usermanual swat cup

Upload: vishal

Post on 13-Jan-2016

260 views

Category:

Documents


56 download

DESCRIPTION

swat cup model

TRANSCRIPT

  • 7/18/2019 Usermanual Swat Cup

    1/100

    SWATCUP

    SWATCalibrationandUncertaintyPrograms

    KarimC.Abbaspour

    [email protected]

  • 7/18/2019 Usermanual Swat Cup

    2/100

    2

    SWATCUP:SWATCalibrationandUncertaintyPrograms AUserManual.

    Eawag2015

  • 7/18/2019 Usermanual Swat Cup

    3/100

    3

    DISCLAIMER

    ThisreportdocumentsSWATCUP,acomputerprogramforcalibrationofSWATmodels.SWATCUP4is

    apublicdomainprogram,andassuchmaybeusedandcopied freely.Theprogram linksSUFI2,PSO,

    GLUE,ParaSol,andMCMCprocedures toSWAT. Itenables sensitivityanalysis, calibration, validation,anduncertaintyanalysisofSWATmodels.SWATCUP2012hasbeentestedforallprocedurespriorto

    release. However, no warranty is given that the program is completely errorfree. If you encounter

    problemswiththecode,finderrors,orhavesuggestionsfor improvement,pleasewritetoSWATCUP

    [email protected]

  • 7/18/2019 Usermanual Swat Cup

    4/100

    4

    Content Page

    Foodforthoughtincalibrationandapplicationofwatershedmodels 6

    SUFI2 16

    ConceptualbasisoftheSUFI2uncertaintyanalysisroutine 17

    SUFI2asanoptimizationalgorithm 19

    SWATCUP 20

    StepbystepCreatingofSWATSUFI2InputFiles 21

    ParameterizationinSWATCUP 51

    Objectivefunctiondefinition 55

    Sensitivityanalysis 59

    ParallelProcessing 63

    ValidationinSUFI2 64

    Thesequenceofprogramexecution 65

    Howto.. 66

    PSO 70

    IntroductiontoPSO 71

    GLUE 74

    IntroductiontoGLUE 75

    CouplingGLUEtoSWATCUP 77

    ValidationofGLUE 78

    FileDefinition 79

    ParaSol 81

    IntroductiontoParaSol 82

    CouplingParaSoltoSWATCUP 83

  • 7/18/2019 Usermanual Swat Cup

    5/100

    5

    ParaSol:Optimizationanduncertaintyanalysis 85

    MCMC 92

    IntroductiontoMCMC 93

    StepbysteprunningofMCMC 96

    References 98

  • 7/18/2019 Usermanual Swat Cup

    6/100

    6

    Foodforthoughtincalibrationandapplicationofwatershedmodels

    Calibrationanduncertaintyanalysisofdistributedwatershedmodels isbesetwithafewserious issues

    thatdeserve theattentionandcarefulconsiderationofresearchers.Theseare:1)Parameterizationof

    watershedmodels.2)Definitionofwhatisacalibratedwatershedmodelandwhatarethelimitsofits

    use.3)Conditionalityofa calibratedwatershedmodel.4)Calibrationofhighlymanagedwatersheds

    wherenaturalprocessesplayasecondaryrole,and5)uncertaintyandnonuniquenessproblems.These

    issuesarebrieflydiscussedhere.

    1)ModelParameterization

    Shouldasoilunitappearinginvariouslocationsinawatershed,underdifferentlandusesand/orclimate

    zones,havethesameordifferentparameters?Probablyitshouldhavedifferentparameters.Thesame

    argument could be made with all other distributed parameters. How far should one go with this

    differentiation?Ontheonehandwecouldhavethousandsofparameterstocalibrate,andonotherwe

    maynothaveenoughspatialresolution inthemodeltoseethedifferencebetweendifferentregions.

    This balance is not easy to determine and the choice of parameterization will affect the calibrationresults.Detailed informationon spatialparameters is indispensable forbuilding a correctwatershed

    model.Acombinationofmeasureddataandspatialanalysis techniquesusingpedotransfer functions,

    geostatisticalanalysis,andremotesensingdatawouldbethewayforward.

    2)Whenisawatershedmodelcalibrated?

    Ifawatershedmodeliscalibratedusingdischargedataatthewatershedoutlet,canthemodelbecalled

    calibrated for that watershed? If we add water quality to the data and recalibrate, the hydrologic

    parametersobtainedbasedondischargealonewillchange. Is thenewmodelnowcalibrated for that

    watershed?Whatifweadddischargedatafromstationsinsidethewatershed?Willthenewmodelgivecorrect loadsfromvarious landuses inthewatershed?Perhapsnot,unlesswe includethe loads inthe

    calibrationprocess (seeAbbaspouretal.,2007).Hence,an importantquestionarisesas to:forwhat

    purpose can we use a calibrated watershed model? For example: What are the requirements of a

    calibratedwatershedmodelifwewanttodolandusechangeanalysis?Or,climatechangeanalysis?Or,

    analysis of upstream/downstream relations in water allocation and distribution? Can any single

    calibratedwatershedmodeladdressall these issues?Canwehave several calibratedmodels for the

    samewatershedwhereeachmodel isapplicable toa certainobjective?Note that thesemodelswill

    mostlikelyhavedifferentparametersrepresentingdifferentprocesses(seeAbbaspouretal.1999).

    3)Conditionality

    of

    calibrated

    watershed

    models

    Conditionality isan important issuewithcalibratedmodels.This isrelatedtothepreviousquestionon

    thelimitationontheuseofacalibratedmodel.Calibratedparametersareconditionedonthechoiceof

    objectivefunction,thetype,andnumbersofdatapointsandtheprocedureusedforcalibration,among

    other factors. Inapreviousstudy (Abbaspouretal.1999),we investigatedtheconsequencesofusing

    different variables and combination of variables from among pressure head, water content, and

    cumulativeoutflowontheestimationofhydraulicparametersby inversemodeling.The inversestudy

  • 7/18/2019 Usermanual Swat Cup

    7/100

    7

    combinedaglobaloptimizationprocedurewithanumerical solutionof theonedimensionalvariably

    saturated Richards flow equation. We analyzed multistep drainage experiments with controlled

    boundaryconditions in large lysimeters.Estimatedhydraulicparametersbasedondifferentobjective

    functionswerealldifferentfromeachother;however,asignificanttestofsimulationresultsbasedon

    these parameters revealed that most of the parameter sets produced similar simulation results.

    Notwithstanding the significance test, rankingof theperformancesof the fittedparameters revealed

    that theywerehighlyconditionalwith respectto thevariablesused intheobjective functionand the

    typeofobjectivefunctionitself.Mathematically,wecouldexpressacalibratedmodelMas:

    ,....),,,,,( mvbwgpMM

    whereisavectorofparameters,p isacalibrationprocedure,g istheobjectivefunctiontype,wisa

    vectorofweights intheobjectivefunction,b istheboundaryconditions,v isthevariablesused inthe

    objectivefunction,misthenumberofobservedvs,etc.Therefore,acalibratedmodelisconditionedon

    the procedure used for calibration, on the objective function, on the weights used in the objective

    function,onthe initialandboundaryconditions,onthetypeand lengthofmeasureddataused inthe

    calibration,etc.Suchamodelcanclearlynotbeappliedforjustanyscenarioanalysis.

    4)Calibrationofhighlymanagedwatersheds

    Inhighlymanagedwatersheds,naturalprocessesplayasecondaryrole.Ifdetailedmanagementdatais

    notavailable,thenmodelingthesewatershedswillnotbepossible.Examplesofmanagementsaredams

    andreservoirs,watertransfers,andirrigationfromdeepwells.InFigure1atheeffectofAswandamon

    downstreamdischargebeforeandafteritsoperationisshown.Itisclearthatwithouttheknowledgeof

    damsoperation,itwouldnotbepossibletomodeldownstreamprocesses.Figure1bshowstheeffect

    ofwetlandondischargeupstream,inthemiddle,anddownstreamofNigerInlandDelta.

    Figure1.left)EffectofAswandamondownstreamdischargebeforeandafteritsoperationin1967.

    right)TheinfluenceofNigerInlandDeltaonthethroughflowatupstream,within,anddownstreamof

    thewetland.(AfterSchuoletal.,2008a,b)

  • 7/18/2019 Usermanual Swat Cup

    8/100

    8

    InFigure2theeffectofirrigationonactualETandsoilmoistureisillustratedinEsfahan,Iran.Esfahanis

    aregionofhighirrigationwithanegativewaterbalanceforalmosthalfoftheyear.

    Figure2.

    Illustration

    of

    the

    differences

    in

    predicted

    actual

    ET

    (a)

    and

    soil

    moisture

    (b)

    with

    and

    without

    consideringirrigationinEsfahanprovince,Iran.Thevariablesaremonthlyaveragesfortheperiodof

    19902002.(AfterFaramarzietal.,2009)

    Inthestudyofwaterresources in Iran,Faramarzietal., (2008)producedawatermanagementmap

    (Figure3)inordertoexplainthecalibrationresultsofahydrologicmodelofthecountry.

