Nrd.c 5.158E+05 4.061E+05 4.061E+05 4.061E+05 4.061E+05 6.270E+05Qf 0.92 0.92 0.92 0.92 0.92 0.82Nrd.c*Qf 4.765E+05 3.752E+05 3.752E+05 3.752E+05 3.752E+05 5.115E+05

Nrd.t 1.152E+06 6.608E+05 5.376E+05 5.376E+05 5.376E+05 5.376E+05Qf 0.92 0.92 0.92 0.92 0.92 0.82Nrd.t*Qf 1.065E+06 6.105E+05 4.967E+05 4.967E+05 4.967E+05 4.386E+05

Mipb 1.577E+08 1.290E+08 1.290E+08 1.290E+08 1.290E+08 1.234E+08Qf 0.84 0.84 0.84 0.86 0.84 0.89Mipb*Qf 1.325E+08 1.084E+08 1.084E+08 1.108E+08 1.084E+08 1.102E+08

Mopb 8.433E+07 6.425E+07 6.425E+07 6.425E+07 6.425E+07 5.604E+07Qf 0.93 0.93 0.93 0.93 0.93 0.89Mopb*Qf 7.805E+07 5.946E+07 5.946E+07 6.002E+07 5.946E+07 5.005E+07

Joint Capacity 2011-06-01

Page 44: Usfos_JointCapacity

44 ________________________________________________________________________

Table 4-15 USFOS results [N, m] (compression) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 5.158E+05 1.577E+05 8.433E+04 0.92 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 4.061E+05 1.290E+05 6.425E+04 0.92 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 4.061E+05 1.290E+05 6.425E+04 0.92 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 4.061E+05 1.290E+05 6.425E+04 0.93 0.87 0.94 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 4.061E+05 1.290E+05 6.425E+04 0.93 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 6.270E+05 1.234E+05 5.604E+04 0.82 0.89 0.89

Joint Capacity 2011-06-01

Page 45: Usfos_JointCapacity

45 ________________________________________________________________________

Table 4-16 USFOS results [N, m] (tension) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 1.149E+06 1.577E+05 8.433E+04 0.92 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 6.593E+05 1.290E+05 6.425E+04 0.92 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 5.375E+05 1.290E+05 6.425E+04 0.92 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 5.376E+05 1.290E+05 6.425E+04 0.93 0.87 0.94 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 5.376E+05 1.290E+05 6.425E+04 0.93 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 5.376E+05 1.234E+05 5.604E+04 0.82 0.89 0.89

Joint Capacity 2011-06-01

Page 46: Usfos_JointCapacity

46 ________________________________________________________________________

4.2.2 Gamma = 10, Beta =0.8

Table 4-17 Joint data

Input Value Joint type T/Y Geometry [mm]Db 320Tb 20Dc 400Tc 20theta 90gap 0Material fyb 350fy 350Chord loads [N]-Axial -2.51E+06Chord Capacity Np 8.357E+06Mp 1.012E+09

Table 4-18 Expected capacities [N, mm]

Results for Joint Type: T/Y MSL Mean MSL Char MSL

Fcrack Norsok ISO API

Nrd.c 3.224E+06 2.538E+06 2.538E+06 2.538E+06 2.538E+06 3.135E+06Qf 0.93 0.93 0.93 0.93 0.93 0.83Nrd.c*Qf 3.001E+06 2.363E+06 2.363E+06 2.363E+06 2.363E+06 2.615E+06

Nrd.t 7.202E+06 4.130E+06 3.360E+06 3.360E+06 3.360E+06 3.360E+06Qf 0.93 0.93 0.93 0.93 0.93 0.83Nrd.t*Qf 6.705E+06 3.845E+06 3.128E+06 3.128E+06 3.128E+06 2.803E+06

Mipb 6.233E+08 5.100E+08 5.100E+08 5.100E+08 5.100E+08 4.113E+08Qf 0.89 0.89 0.89 0.89 0.89 0.90Mipb*Qf 5.537E+08 4.530E+08 4.530E+08 4.547E+08 4.530E+08 3.711E+08

Mopb 3.931E+08 2.995E+08 2.995E+08 2.995E+08 2.995E+08 2.750E+08Qf 0.95 0.95 0.95 0.95 0.95 0.90Mopb*Qf 3.726E+08 2.839E+08 2.839E+08 2.844E+08 2.839E+08 2.481E+08

Joint Capacity 2011-06-01

Page 47: Usfos_JointCapacity

47 ________________________________________________________________________

Table 4-19 USFOS results [N, m] (compression) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.224E+06 6.233E+05 3.931E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 2.538E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 2.538E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 2.538E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 2.538E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.135E+06 4.113E+05 2.750E+05 0.83 0.90 0.90