    Figure3.WatermanagementmapofIranshowingsomeofmansactivitiesduring19902002.Themap

    showslocationsofdams,reservoir,watertransfersandgroundwaterharvest(backgroundshows

    provincialbasedpopulation).AfterFaramarzietal.,(2009).

    0

    10

    20

    30

    40

    50

    60

    Jan Feb

    Mar Ap

    rMa

    y Jun Ju

    lAu

    gSep

    Oct

    Nov

    Dec

    Month

    ActualET(mmm

    onth-1)

    0

    10

    20

    30

    40

    50

    6070

    80

    90

    100

    Jan Feb

    Mar

    Apr

    May Ju

    n Jul

    Aug

    Sep

    Oct

    Nov

    Dec

    Month

    Soilwater(mm

    (a) (b)

    With irrigation Without irrigation

  • 7/18/2019 Usermanual Swat Cup

    9/100

    9

    5)Uncertaintyissues

    Anotherissuewithcalibrationofwatershedmodelsisthatofuncertaintyinthepredictions.Watershed

    modelssufferfromlargemodeluncertainties.Thesecanbedividedinto:conceptualmodeluncertainty,

    input uncertainty, and parameter uncertainty. The conceptual model uncertainty (or structural

    uncertainty) couldbeof the following situations:a)Modeluncertaintiesdue to simplifications in the

    conceptualmodel,

    b)

    Model

    uncertainties

    due

    to

    processes

    occurring

    in

    the

    watershed

    but

    not

    included

    in the model, c) Model uncertainties due to processes that are included in the model, but their

    occurrencesinthewatershedareunknowntothemodeler,andd)Modeluncertaintiesduetoprocesses

    unknowntothemodelerandnotincludedinthemodeleither!

    Inputuncertaintyisasaresultoferrorsininputdatasuchasrainfall,andmoreimportantly,extension

    ofpointdatatolargeareasindistributedmodels.Parameteruncertaintyisusuallycausedasaresultof

    inherentnonuniquenessofparameters in inversemodeling.Parametersrepresentprocesses.Thefact

    thatprocessescancompensateforeachothergivesrisetomanysetsofparametersthatproducethe

    sameoutputsignal.Ashortexplanationofuncertaintyissuesisofferedbelow.

    5.1)Conceptualmodeluncertainty

    a)Modeluncertaintiesduetosimplificationsintheconceptualmodel.Forexample,theassumptionsin

    the universal soil loss equation for estimating sediment loss, or the assumptions in calculating flow

    velocityinariver.Figures4aand4bshowsomegraphicalillustrations.

    Fig.4.(left)Asimplifiedconceptualmodelofhydrologyinawatershedwhererevapisignored.(right)A

    naturalprocessnearthesourceofYellowRiverinChinaplayinghavocwithriverloadingbasedonthe

    USLE!

    b)Modeluncertaintiesduetoprocessesoccurringinthewatershedbutnotincludedinthemodel.For

    example,winderosion(Fig.5 left),erosionscausedby landslides(Fig.5right),andthesecondstorm

    effecteffectingthemobilizationofparticulatesfromsoilsurface(seeAbbaspouretal.,2007).

  • 7/18/2019 Usermanual Swat Cup

    10/100

    10

    Figure5.Naturalprocessesnotincludedinmostwatershedmodelsbutwithalargeimpactonhydrology

    and

    water

    quality

    of

    a

    watershed,

    albeit

    for

    a

    short

    period

    c)Modeluncertaintiesdue toprocesses thatare included in themodel,but theiroccurrences in the

    watershed areunknown to themodelerorunaccountable; for example, various formsof reservoirs,

    watertransfer,irrigation,orfarmmanagementaffectingwaterquality,etc.(Fig.6,7).

    Fig.6.Agriculturalmanagementpracticessuchaswaterwithdrawalandanimalhusbandrycanaffect

    waterquantityandquality.These,maynotalwaysbeknowntothemodeller.

  • 7/18/2019 Usermanual Swat Cup

    11/100

    11

    Fig.7.Watercontrolandwaterdiversionsmaychangetheflowinwaysthatareunknowntothe

    modellerand,hence,cannotbeaccountedforinthemodel.

    d)Modeluncertaintiesduetoprocessesunknowntothemodelerandnotincludedinthemodeleither!

    These includedumpingofwastematerialandchemicals intherivers,orprocessesthatmay lastfora

    numberofyearsanddrasticallychangethehydrologyorwaterqualitysuchaslargescaleconstructions

    ofroads,

    dams,

    bridges,

    tunnels,

    etc.

    Figure

    8shows

    some

    situations

    that

    could

    add

    substantial

    conceptualmodelerrortoouranalysis.

    Fig.8Largeconstructionprojectssuchasroads,dams,tunnels,bridges,etc.canchangeriverflowand

    waterqualityforanumberofyears.Thismaynotbeknownoraccountablebythemodellerorthemodel

  • 7/18/2019 Usermanual Swat Cup

    12/100

    12

    5.2)InputUncertainty

    Inadditiontomodeluncertainty,thereareuncertaintiesduetoerrorsininputvariablessuchasrainfall

    andtemperature,aspointmeasurementsareusedindistributedmodels.Itisquitedifficulttoaccount

    forinputuncertainty.Someresearchersproposetreatinginputsasrandomvariable,whichallowsfitting

    them togetbetter simulations.Asmodeloutputsarevery sensitive to inputdata,especially rainfall,

    caremust

    be

    taken

    in

    such

    approaches.

    In

    mountainous

    regions,

    input

    uncertainty

    could

    be

    very

    large.

    5.3)Parameternonuniqueness

    Asinglevaluedparameterresults inasinglemodelsignal indirectmodeling.Inan inverseapplication,

    anobservedsignal,however,couldbemorelessreproducedwiththousandsofdifferentparametersets.

    Thisnonuniquenessisaninherentpropertyofinversemodeling(IM).IM,hasinrecentyearsbecomea

    verypopularmethodforcalibration(e.g.,BevenandBinley,1992,2001;Abbaspouretal.,1997,2007;

    Duanetal.,2003;Guptaetal.,1998). IM isconcernedwith theproblemofmaking inferencesabout

    physical systems from measured output variables of the model (e.g., river discharge, sediment

    concentration).This

    is

    attractive

    because

    direct

    measurement

    of

    parameters

    describing

    the

    physical

    system is time consuming, costly, tedious, and often has limited applicability. Because nearly all

    measurementsaresubjecttosomeuncertainty,theinferencesareusuallystatisticalinnature.

    Figure9.Exampleofparameternonuniquenessshowingtwosimilardischargesignalsbasedonquite

    differentparametervalues

    Furthermore,becauseone canonlymeasure a limited numberof (noisy) data and becausephysical

    systems are usually modelled by continuum equations, no hydrological inverse problem is really

    uniquely solvable. Inotherwords, if there isa singlemodel that fits themeasurements therewillbe

    GW_DELAY CH_N2 CN2 REVAPMN Sol_AWC g

    3.46 0.0098 50 0.8 0.11 0.010

    0.34 0.131 20 2.4 0.2 3 0.011

  • 7/18/2019 Usermanual Swat Cup

    13/100

    13

    manyofthem.AnexampleisshowninFigure9wheretwoverydifferentparametersetsproducesignals

    similartotheobserveddischarge.Ourgoalininversemodellingisthentocharacterizethesetofmodels,

    mainlythroughassigningdistributions(uncertainties)totheparameters,whichfitthedataandsatisfy

    ourpresumptionsaswellasotherpriorinformation.

    TheSwisscheeseeffect

    Thenonuniquenessproblemcanalsobelookedatfromthepointofviewofobjectivefunction.Plotting

    the objectivefunction response surface for two by two combinations of parameters could be quite

    revealing.Asanexample,seeFigure10wheretheinverseofanobjectivefunctionisplottedagainsttwo

    parameters,hence,localminimaareshownaspeaks.Sizeanddistributionofthesepeaksresemblesthe

    mysteriousholesinablockofSwissEmmentalercheesewherethesizeofeachholerepresentsthelocal

    uncertainty.Ourexperienceshowsthateachcalibrationmethodconvergestoonesuchpeak (see the

    papers by Yang et al., 2008, Schuol et al., 2008a, and Faramarzi et al., 2008). Yang et al., (2008)

    comparedGeneralized LikelihoodUncertaintyEstimation (GLUE) (BevenandBinley,1992),Parameter

    Solution (ParaSol) (Van Griensven and Meixner, 2003a), Sequential Uncertainty Fitting (SUFI2)

    (Abbaspouretal.,2004;2007),andMarkovchainMonteCarlo(MCMC)(e.g.,KuczeraandParent,1998;

    Marshalletal.,2004;Vrugtetal.,2003;Yangetal.,2007)methodsinanapplicationtoawatershedin

    China. They found that these different optimization programs each found a different solution at

    different locations in theparameter spaceswithmore less the samedischarge results.Table1hasa

    summaryofthecomparison.

    To limit thenonuniqueness, theobjective function shouldbemadeascomprehensiveaspossibleby

    includingdifferent fluxesand loads (seeAbbaspouretal.,2007).Thedownsideof this is thata lotof

    datashouldbemeasured forcalibration.Theuseofremotesensingdata,when itbecomesavailable,

    couldbeextremelyuseful.Infactwebelievethatthenextbigjumpinwatershedmodelingwillbemade

    asaresultofadvancesinremotesensingdataavailability.

    Furthererrorscouldalsoexist intheverymeasurementsweusetocalibrate themodel.Theseerrors

    couldbe very large, forexample, in sedimentdataandgrab samples ifused for calibration.Another

    uncertainty worth mentioning is that of modeler uncertainty! It has been shown before that the

    experienceofmodelerscouldmakeabigdifference inmodelcalibration.Wehopethatpackages like

    SWATCUPcanhelpdecreasemodeleruncertaintybyremovingsomeprobablesourcesofmodelingand

    calibrationerrors.

    Onafinalnote, it ishighlydesirabletoseparatequantitativelytheeffectofdifferentuncertaintieson

    model outputs, but this is very difficult to do. The combined effect, however, should always be

    quantifiedonmodeloutputs.

  • 7/18/2019 Usermanual Swat Cup

    14/100

    14

    Figure10.Amultidimensionalobjectivefunctionismultimodalmeaningthattherearemanyareasof

    goodsolutions

    with

    different

    uncertainties

    much

    like

    the

    mysterious

    holes

    in

    aslice

    of

    Swiss

    cheese.

  • 7/18/2019 Usermanual Swat Cup

    15/100

    15

    Table1.Summarystatisticscomparingdifferentcalibrationuncertaintyprocedures.

    Criterion GLUE ParaSol SUFI2 Bayesianinferencewithcont.

    autoregr.errormodel

    MCMC IS

    Goalfunction NashSutcliffe NashSutcliffe NashSutcliffe post.prob.

    density

    post.prob.

    density

    a__CN2.mgt

    v__ESCO.hru

    v__EPCO.hru

    r__SOL_K.sol

    a__SOL_AWC.sol

    v__ALPHA_BF.gw

    v__GW_DELAY.gw

    r__SLSUBBSN.hru

    a__CH_K2.rte

    a__OV_N.hru2dry

    2

    wet2dry

    2wet

    16.8 (29.6,

    9.8)1

    0.76 (0.02,0.97)

    0.22 (0.04,0.90)

    0.16 (0.36,

    0.78)

    0.11 (0.01,0.15)

    0.12 (0.06,0.97)

    159.58 (9.7,

    289.3)

    0.45 (0.56,

    0.46)78.19 (6.0,144.8)

    0.05 (0.00,0.20)

    21.0 (21.9,

    20.1)

    0.67(0.65,0.69)

    0.16(0.13,0.20)

    0.37(0.41,

    0.34)

    0.07(0.08, 0.08)

    0.12(0.08, 0.13)

    107.7(91.2,115.2)

    0.59(0.60,

    0.58)

    35.70(27.72,37.67)

    0.11(0.07,0.10)

    26.9(30.0,7.2)

    0.82(0.43,1.0)

    1(0.34,1.0)

    0.1(0.58,0.34)

    0.07(0.05,0.15)

    0.51(0.23,0.74)

    190.07(100.2,300)

    0.52(0.60, 0.03)

    83.95(69.4,150.0)

    0.06(0.00,0.11)

    14.2(16.8,

    11.6)

    0.74(0.63,0.75)

    0.94(0.39,0.98)

    0.29(0.31,0.78)

    0.12(0.1,0.13)

    0.14(0.11, 0.15)

    25.5(17.8,33.3)

    0.55(0.56,

    0.15)

    78.3(68.0,86.2)

    0.12(0.00, 0.19)0.93(0.81,1.10)

    2.81(2.4,3.9)

    38.13(29.5,53.8)

    3.42(2.4,8.0)

    19.60

    0.62

    0.27

    0.01

    0.05

    0.91

    33.15

    0.58

    147.23

    0.08

    0.87

    2.3028.47

    0.92

    NSforcal(val) 0.80(0.78) 0.82(0.81) 0.80(0.75) 0.77(0.77) 0.64 (0.71)

    R2forcal(val) 0.80(0.84) 0.82(0.85) 0.81(0.81) 0.78(0.81) 0.70(0.72)

    LogPDFforcal(val) 1989(926) 2049(1043) 2426 (1095) 1521(866) 1650(801)3pfactorforcal

    (val)

    79%(69%) 18% (20%) 84% (82%) 85%(84%)

    4

    dfactorforcal

    (val)0.65(0.51) 0.08 (0.07) 1.03 (0.82) 1.47(1.19)

    Uncertainty

    describedby

    parameter

    uncertainty

    Allsourcesof

    uncertainty

    Parameter

    uncertaintyonly

    Allsourcesof

    uncertainty

    Parameter

    uncertaintyonly

    Parameter

    uncertainty

    only

    Difficultyof

    implement.

    veryeasy easy easy morecomplicated more

    complicated

    Numberofruns 10000 7500 1500+1500 5000+20000+

    20000

    100000

    1c(a,b)foreachparametermeans:cisthebestparameterestimate,(a,b)isthe95%parameter

    uncertaintyrangeexceptSUFI2(inSUFI2,thisintervaldenotesthefinalparameterdistribution).2

    thedry,wet,dry,andwetusedtocalculatetheCalculatethelogarithmoftheposteriorprobabilitydensityfunction(PDF)arefromthebestofMCMC.3pfactormeansthepercentageofobservationscoveredbythe95PPU

    4dfactormeansrelativewidthof95%probabilityband(AfterYangetal.,2008)

  • 7/18/2019 Usermanual Swat Cup

    16/100

    16

    SUFI2

    SequentialUncertaintyFitting

    version2

    Discharge Calibration

    0

    100

    200

    300

    400

    500

    600

    700

    01.01.91 01.07.91 01.01.92 01.07.92 01.01.93 01.07.93 01.01.94 01.07.94 01.01.95 01.07.95 01.01.96

    Date

    Dailydischa

    rge(m3

    s-1)

    measured data bracketed by the 95PPU = 91%

    d-factor= 1.0

  • 7/18/2019 Usermanual Swat Cup

    17/100

    17

    ConceptualbasisoftheSUFI2uncertaintyanalysisroutine

    The deterministic approach to calibration is now outdated and unacceptable. Example of a

    deterministicoptimization is trial and error.Meaning you keep adjustingparametersuntil you get

    somekindofa reasonablematchbetween simulationandobservation.Reporting thisasacalibrated

    model,inmyopinioniswrong,andwillnotstandinanycourtoflaw,ifitcomestothat.Here,wewill

    not furtherdiscuss thedeterministicapproaches that result ina single setofparameters claiming to

    representthebestsimulation.

    Instochasticcalibration,werecognizetheerrorsanduncertainties inourmodelingworkand try to

    capture,tosomedegree,ourignoranceandlackofunderstandingoftheprocessesinnaturalsystems.

    There is an intimate relationship between calibration and uncertainty (Abbaspour, et al., 2015).

    Reporting the uncertainty is not a luxury in modeling, it is a necessity. Without the uncertainty,

    calibration ismeaninglessandmisleading. Furthermore,anyanalysiswith the calibratedmodelmust

    includetheuncertaintyintheresultbypropagatingtheparameteruncertainties.

    In SUFI2, uncertainty in parameters, expressed as ranges (uniform distributions), accounts for all

    sources of uncertainties such as uncertainty in driving variables (e.g., rainfall), conceptual model,parameters, and measured data. Propagation of the uncertainties in the parameters leads to

    uncertainties inthemodeloutputvariables,whichareexpressedasthe95%probabilitydistributions.

    Thesearecalculatedatthe2.5%and97.5% levelsofthecumulativedistributionofanoutputvariable

    generatedby thepropagationof theparameteruncertaintiesusing Latinhypercube sampling.This is

    referred to as the 95% prediction uncertainty, or 95PPU. These 95PPUs are the model outputs in a

    stochastic calibration approach. It is important to realize that we do not have a single signal

    representing model output, but rather an envelope of good solutions expressed by the 95PPU,

    generatedbycertainparameterranges.

    InSUFI2,wewant thatourmodel result (95PPU)envelopsmostof theobservations.Observation, is

    whatwehavemeasuredinthenaturalsystem.Observationisimportantbecauseitistheculminationof

    alltheprocessestakingplaceintheregionofstudy.Theargument,howevernave,isthatifwecapturetheobservationcorrectlywithourmodel,thenwearesomehowcapturingcorrectlyall theprocesses

    leadingtothatobservation.Theproblem,ofcourse, isthatoftenacombinationofwrongprocesses in

    ourmodelmayalsoproducegoodsimulationresults.Forthisreason,themorevariables(representing

    differentprocesses)we include in theobjective function, themore likelyweare toavoid thewrong

    processes.