Joint Capacity 2011-06-01

Page 48: Usfos_JointCapacity

48 ________________________________________________________________________

Table 4-20 USFOS results [N, m] (tension) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 7.183E+06 6.233E+05 3.931E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 4.120E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.359E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.360E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.360E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.360E+06 4.113E+05 2.750E+05 0.83 0.90 0.90

Joint Capacity 2011-06-01

Page 49: Usfos_JointCapacity

49 ________________________________________________________________________

4.3 X-Joints

P

Ax

P

P

Ax

P

Figure 4-3 Simple DT/X-Joint

Joint Capacity 2011-06-01

Page 50: Usfos_JointCapacity

50 ________________________________________________________________________

4.3.1 Gamma = 25, Beta =0.8

Table 4-21 Joint data

Input Value Joint type X Geometry [mm]db 320tb 8Dc 400Tc 8theta 90gap 0Material fyb 350fy 350Chord loads [N]-Axial -1.03E+06Chord Capacity Np 3.448E+06Mp 4.303E+08

Table 4-22 Expected capacities [N, mm]

Results for Joint Type: X MSL Mean MSL Char MSL

Fcrack Norsok ISO API

Nrd.c 4.089E+05 3.525E+05 3.525E+05 3.525E+05 3.626E+05 3.626E+05Qf 0.93 0.93 0.93 0.95 0.95 0.90Nrd.c*Qf 3.813E+05 3.287E+05 3.287E+05 3.335E+05 3.430E+05 3.245E+05

Nrd.t 8.163E+05 6.854E+05 4.122E+05 4.122E+05 4.122E+05 4.122E+05Qf 0.93 0.93 0.93 0.95 0.95 0.90Nrd.t*Qf 7.612E+05 6.392E+05 3.843E+05 3.899E+05 3.899E+05 3.689E+05

Mipb 1.577E+08 1.290E+08 1.290E+08 1.290E+08 1.290E+08 1.234E+08Qf 0.90 0.90 0.90 0.90 0.90 0.90Mipb*Qf 1.417E+08 1.160E+08 1.160E+08 1.160E+08 1.160E+08 1.115E+08

Mopb 8.433E+07 6.425E+07 6.425E+07 6.425E+07 6.425E+07 5.604E+07Qf 0.95 0.95 0.95 0.95 0.95 0.90Mopb*Qf 8.035E+07 6.122E+07 6.122E+07 6.122E+07 6.122E+07 5.066E+07

Joint Capacity 2011-06-01

Page 51: Usfos_JointCapacity

51 ________________________________________________________________________

Table 4-23 USFOS results [N, m] (compression) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 78% X 12 4.089E+05 1.577E+05 8.433E+04 22% T 5.158E+05 1.577E+05 8.433E+04 100% => 4.325E+05 1.577E+05 8.433E+04 0.93 0.90 0.95 12 90 X 11 4.089E+05 1.577E+05 8.433E+04 0.93 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 78% X 12 3.525E+05 1.290E+05 6.425E+04 22% T 4.061E+05 1.290E+05 6.425E+04 100% => 3.643E+05 1.290E+05 6.425E+04 0.93 0.90 0.95 12 90 X 11 3.525E+05 1.290E+05 6.425E+04 0.93 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 78% X 12 3.525E+05 1.290E+05 6.425E+04 22% T 4.061E+05 1.290E+05 6.425E+04 100% => 3.643E+05 1.290E+05 6.425E+04 0.93 0.90 0.95 12 90 X 11 3.525E+05 1.290E+05 6.425E+04 0.93 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 79% X 12 3.525E+05 1.290E+05 6.425E+04 21% T 4.061E+05 1.290E+05 6.425E+04 100% => 3.640E+05 1.290E+05 6.425E+04 0.94 0.90 0.95 12 90 X 11 3.525E+05 1.290E+05 6.425E+04 0.95 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 79% X 12 3.626E+05 1.290E+05 6.425E+04 21% T 4.061E+05 1.290E+05 6.425E+04 100% => 3.719E+05 1.290E+05 6.425E+04 0.94 0.90 0.95 12 90 X 11 3.626E+05 1.290E+05 6.425E+04 0.95 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 79% X 12 3.626E+05 1.234E+05 5.604E+04 21% T 6.270E+05 1.234E+05 5.604E+04 100% => 4.193E+05 1.234E+05 5.604E+04 0.88 0.90 0.90 12 90 X 11 3.626E+05 1.234E+05 5.604E+04 0.90 0.90 0.90

Joint Capacity 2011-06-01

Page 52: Usfos_JointCapacity

52 ________________________________________________________________________

4.3.2 Gamma = 10, Beta =0.8

Table 4-24 Joint data

Input Value Joint type X Geometry [mm]Db 320Tb 20Dc 400Tc 20theta 90gap 0Material fyb 350fy 350Chord loads [N]-Axial -1.29E+06Chord Capacity Np 8.357E+06Mp 1.012E+09