    Toquantifythefitbetweensimulationresult,expressedas95PPU,andobservationexpressedasasingle

    signal (withsomeerrorassociatedwith it)wecameupwith two statistics:PfactorandRfactor (see

    Abbaspouretal.,2004,2007 referencesprovided in the reference listof SWATCUP).Pfactor is the

    percentageofobserveddataenvelopedbyourmodelingresult,the95PPU.Rfactor isthethicknessof

    the95PPUenvelop.InSUFI2,wetrytogetreasonablevaluesofthesetwofactors.Whilewewouldlike

    tocapturemostofourobservations inthe95PPUenvelop,wewouldatthesametime liketohavea

    smallenvelop.Nohardnumbersexistforwhatthesetwofactorsshouldbe,similartothefactthatno

    hardnumbersexistforR2orNS.The largertheyare,thebettertheyare.ForPfactor,wesuggesteda

    valueof>70%fordischarge,whilehavingRfactorofaround1.Forsediment,asmallerPfactoranda

    largerRfactorcouldbeacceptable.

    SUFI2operatesbyperforming several iterations,usuallyatmost

  • 7/18/2019 Usermanual Swat Cup

    18/100

    18

    previousiteration.Naturally,asparameterrangesgetsmaller,the95PPUenvelopgetssmaller,leading

    tosmallerPfactorandsmallerRfactor.Aseachiterationzooms intoabetterregionoftheparameter

    space,obtainedbythepreviousiteration,itisgoingtofindabetterbestsolution.So,ifyouhaveNSas

    yourobjectivefunction,thenyouwillgetabetterNS insubsequent iterations,butthePfactorandR

    factorwilldecreasebecauseofnarrowerparameter ranges.But the idea isnot to find that socalled

    bestsimulation.Because,1)therearealwaysbettersimulations,and2)thedifferencebetweenthe

    best simulation and the next best simulation and the next next best simulation is usually

    statisticallyinsignificant(e.g.,NS=0.83vsNS=0.81areprobablynotsignificantlydifferent),meaningthat

    theycouldbothbeidentifiedasthebestsimulations.Butwhilethedifferencesareinsignificantinterms

    oftheobjectivefunctionvalue,theyareverysignificant intermsofparametersvalues.Therefore,the

    nextbestsolutioncannotbeignored.

    TheconceptbehindtheuncertaintyanalysisoftheSUFI2algorithmisdepictedgraphicallyintheFigure

    below.ThisFigure illustratesthatasingleparametervalue(shownbyapoint) leadstoasinglemodel

    response (Fig.a),whilepropagationof theuncertainty inaparameter (shownbya line) leads to the

    95PPU illustratedby the shaded region in Figureb.Asparameteruncertainty increases, the output

    uncertaintyalso increases (notnecessarily linearly) (Fig. c).Hence,SUFI2 startsbyassuminga large

    parameteruncertainty (withinaphysicallymeaningful range),sothatthemeasureddata initially fallswithin the95PPU, thendecreases thisuncertainty in stepswhilemonitoring thePfactorand theR

    factor. In each step, previous parameter ranges are updated by calculating the sensitivity matrix

    (equivalenttoJacobian),andequivalentofaHessianmatrix,followedbythecalculationofcovariance

    matrix, 95% confidence intervals of the parameters, and correlation matrix. Parameters are then

    updated in such a way that the new ranges are always smaller than the previous ranges, and are

    centeredaroundthebestsimulation(formoredetailseeAbbaspouretal.,2004,2007).

    A conceptual illustration of the relationship between parameter uncertainty and prediction

    uncertainty

    Thegoodnessof fitand thedegree towhich the calibratedmodelaccounts for theuncertaintiesare

    assessedbytheabovetwomeasures.Theoretically,thevalueforPfactorrangesbetween0and100%,

    whilethatofRfactorrangesbetween0andinfinity.APfactorof1andRfactorofzeroisasimulation

    thatexactlycorrespondstomeasureddata.Thedegreetowhichweareawayfromthesenumberscan

    beusedtojudgethestrengthofourcalibration.A

  • 7/18/2019 Usermanual Swat Cup

    19/100

    19

    largerPfactorcanbeachievedattheexpenseofalargerRfactor.

    Hence,oftenabalancemustbereachedbetweenthetwo.WhenacceptablevaluesofRfactorandP

    factor are reached, then the parameter uncertainties are the desired parameter ranges. Further

    goodness of fit can be quantified by the R2 and/or NashSutcliff (NS) coefficient between the

    observations and the final best simulation. It should be noted that we do not seek the best

    simulationasinsuchastochasticprocedurethebestsolutionisactuallythefinalparameterranges.

    Ifinitiallywesetparameterrangesequaltothemaximumphysicallymeaningfulrangesandstillcannot

    finda95PPUthatbracketsanyormostofthedata,forexample,ifthesituationinFiguredoccurs,then

    theproblemisnotoneofparametercalibrationandtheconceptualmodelmustbereexamined.

    SUFI2asanoptimizationalgorithm

    ForadescriptionofSUFI2seeAbbaspouretal.,(2004,2007).ReferencesareprovidedintheReference

    directoryofSWATCUP.

    ForacalibrationprotocolseeAbbaspouretal.,(2015).

    http://www.sciencedirect.com/science/article/pii/S0022169415001985

  • 7/18/2019 Usermanual Swat Cup

    20/100

    20

    SWATCUP

    Automatedmodelcalibrationrequiresthattheuncertainmodelparametersaresystematicallychanged,

    themodel is run,and the requiredoutputs (corresponding tomeasureddata)areextracted from the

    modeloutputfiles.Themainfunctionofaninterfaceistoprovidealinkbetweentheinput/outputofa

    calibrationprogramandthemodel.Thesimplestwayofhandlingthefileexchange isthroughtextfile

    formats.

    SWATCUP is an interface that was developed for SWAT. Using this generic interface, any

    calibration/uncertaintyorsensitivityprogramcaneasilybe linkedtoSWAT.Aschematicofthe linkage

    betweenSWATandfiveoptimizationprogramsisillustratedintheFigurebelow.

  • 7/18/2019 Usermanual Swat Cup

    21/100

    21

    StepbystepCreatingofSWATSUFI2InputFiles

    SWAT_Edit.exeBACKUP

    SUFI2_LH_sample.exe

    SUFI2_new_pars.exepar_val.txt

    swat.exe

    ModifiedSWAT inputs

    SWAT

    outputs

    par_inf.txt

    SUFI2_extract_rch.exe

    SUFI2_goal_fn.exe

    SUFI2_95ppu.exe

    *.out

    Is

    calibration

    criteriasatisfied?

    observed.txt

    goal.txt

    yes

    stop

    no

    SUFI2_extract_rch.def

    SUFI2_swEdit.def

  • 7/18/2019 Usermanual Swat Cup

    22/100

    22

    1.BeforeSWATCUP

    BecomefamiliarwithSWATparameters.TheyareallexplainedintheSWATI/Omanual.Also,readthe

    theoryandapplicationofSWATSUFI2atthebeginningofthismanualandinthefollowingpapers:

    Thurwatershedpaper(Abbaspouretal.,2007)

    Landfill

    application

    in

    Switzerland

    (Abbaspour

    et

    al.,

    2004)

    ThecontinentalapplicationinAfrica(Schuoletal,2008a,b)andEurope(Abbaspouretal,2014)

    ThecountrybasedapplicationinIran(Faramarzietal.,2008)

    Thecomparisonofdifferentoptimizationprograms(Yangetal.,2008)

    Theparallelprocessingpaper(Rouholahnejadetal.,2013)

    TheBlackSeaapplicationpaper(Rouholahnejadetal.,2014)

    TheapplicationtoentireEurope(Abbaspouretal.,2015)

    (http://www.sciencedirect.com/science/article/pii/S0022169415001985)

    AndothersprovidedintheC:\SWAT\SWATCUP\ExternalData\References

    2.StartSWATCUP

    InstalltheSWATCUPinC:\SWAT\SWATCUP,thesamedirectoryastheSWATandstarttheprogramby

    pressingtheSWATCUPicononthedesktop:

    3.OpenaProject

    Toopenaneworoldproject:Pressthe symbolatthetopleftcorner

    andchooseaNeworOpenanoldproject

  • 7/18/2019 Usermanual Swat Cup

    23/100

    23

    Foranewproject locatea SWAT TxtInOutdirectory.Any filewith TxtInOut in thename string

    wouldbeacceptable

    ChooseSWATandprocessorversions

    Selectaprogramfromthelistprovided(SUFI2,GLUE,ParaSol,MCMC,PSO).Adetailedexplanationof

    theSUFI2procedureisofferedhere,butallprogramsfollowthesameformat.

    GiveanametotheprojectandalocationwhereSWATCUPprojectcanbesaved.

  • 7/18/2019 Usermanual Swat Cup

    24/100

    24

    NotethedefaultadditiontothenameprovidedinthewindowtotherightofProjectNamewindow.

    For a SUFI2 project, the full SWATCUP directory name in the example below would be

    test_1.Sufi2.SwatCup,whichwillresideinc:\ArcSWATprojects\Black_Seadirectory.

    AtthispointTheprogramcreatesthedesiredprojectdirectoryandcopiesthereallTxtInOutfilesfrom

    theindicatedlocationintotheSWATCUPprojectdirectory.ItalsocreatesadirectorycalledBackupin

    thesameSWATCUPprojectdirectoryandcopiesallSWATTxtInOutfilethere.Theparameters inthe

    filesintheBackupdirectoryserveasthedefaultparametersanddonotchangedduringthecalibration

    process.TheBackupdirectory isalwaysneeded as itsoriginal formbecause,relativechangesthat

    havebeenmadetotheparametersduringcalibration,weremaderelativetotheparametervalues in

    theBackupdirectory.Therefore,itisimportantthattheBackupdirectoryisneverchanged.

    4.SWATOutputFiles

    Youcancalibratethemodelbasedonthevariablesfromoutput.rch,output.hru,output.sub,output.res,

    output.mgt,andnowalsohourlygeneratedfiles.However,theinterfaceonlyshows.rch,.hru,and.sub

    files.Asmostoftenwehaveeitherdischarge,nutrientsdata,orsedimentdata,onlytheseareshownin

    the interface.Justclickandactivatewhich fileyouwanttouse (i.e.,yourobservedvariablesreside in

    whichSWATfile(s)).

  • 7/18/2019 Usermanual Swat Cup

    25/100

    25

    5.CalibrationInputs

    UndertheCalibrationInputseditthefollowingfiles:

    Par_inf.txt

    This file resides in the project directory in SUFI2.IN directory. It contains input parameters to be

    optimized.Anexample isprovided,whichneeds tobe edited by theuser. The examples shows theformatofthefile.Editthistoyourneeds.Atextviewandaformviewisprovided.Theformviewhelps

    with finding the correct parameter syntax or expression. All SWAT parameters (up to the time of

    compilationofthe lastswatcupversion)canbefoundhere.TheformviewfollowsstandardWindows

    protocol and the users are advised to familiarize themselves with this module by testing different

    featuresof it.Whatyoudo in theformview,appears in the textviewandviceversa.Usersarealso

    encouraged to trydifferent things in theformviewand lookat the them in the textview tobecome

    familiarwiththisimportantanduniquefeatureofSWATCUP.

    Thisfilecontainsthenumberofparameterstobeoptimizedandthenumberofsimulationstomakein

    thecurrent iteration.SUFI2 is iterative,each iteration containsanumberof simulations.Around500

    simulations are recommended in each iteration. But if a swat project takes too long to run, fewer

    numberofsimulations (200300) ineach iterationcouldbeacceptable.Parametersaresampledusing

    Latinhypercubeschemeexplainedlaterinthemanual.Usually,notmorethan4iterationsaresufficient

    to reach an acceptable solution. A parallel processing module is also available to speed up the

    calibrationprocess.

    To learn more about parameterization and parameter qualifiers r__, v__, and a__ please see the

    sectiononparameterizationbelow.

  • 7/18/2019 Usermanual Swat Cup

    26/100

    26

    What parameters to use depend on the objective function. Initially, in every case, flow should be

    calibratedand thenwaterqualityvariablesaddedoneat time (seeAbbaspouretal.,2007,2015 for

    parameterchoicesandcalibrationprotocol).

    SUFI2_swEdit.def

    This file contains the beginning and the ending simulation years. Please note that the beginning

    simulationdoesnot include thewarmupperiod.SWATsimulates thewarmupperiodbutdoesnot

    printanyresults,therefore,theseyearsarenotconsideredinSWATCUP.Youcancheckoutput.rchfile

    ofSWATtoseewhenthebeginningandtheendingsimulationtimesis.

  • 7/18/2019 Usermanual Swat Cup

    27/100

    27

    File.cio

    ThisisaSWATfile.Itisputhereforconvenience.Whatyouneedfromthisfilearethesimulationyears

    andthenumberofwarmupyears(NYSKIP)tocorrectlyprovideSWATCUPwithbeginningandendyear

    ofsimulation.Itisrecommendedthatyouhave23yearsofwarmupperiod.

    .

    .

    Missspecifyingthecorrectdatesisthecauseofbiggestusererror!Pleasenotethefollowing:

    - Intheaboveexample,beginningyearofSWATsimulationis1987,endyearis2001

    - There are 3 years of warm up period as indicated by NYSKIP. Therefore, SWAT output files

    containdata from1990 to2001.Thesedatesareof interest toSWATCUP.So, inSWATCUP

    beginningyearis1990andendyearis2001.

    - AlsonotethatSWATCUPrequiresthe IDAFtobeatthebeginningof theyear (always1)and

    IDALtogototheendoftheyear(365or366forleapyears).ThereforeSWATsimulationshould

    alwaysbe from thebeginning to theendof theyear.Soyourclimatedatamustbe from thebeginningtotheendoftheyear.

    Absolute_SWAT_Values.txt

    Allparameterstobefittedshouldbeinthisfileplustheirabsoluteminandmaxranges.Currentlymost,

    butperhapsnotallparametersareincludedinthisfile.Simplyaddtoittheparametersthatdontexist.

    TheSWAT_Edit.exeprogram, that replacesparameters in theSWAT files,doesnotallowparameters

    beyondthisrangeintoSWATfiles.

    etc.

  • 7/18/2019 Usermanual Swat Cup

    28/100

    28

    6.Observation

    UnderObservationarethreefilesthatcontaintheobservedvariables.Observedvariablescorrespond

    to thevariables inoutput.rch,output.hru,andoutput.sub,output.res,andoutput.mgt files,although

    thelattertwodonotappearinSWATCUP.

    Initially, all options are deactivated. To activate you need to choose which SWAT file contains the

    simulateddata(step4above).Variablesfromdifferentfilescanbeincludedtoformamulticomponent

    objectivefunction.Simplyonlyeditthefile(s)thatappliestoyourprojectanddonotworryaboutthe

    onesthatdont.Theformatshouldbeexactlyasshown intheexamplesprovided intheprogram.The

    three files Observed_rch.txt, Observed_hru.txt, and Observed_bsn.txt can be edited here, but

    observed_res.txtforreservoirdataandobserved_mgt.txtforcropyieldarealsoavailablethatcouldbe

    editeddirectlyinthe.\SUFI2.INdirectoryintheSWATCUPprojectdirectory.

    Missingvalues

    Theformatoftheobservationfilesareasshown intheexamplesprovided.Thesefilescouldeasilybe

    madeinExcelandpastedhere.IntheobservedfilesYoumayhavemissingdatathatcanbeaccounted

    forasshownintheexamplefilesandexplainedbelow.

    Thefirstcolumnhassequentialnumbersfromthebeginningofsimulationtimeperiod.Intheexample

    below,thefirst10monthsaremissingsothefirstcolumnbeginsfrom11.Also,months18,19,and20

    aremissing.

  • 7/18/2019 Usermanual Swat Cup

    29/100

    29

    Thesecond

    column

    has

    an

    arbitrary

    format

    but

    it

    should

    be

    one

    connected

    string.

    Here,

    it

    is

    showing

    thevariablename,month,andyear.Thirdcolumnisthevariablevalue.

    Ifbaseflow isseparated,anddynamicbaseflow isused,thenaforthcolumn indicatingthebaseflow

    should also be added. The example of an observation file with base flow is given in observed+.txt

    in.\SUFI2.INdirectory.

    Allotherobservation_*.txtfileshavethesameformat.ThisfiletellstheextractprogramsofSWATCUP

    whattoextractfromtheSWAToutputfiles.

    Theobserved_rch.txt filescancontainmanyvariablessuchasdischarge,sediment,nitrate,etc.which

    appearintheSWAToutputfileoutput.hru.Simplyusethesameformatforallvariablesasshowninthe

    examples.Also,

    for

    the

    variables

    name,

    be

    consistent

    in

    all

    SWAT

    CUP

    files.

    7.Extraction

    UnderExtractionyouwillfindtwotypesoffiles.txtand.defcorrespondingagaintoSWAToutputfiles

    output.rch,output.hru, andoutput.sub. If youhaveobservations corresponding to variables in these

    files,thenyouneedtoextractthecorrespondingsimulatedvaluesfromthesefilesonly.

  • 7/18/2019 Usermanual Swat Cup

    30/100

    30

    .txtfilessimplycontainthenamesofthefilesthatextractedvaluesshouldbewrittento,and.deffiles

    define which variables need to be extracted from which subbasins. These files are relatively self

    explanatory.Hereagainonlyedittheneededfiles.

    Intheexampleprovided,wehave4measuredvariables,3dischargesfromsubbasins1,3,7,and1nitrate

    from subbasin 7. The extract files of SWATCUP extract the corresponding simulated data from

    output.rchfileandwritethemtothefilesindicatedhereforeverysimulation.

    BelowisanexampleofSUFI2_extrcat_rch.def

  • 7/18/2019 Usermanual Swat Cup

    31/100

    31

    Thefileisselfexplanatory.Weareextracting2variables:dischargeandnitrate.Theyare incolumns7

    and18 in theoutput.rch file.Thereareatotalof20subbasins in theproject.Fordischarge,wehave

    flow measurements from subbasins 1, 3, and 7. For nitrate we have measurement from subbasin

    number7only.Thebeginningdatedoesnotincludewarmupperiod.

    8.Objectivefunction

    Next,ObjectiveFunctionisdefined.InthissteptwofilesObserved.txtandVar_file_name.txtshouldbe

    edited. The Observed.txt file contains all the information in observed_rch.txt, observed_hru.txt,

    observed_sub.txtfiles,plussomeextrainformationforthecalculationoftheobjectivefunction.