Table 4-25 Expected capacities [N, mm]

Results for Joint Type: X MSL Mean MSL Char MSL

Fcrack Norsok ISO API

Nrd.c 2.556E+06 2.203E+06 2.203E+06 2.203E+06 2.077E+06 2.077E+06Qf 0.98 0.98 0.98 0.99 0.99 0.96Nrd.c*Qf 2.510E+06 2.164E+06 2.164E+06 2.172E+06 2.048E+06 1.989E+06

Nrd.t 5.102E+06 4.284E+06 2.576E+06 2.576E+06 2.576E+06 2.576E+06Qf 0.98 0.98 0.98 0.99 0.99 0.96Nrd.t*Qf 5.011E+06 4.208E+06 2.530E+06 2.539E+06 2.539E+06 2.466E+06

Mipb 6.233E+08 5.100E+08 5.100E+08 5.100E+08 5.100E+08 4.113E+08Qf 0.97 0.97 0.97 0.97 0.97 0.96Mipb*Qf 6.067E+08 4.964E+08 4.964E+08 4.964E+08 4.964E+08 3.947E+08

Mopb 3.931E+08 2.995E+08 2.995E+08 2.995E+08 2.995E+08 2.750E+08Qf 0.99 0.99 0.99 0.99 0.99 0.96Mopb*Qf 3.882E+08 2.958E+08 2.958E+08 2.958E+08 2.958E+08 2.639E+08

Joint Capacity 2011-06-01

Page 53: Usfos_JointCapacity

53 ________________________________________________________________________

Table 4-26 USFOS results [N, m] (compression) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 89% X 12 2.556E+06 6.233E+05 3.931E+05 11% T 3.224E+06 6.233E+05 3.931E+05 100% => 2.626E+06 6.233E+05 3.931E+05 0.98 0.97 0.99 12 90 X 11 2.556E+06 6.233E+05 3.931E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 89% X 12 2.203E+06 5.100E+05 2.995E+05 11% T 2.538E+06 5.100E+05 2.995E+05 100% => 2.239E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 90 X 11 2.203E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 89% X 12 2.203E+06 5.100E+05 2.995E+05 11% T 2.538E+06 5.100E+05 2.995E+05 100% => 2.239E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 90 X 11 2.203E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 90% X 12 2.203E+06 5.100E+05 2.995E+05 10% T 2.538E+06 5.100E+05 2.995E+05 100% => 2.238E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 90 X 11 2.203E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 90% X 12 2.077E+06 5.100E+05 2.995E+05 10% T 2.538E+06 5.100E+05 2.995E+05 100% => 2.125E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 90 X 11 2.077E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 90% X 12 2.077E+06 4.113E+05 2.750E+05 10% T 3.135E+06 4.113E+05 2.750E+05 100% => 2.186E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 90 X 11 2.077E+06 4.113E+05 2.750E+05 0.96 0.96 0.96

Joint Capacity 2011-06-01

Page 54: Usfos_JointCapacity

54 ________________________________________________________________________

Table 4-27 USFOS results [N, m] (tension) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 82% X 12 4.473E+06 6.233E+05 3.931E+05 18% T 7.173E+06 6.233E+05 3.931E+05 100% => 4.999E+06 6.233E+05 3.931E+05 0.98 0.97 0.99 12 90 X 11 4.473E+06 6.233E+05 3.931E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 82% X 12 3.511E+06 5.100E+05 2.995E+05 18% T 4.115E+06 5.100E+05 2.995E+05 100% => 3.715E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 90 X 11 3.511E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 82% X 12 2.435E+06 5.100E+05 2.995E+05 18% T 3.358E+06 5.100E+05 2.995E+05 100% => 2.615E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 90 X 11 2.435E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 86% X 12 2.548E+06 5.100E+05 2.995E+05 14% T 3.360E+06 5.100E+05 2.995E+05 100% => 2.667E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 90 X 11 2.548E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 86% X 12 2.548E+06 5.100E+05 2.995E+05 14% T 3.360E+06 5.100E+05 2.995E+05 100% => 2.667E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 90 X 11 2.548E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 86% X 12 2.552E+06 4.113E+05 2.750E+05 14% T 3.360E+06 4.113E+05 2.750E+05 100% => 2.670E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 90 X 11 2.552E+06 4.113E+05 2.750E+05 0.96 0.96 0.96

Joint Capacity 2011-06-01

Page 55: Usfos_JointCapacity

55 ________________________________________________________________________

4.3.3 Gamma = 10, Beta =1.0

Table 4-28 Joint data

Input Value Joint type X Geometry [mm]Db 400Tb 20Dc 400Tc 20theta 90gap 0Material fyb 350fy 350Chord loads [N]-Axial -2.51E+06Chord Capacity Np 8.357E+06Mp 1.012E+09