    Var_file_name.txt contains the names of all the variables that should be included in the in the

    objectivefunction.Thesenamesaresimilartothenamesinthevar_file_*.txtintheExtractionsection.

    Observed.txtfilealsoisquiteselfexplanatory.

  • 7/18/2019 Usermanual Swat Cup

    32/100

    32

    Inthisexamplewehave4variables.Wehaveanoptiontochoosefrom10differentobjectivefunctions.

    ReadthesectiononObjectiveFunctionbelowformoreexplanationofthefunctions.

    Thethird line isoptional torun,butthereshouldbeanumberhere. Ifyouexpressathresholdvalue

    here,thenallsimulationswithobjectivefunctionvaluebetterthanthethresholdarecollectedandthe

    95PPUcalculatedbasedon thosesimulations.Here, theSUFI2becomessimilar toGLUE.Thepfactor

    andthe

    rfactor

    for

    agiven

    threshold

    may

    be

    different

    from

    the

    solution

    where

    threshold

    is

    not

    considered. Pleasenote that the threshold valuemust correspond to the typeofobjective function

    beingused.

    Baseflowseparation

    Two options are provided to considerbaseflow separation: static and dynamic. In the static case, a

    constantthresholdvalue forbaseflow isused.Thisvalues,dividesthedischargesignal intotwoparts.

    Valuessmallerthanthethresholdandvalueslargerthanthethresholdaretreatedastwovariablesand

    carrytwodifferentweights.This istoensurethat, forexample,base flowhasthesamevaluesasthe

    peakflows.

    Without

    this

    division,

    ifyou

    choose

    option

    2for

    objective

    function,

    i.e.,

    mean

    square

    error

    (see objective function section below), then the small flows will not have much effect on the

    optimization.Hence, peak flowwill dominate the processes.With the static threshold option, small

    flows can be given a larger weight in the objective function so that they have almost the same

    contribution to theobjective function as thepeak flows. Thebase flow separation ismost effective

    whenoption2ischosenforobjectivefunction.Separatingthebaseflowdoesnotbecomeverycriticalif

    R2orbR2isusedforobjectivefunction.

    Tonotusethisoption,simplysetconstant flowseparationthresholdtoanegativevalue (say 1 fora

    variablethatisalwayspositive)andtheweightsforsmallerandlargerflowsto1.

    Threshold=35

  • 7/18/2019 Usermanual Swat Cup

    33/100

    33

    In the dynamic case, a flow separation program should be used to calculate the base flow. Both

    observedflowandbaseflowmustthenappearintheobserved.txtfileastwoseparatecolumns,column

    3andcolumn4,respectively,asshownintheobserved+.txtexamplefilein.\SUFI2.INdirectory.

    Percentageof

    measured

    error

    Thisvaluereferstothemeasurementerror.Adefaultvalueof10%isspecified,buttheuserscanchange

    thisbasedontheirknowledge.Thisvalueisreasonableforflow,butshouldbehigherforothervariables

    suchassedimentandnitrate,etc.

    9.No_Observations

    TheNo_Observation section isdesigned for the extraction and visualization of uncertainties for the

    variables for which we have no observation, but would like to see how they are simulated such as

    variousnutrientloads,orsoilmoisture,ET,etc.The.txtfilesareinactive.

    The.deffileshavemoreorlessthesameformatastheExtractionsection.

    Extract_rch_No_Obs.def Extract_hru_No_Obs.def Extract_sub_No_Obs.def

    This files isalso selfexplanatory.Thenumberof variables to get, columnnumbers (sequential),and

    representativevariablenamesarespecified(R isusedheretoindicatethesearefromoutput.rchSWAT

  • 7/18/2019 Usermanual Swat Cup

    34/100

    34

    file) in rows 35. These names are used to build files where simulated values are collected for all

    simulations.Thentotalnumberofsubbasinsintheprojectisspecified.

    Foreachvariable,weidentifythenumberofsubbasinstoget,andthesubbasinnumber(s).Ifwewant

    to getall subbasin values, forexample forplottingmaps, then simply indicateALL.This followedby

    beginningandendyearofsimulation.Again,beginningyearofsimulationshouldnot includewarmup

    period.

    95ppu_No_Obs.def

    Finally,forNO_Observationoptionweneedtoeditthe95ppu_No_Obs.deffile.Thisisafileusedforthe

    calculationofthe95ppufortheextractedvariableswithnoobservation.

    95ppu_No_Obs.def

    Thisfileagain isquiteselfexplanatory.Thenumberofvariablesforwhich95PPU istobecalculated is

    giveninthesecondrow.Variablesnamesarethenprovided.Thesenamesshouldbeexactlythesame

    astheonesgiveninthe.deffile(s).Finally,thenumberofsimulationtimestepsaregiven.For12years

    ofmonthlysimulationthiswouldbe144.

  • 7/18/2019 Usermanual Swat Cup

    35/100

    35

    10.Executables

    ThesectiononExecutableFilesplaystheroleofengineinSWATCUP.Thefourbatchfilesindicatewhat

    shouldorshouldnotberun.

    SUFI2_pre.bat

    This batch file runs the preprocessing procedures. It include running the Latin hypercube sampling

    program.Thisbatchfileusuallydoesnotneedtobeedited.

    NotethatmanyfilesattheendhaveFormViewandTextView.IntheTextViewyouhavethetextfile,

    whichappears inyouSWAZCUPprojectdirectory.Youcaneasilyeditthistextfileasneededwiththe

    sameformatasshown.

  • 7/18/2019 Usermanual Swat Cup

    36/100

    36

    SUFI2_run.bat

    ThisprogramexecutesSUFI2_execute.exe program,which runs theSWAT_Edit.exe,extractionbatch

    files,aswellasSWAT.exe.

    SUFI2_post.bat

    runs thepostprocessingbatch file,which runs theprograms forobjective functioncalculation,new

    parametercalculation,95ppucalculation,95ppuforbehavioralsimulations,and95ppuforthevariables

    withnoobservations(optional).IntheTextFormonecanuncheckaprogramifitisnotneededtorun.

  • 7/18/2019 Usermanual Swat Cup

    37/100

    37

    SUFI2_Extract.bat

    Thisbatchfilecontainsthenamesofalltheextractprogramswithorwithoutobservations.Currently8

    programsaresupported.Thisfilemustbeeditedandtheprogramsthatarenotdesiredtorunshouldbe

    remarked oruncheckedasshownbelow:

    11.BeforeCalibration

    Atthispointtheinputfilesarecompleteandtheprojectisreadytobecalibrated.Butbeforestartingan

    iteration,youneedtomakesurethatthemodelyouhavebuiltinfeasibleinitially.So,youshouldmake

    afirstrunwiththeinitialmodelstructureandinitialmodelparameters.

    TochecktheinitialmodelwithSWATCUPdothefollowing:

    1InPar_inf,putthenumberofsimulationsandthenumberofparametersto1

    2InSUFI2_swEditputthebeginningandtheendingsimulationalsoto1

    3Setupadummyparametersuchas

    r__SFTMP.bsn 0 0 (thisdoesnotchangeanything)

    4Thenexecuteinorder:Pre,Run,andPostprocessing.

    Nowlookatthe95PPUresultofyourdefaultorinitialmodelrun.Ifsimulationsandobservationsaretoodifferent,thenyouneedtotakeacloserlookatyourswatmodel,includingrainfall,etc.Else,lookatthe

    calibrationprotocolin(http://www.sciencedirect.com/science/article/pii/S0022169415001985)to

    adjusttheparameterinawayastoachievethebestsimulationresultateachobservedoutlet.

    Forthisinitialsimulation, youshouldalsolookattheoutput.stdfiletomakesuretheoverallwatershed

    flowcomponentsarecorrectornot.

  • 7/18/2019 Usermanual Swat Cup

    38/100

    38

    12.Calibration

    Next,aftereditingallthe inputfiles,performSaveAllandCloseAlltasks.Theruntheprograms in

    theCalibrationwindowintheorderthattheyappear.Inthissectionthreestepsareperformed:

    i) Sufi2_pre.bat ThiscommandrunstheSufi2_pre.batfile.Thisfilemustberunbeforethestart

    ofeverynewiteration.

    ii) SUFI2_run.bat Thiscommandexecutestherunbatchfile.

    iii) SUFI2_post.bat

    Afterall

    simulations

    are

    finished,

    this

    command

    executes

    the

    post

    processing

    batchfiledescribedabove.

  • 7/18/2019 Usermanual Swat Cup

    39/100

    39

    13.CalibrationOutputs

    95ppuplot

    Thiscommandshowsthe95ppuofallvariables.Alsoshownareobservationsandbestsimulationofthe

    currentiteration.PleaseNotethatthebestsimulationisonlyshownforhistoricreason.Thesolutionto

    thecalibrationatthisstageisthe95PPUgraphandtheparameterrangesthatwereusedtogenerateit.

    Notethefeatureswitharrowwhereyoucanchangethevariablesaswellaszoomingthehydrograph.

  • 7/18/2019 Usermanual Swat Cup

    40/100

    40

    Also,pleasenotetheoptionsgivenbyChartLayoutandPrintPreview

    95ppuNo_Observedplot

    Thiscommandshowsthe95ppuofallvariableswithnoobservations.Hereyouonlyseetheuncertainty

    insimulationofSoilMoisture,avariableforwhichwehavenoobservation.

    DottyPlots

    Thiscommandshowsthedottyplotsofallparameters.Theseareplotsofparametervaluesorrelative

    changesversusobjectivefunction.Themainpurposeofthesegraphsaretoshowthedistributionofthe

    samplingpointsaswellastogiveanideaofparametersensitivity.Inthefollowingfigureyouseeanice

    trend for CN2 as it increases. Objective function is NashSutcliffe (NS). Clearly CN2 is a sensitive

    parameteranditsbestfittingvaluesarelessthan0.1inrelativechange(r__).ButALPHA_BFdoesnot

    appeartobesensitiveasthevalueofobjectivefunctiondoesntreallychange.GW_DELAYalso isnot

    verysensitive,but itsvalueshouldprobablynotbeabove300,GWQMNalsonotverysensitive,butit

    shouldprobablybesomewhereabove0.6.Moreaboutsensitivitylater.

  • 7/18/2019 Usermanual Swat Cup

    41/100

    41

    Best_Par.txt

    This fileshowsthebestparametervaluesaswellas theirranges.Theseare theparameters,which

    gavethebestobjectivefunctionvalueinthecurrent iteration.Again,I liketoemphasizethatthebest

    parameterreallydoesnotmeanverymuchasthenextobjectivefunctionvaluemaynotbestatistically

    nottoodifferentfromthebestone.Theparameterrangesarethesolutionforthisiteration.

  • 7/18/2019 Usermanual Swat Cup

    42/100

    42

    Best_Sim.txt

    This file shows the best simulated values for all the variables used in the objective function. Both

    observedandsimulatedvaluesaregivensothattheycouldeasilybeplottedwithothersoftwaresas

    desired.

    Goal.txt

    Thisfileshowsthevalueofallparametersetsforthesimulationsperformedaswellasthevalueofthegoalfunctioninthelastcolumn.Thisfileisusedlatetocalculatethesocalledglobalsensitivity.

    New_Pars.txt

    This file shows the suggested valuesof thenewparameters tobeused in thenext iteration.These

    values can be copied and pasted in the Par_inf.txt file for the next iteration, or alternatively, the

    Import New Parameters could be used to copy new parameters into par_inf.txt file. The new

    parametersshouldbecheckedforpossibleunreasonablevalues(e.g.,negativehydraulicconductivity,

  • 7/18/2019 Usermanual Swat Cup

    43/100

    43

    etc.). These suggested parameter ranges should bemanually corrected and if desired directed to a

    certainrangebytheuserincaseofavailableinformationorknowledgeofthesystem.

    Summary_Stat

    Thisfilehasthestatisticsofcomparingobserveddatawiththesimulationbandthroughpfactorandr

    factorandthebestsimulationofthecurrentiterationbyusingR2,NS,bR2,MSE,SSQR,PBIAS,KGE,RSR,

    andVOL_FR.Themeanandstandarddeviationoftheobservedandsimulatedvariablesarealsogiven

    attheend.Fordefinitionofthesefunctionsseethesectiononobjectivefunctions.Alsoshown isthe

    goalfunctiontype,bestsimulationnumberofthecurrentiteration,andthebestvalueoftheobjective

    functionforthecurrentrunonthetop.

    Ifbehavioral

    solutions

    exist,

    then

    the

    p

    factor

    and

    rfactor

    for

    these

    solutions

    are

    also

    calculated.

    As

    showninthefollowingTabletheeffectofusingbehavioralsolutionsistoobtainsmallerpfactorandr

    factor,orasmallerpredictionuncertainty.

  • 7/18/2019 Usermanual Swat Cup

    44/100

    44

    14.Sensitivityanalysis

    Thismoduleoftheprogramperformssensitivityanalysis.Twotypesofsensitivityanalysisareallowed.

    GlobalSensitivityandOneatatimesensitivityanalysis.

    Globalsensitivityanalysiscanbeperformedafteraniteration.Oneatatimesensitivityisperformedfor

    oneparameteratatimeonly.Theprocedureisexplainedinthenextsection.

    15.Maps

    TheMapsmoduleenablesvisualizationoftheoutlets.TheBingmap isusedtoprojectthe locationof

    outlets,rivers,climatestations,andsubbasinsontheactualmapoftheworld.

  • 7/18/2019 Usermanual Swat Cup

    45/100

    45

    Whenyou invoke theOutletMap, theBingmap isactivatedand theprogramasks for theArcSWAT

    projectShapesfolder.

    Upon locatingtheShapefilefolder intheArcSWATproject, ...\Watershed\Shapes,severaloptionsare

    providedforvisualizationoftheoutletlocation:

  • 7/18/2019 Usermanual Swat Cup

    46/100

    46

    Thesubbasinboundaries,andthelocationofraingauges.Thismodule isextremelyuseful inanalyzing

    weather theoutlets are in their correct locationornot,whether the rivers areproperlydigitizedby

    SWATornot,iftheoutletisundertheinfluenceofsnowandglacier,intensiveagriculture,etc.

    SomeexamplesfromtheEuropeanprojectshow:

    (from http://www.sciencedirect.com/science/article/pii/S0022169415001985)

    a) Wrong positioning of an outlet on Viar river instead of on the main Rio Guadalquivir in Spain.

    The red-green symbol indicates location of the outlet.

  • 7/18/2019 Usermanual Swat Cup

    47/100

    47

    b) The position of an outlet downstream of a dam on Inn River near Munich, Germany. SWAT

    cannot calibrate the flow in this outlet unless the reservoir is modeled.

    c) a complex river geometry on Pechora River near Golubovo in Russia. SWAT cannot beexpected to simulate the flow in this outlet with high accuracy.

  • 7/18/2019 Usermanual Swat Cup

    48/100

    48

    d) The flow in the outlet below is governed by glacier melt near Martigny in Switzerland. These

    features could explain some of the discrepancies between simulation and observed results in

    SWAT calibration.

    16.Utilityprograms(C:\SWAT\SWATCUP5.1.6.2\ExternalData\utilityprograms)

    Thismodule

    currently

    has

    two

    program

    in

    it:

    Make_ELEV_BAND,

    not

    shown

    in

    the

    interface,

    and

    Upstreamsubbasins,whichisshownintheinterface.

    Make_ELEV_BAND,thisprogramcancalculate theelevationband foraSWATprojectanduseSWAT

    CUPtoputtheinformationinSWAT*.subfiles.Thereisanexplanatoryfilecalledelev_band.doc,which

    explainshowtodothis.

  • 7/18/2019 Usermanual Swat Cup

    49/100

    49

    Upstreamsubbasins,thisprogramcandeterminetheupstreamsubbasins.This isauseful information

    for parameterization. A READ_ME.txt file explains how to use this program. The file

    upstream_sorted.out,which is not shown in the interface shows, in a sortedmanner, all the above

    subbasinsofanyobserved subbasin.Theupstream.outcontainsavisualizationoptionthatshowswhich

    outletsareconnectedtoeachother.

    Theabovetextandvisualaidshowthatsubbasin(oroutlet)number1hasnoupstreamsubbasin,while

    outlets3,7,18(whichareheremeasuredoutlets)haveupstreamsubbasins.Ifyourightclickonthenode

    connectingoutlets3and18above,thenyouwillfindallthenonintersectingsubbasinsbetween3and

    18.Thatmeansallthesubbasinsbetween3and18.Usingthisinformation,onecancalibrateforoutlet

    18byparameterizingsubbasin19and20first,whichcontributetooutlet18.Thenkeeptherangesfixed

    fortheparametersofsubbasins18and19,andparameterizesubbasins inbetween18and3(seethe

    picturebelow,thearrowshowsalistoftheseparametersinthetextform).Usingthisprocedure,outlet

    3canbecalibrated.

  • 7/18/2019 Usermanual Swat Cup

    50/100

    50

    17.IterationsHistory

    Alliterations

    can

    be

    saved

    in

    the

    iteration

    history.

    This

    allows

    studying

    the

    progress

    to

    convergence.

    Afteracomplete iteration, review the suggestednewparameters in thenew_pars.txt,copy them to

    par_inf.txtandeditthemasexplainedbefore,andmakeanewiteration.Therearenohardrulesasto

    whenacalibrationprocesscanbeterminated.Buttheprocesscanstopwhensatisfactorystatisticsare

    achievedandtherearenofurtherimprovementsintheobjectivefunctionvalue.