Table 4-29 Expected capacities [N, mm]

Results for Joint Type: X MSL Mean MSL Char MSL

Fcrack Norsok ISO API

Nrd.c 4.901E+06 4.225E+06 4.225E+06 4.225E+06 3.974E+06 3.974E+06Qf 0.93 0.93 0.93 0.95 0.95 1.00Nrd.c*Qf 4.570E+06 3.940E+06 3.940E+06 3.997E+06 3.759E+06 3.974E+06

Nrd.t 5.768E+06 5.390E+06 2.240E+06 2.240E+06 2.198E+06 2.198E+06Qf 0.93 0.93 0.93 0.95 0.95 1.00Nrd.t*Qf 5.379E+06 5.026E+06 2.089E+06 2.119E+06 2.079E+06 2.198E+06

Mipb 9.740E+08 7.969E+08 7.969E+08 7.969E+08 7.969E+08 6.720E+08Qf 0.90 0.90 0.90 0.90 0.90 0.90Mipb*Qf 8.754E+08 7.162E+08 7.162E+08 7.162E+08 7.162E+08 6.075E+08

Mopb 7.438E+08 5.667E+08 5.667E+08 5.667E+08 5.667E+08 5.040E+08Qf 0.95 0.95 0.95 0.95 0.95 0.90Mopb*Qf 7.086E+08 5.399E+08 5.399E+08 5.399E+08 5.399E+08 4.556E+08

Joint Capacity 2011-06-01

Page 56: Usfos_JointCapacity

56 ________________________________________________________________________

Table 4-30 USFOS results [N, m] (tension) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 94% X 12 5.768E+06 9.740E+05 7.438E+05 6% T 8.384E+06 9.740E+05 7.438E+05 100% => 5.935E+06 9.740E+05 7.438E+05 0.93 0.90 0.95 12 90 X 11 5.768E+06 9.740E+05 7.438E+05 0.93 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 94% X 12 5.384E+06 7.969E+05 5.667E+05 6% T 5.301E+06 7.969E+05 5.667E+05 100% => 5.379E+06 7.969E+05 5.667E+05 0.93 0.90 0.95 12 90 X 11 5.384E+06 7.969E+05 5.667E+05 0.93 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 94% X 12 2.240E+06 7.969E+05 5.667E+05 6% T 4.200E+06 7.969E+05 5.667E+05 100% => 2.365E+06 7.969E+05 5.667E+05 0.93 0.90 0.95 12 90 X 11 2.240E+06 7.969E+05 5.667E+05 0.93 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 94% X 12 2.240E+06 7.969E+05 5.667E+05 6% T 4.200E+06 7.969E+05 5.667E+05 100% => 2.348E+06 7.969E+05 5.667E+05 0.95 0.90 0.95 12 90 X 11 2.240E+06 7.969E+05 5.667E+05 0.95 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 94% X 12 2.198E+06 7.969E+05 5.667E+05 6% T 4.200E+06 7.969E+05 5.667E+05 100% => 2.308E+06 7.969E+05 5.667E+05 0.95 0.90 0.95 12 90 X 11 2.198E+06 7.969E+05 5.667E+05 0.95 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 94% X 12 2.198E+06 6.720E+05 5.040E+05 6% T 4.200E+06 6.720E+05 5.040E+05 100% => 2.308E+06 6.720E+05 5.040E+05 0.98 0.91 0.91 12 90 X 11 2.198E+06 6.720E+05 5.040E+05 1.00 0.91 0.91

Joint Capacity 2011-06-01

Page 57: Usfos_JointCapacity

57 ________________________________________________________________________

5. REFERENCES

/1/

MSL Engineering limited: "JIP Assessment Criteria Reliability and Reserve Strength of Tubular Joints" Doc No. C14200R018 Rev0, March 1996

/2/

MSL Engineering limited: JIP Assessment criteria, reliability and reserve strength of tubular joints. Phase II, Tubular Joints – Nonlinear modelling algorithms for frame analysis. Final Report. Doc Ref C20400R014 rev 1 November 2000.

/3/ NORSOK: N004 Design of Steel Structures, rev2, October 2004

/4/

ISO: Petroleum and natural gas industries –Fixed steel offshore structures, ISO 19902:2007

/5/

API: Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms -Working Stress Design, API RP 2A-WSD, 21’st edition, ES3, October 2007

/6/

A F Dier, P Smedley, G Solland, H Bang: New data on the capacity of X-joints under tension and implications for codes, OMAE2008-57650, June 2008 Estoril, Portugal

Joint Capacity 2011-06-01