  • 7/18/2019 Usermanual Swat Cup

    51/100

    51

    ParameterizationinSWATCUP

    Thefollowingschemecanbeusedtoparameterize,orregionalizeparametersofawatershed.InSWAT,

    theHRU is the smallestunitof spatialdisaggregation.Asawatershed isdivided intoHRUsbasedon

    elevation,soil,andlanduse,adistributedspatialparametersuchashydraulicconductivity,bulkdensity,

    orCN2canpotentiallybedefinedforeachHRU.Ananalystis,hence,confrontedwiththedifficulttask

    of collecting or estimating a large number of input parameters, which are usually not available. An

    alternativeapproach fortheestimationofdistributedparameters isto lumpthembasedonsoiltype,

    landuse type, location, slope,or a combination of these. They can then be calibratedusing a single

    globalmodificationtermthatcanscaletheinitialestimatesbyamultiplicative,oranadditiveterm.This

    leadstothefollowingproposedparameteridentifiersexplainedbelow.

    x__.__________

    Where

    x__ =Identifiercodetoindicatethetypeofchangetobeappliedtotheparameter:

    v__meanstheexistingparametervalueistobereplacedbyagivenvalue,

    a__meansagivenvalueisaddedtotheexistingparametervalue,and

    r__meansanexistingparametervalueismultipliedby(1+agivenvalue).

    Note:thattherearealwaystwounderscores__aftertheidentifier

    = SWAT parameter name as it appears in the SWAT I/O manual or in the

    Absolute_SWAT_Values.txtfile.

    = SWAT file extension code for the file containing the parameter(e.g.,.sol,.hru,.rte,etc.)

    =(optional)soilhydrologicalgroup(A,B,CorD)

    =(optional)soiltextureasitappearsintheheaderlineofSWATinputfiles

    =(optional)nameofthelandusecategoryasitappearsintheheaderlineofSWAT

    inputfiles

    = (optional) subbasinnumber(s)as itappears in theheader lineof SWAT input

    files

    = (optional)slopeasitappearsintheheaderlineofSWATinputfiles

    Anycombinationoftheabovefactorscanbeusedtodescribeaparameteridentifier.Iftheparameters

    are used globally, the identifiers , , , , and can be

    omitted.

    Note: thetwounderscoresaftereverypreviousspecificationsmustbeused,i.e.,tospecifyonlythe

    subbasinwemustwriteeightunderscoresafter.crp v__USLE_C.crp________2

  • 7/18/2019 Usermanual Swat Cup

    52/100

    52

    The presented encoding scheme allows the user to make distributed parameters dependent on

    importantinfluentialfactorssuchas:hydrologicalgroup,soiltexture,landuse,elevation,andslope.The

    parameters canbe assigned and calibrated regionally,orbe changed globally. This gives the analyst

    largerfreedominselectingthecomplexityofadistributedparameterscheme.Byusingthisflexibility,a

    calibrationprocesscanbestartedwithasmallnumberofparametersthatonlymodifyagivenspatial

    pattern, with more complexity and regional resolution added in a stepwise learning process. Some

    examplesoftheparameterizationschemeisasfollows:

    SpecificationofSoilParameters

    Parameteridentifiers Description

    r__SOL_K(1).sol KofLayer1ofallHRUs

    r__SOL_K(1,2,46).sol KofLayer1,2,4,5,and6ofallHRUs

    r__SOL_K().sol KofAlllayersandallHRUs

    r__SOL_K(1).sol__D Koflayer1ofHRUswithhydrologicgroupD

    r__SOL_K(1).sol____FSL Koflayer1ofHRUswithsoiltextureFSL

    r__SOL_K(1).sol____FSL__PAST Koflayer1ofHRUswithsoiltextureFSLand

    landusePAST

    r__SOL_K(1).sol____FSL__PAST__13 Koflayer1ofsubbasin1,2,and3withHRUs

    containingsoiltextureFSLandlandusePAST

    SpecificationofManagementParameters

    Parameteridentifiers Description

    v__HEAT_UNITS{rotationno,operationno}.mgt Managementparametersthatare

    subjecttooperation/rotationmust

    havebothspecified

    v__CNOP{[],1}.mgt Thischangesanoperation's

    parametersinallrotations

    v__CNOP{2,1,plant_id=33}.mgt ChangesCNOPforrotation2,

    operation1,andplant33only

    v__CNOP{[],1,plant_id=33}.mgt Similartoabove,butforallrotations

    v__CNOP{[],1,plant_id=33}.000010001.mgt Withthiscommandyoucanonly

    modifyonefile

  • 7/18/2019 Usermanual Swat Cup

    53/100

    53

    r__FRT_KG{9,1}.mgt Inthesethreeexamples,rotation9,

    operation1,andtherestarefilters

    where,meansANDr__FRT_KG{9,1,PLANT_ID=12}.mgt

    r__FRT_KG{9,1,PLANT_ID=12,HUSC=0.15}.mgt

    SpecificationofCropParameters

    Parameteridentifiers Description

    v__T_OPT{30}.CROP.DAT ParameterT_OPTforcropnumber30inthe

    crop.datfile

    v__PLTNFR(1){3}.CROP.DAT Nitrogenuptakeparameter#1forcrop

    number3incrop.datfile

    SpecificationofPesticideParameters

    Parameteridentifiers Description

    v__WSOL{1}.pest.dat ThischangesparameterWSOLforpesticide

    number1inpest.datfile

    SpecificationofPrecipitationandTemperatureParameters

    Parameteridentifiers Description

    v__precipitation(1){1977300}.pcp1.pcp (1)meanscolumnnumber1inthepcpfile

    {1977300}specifiesyearandday

    v__precipitation(13){1977300}.pcp1.pcp (13)meanscolumn1,2,and3

    {1977300}specifiesyearandday

    v__precipitation(){1977300,1977301}.pcp ()meansallcolumns(allstations)

    {1977300,1977301}means1977days300and

    301

    v__precipitation(){1977001

    1977361,19780011978365,1979003}.pcp

    ()meansallcolumns

    fromday1today361of1977,andfromday1

    today365of1978,andday3of1979

    v__MAXTEMP(1){1977001}.tmp1.tmp (1)meanscolumn1inthetmp1.tmpfile

  • 7/18/2019 Usermanual Swat Cup

    54/100

    54

    {1977001}specifiesyearandday

    v__MAXTEMP(2){1977002

    1977007}.tmp1.tmp

    (2)meanscolumn2inthetmp1.tmpfile

    fromday2today7in1977

    v__MINTEMP(){19770021977007}.tmp1.tmp ()meansallcolumnsintmp1.tmpfile

    SpecificationofslopeParameters

    Parameteridentifiers Description

    v__SOL_K(1).sol______________010 Koflayer1forHRUswithslope010

    Pleasenotethatbrackets()areusedtodistinguishlayersinparametersthathavemanylayers.

    Also,pleasenotethatprecipitationandtemperaturearealsoallowedtobeusedasfittingparameters.

    Thisoptionmustbeusedwithcautionbecausefittingrainfallcanmakecalibrationofparameters

    irrelevantasrainfallisthesinglemostimportantdrivingvariablecontrollingthebehaviorofflow.

  • 7/18/2019 Usermanual Swat Cup

    55/100

    55

    ObjectiveFunctionDefinition

    Intheobserved.txtfile,10differentobjectivefunctionsarecurrentlyallowed.Theseinclude:

    1=mult Minimize:

    ....***

    222

    N

    i

    ism

    S

    i

    ism

    Q

    i

    ism

    n

    NN

    n

    SS

    n

    QQ

    g

    This isamultiplicativeformofthesquareerrorwhereQ,S,andNstandforvariables(e.g.,discharge,

    sediment,andnitrate),nisthenumberofobservations,andmandsstandformeasuredandsimulated.

    Sometimesthedenominatorisdividedby1000tokeepgsmall.

    2=sum Minimize: .....1 2 3

    1 1 1

    2

    3

    2

    2

    2

    1

    n

    i

    n

    i

    n

    iismismism

    NNwSSwQQwg

    This isthesummationformofthesquareerrorwhereQ,S,andNstandforvariables(e.g.,discharge,

    sediment,andnitrate),mandsstandformeasuredandsimulated,nisthenumberofdatapoints,and

    weightswscouldbecalculatedas:

    i) 21

    jj

    jn

    w

    where2

    j isthevarianceofthe

    j

    thmeasuredvariable(seeAbbaspour,etal.,2001),or

    ii)m

    m

    m

    m

    N

    Qw

    S

    Qww 321 ,,1

    wherebars indicateaverages (seeAbbaspouretal.,1999).Note thatchoiceofweighscanaffect the

    outcomeofanoptimizationexercise(seeAbbaspour,etal.,1997).

    3=R2 Maximize:

    i

    sis

    i

    mim

    sis

    i

    mim

    QQQQ

    QQQQ

    R2

    ,

    2

    ,

    2

    ,,

    2

    CoefficientofdeterminationR2whereQisavariable(e.g.,discharge),andmandsstandformeasured

    and simulated, i is the ithmeasuredor simulateddata. If therearemore thanonevariable, then the

    objectivefunctionisdefinedas:

  • 7/18/2019 Usermanual Swat Cup

    56/100

    56

    j

    jjRwg2

    Wherewjistheweightofjthvariable.

    4=Chi2 Minimize:

    2

    2

    2

    m

    i

    ism QQ

    whereQisavariable(e.g.,discharge),andmandsstandformeasuredandsimulated,respectively,and2

    m isthevarianceofmeasureddata.Iftherearemorethanonevariable,thentheobjectivefunctionis

    calculateas:

    j

    jjwg2

    Wherewjistheweightofjthvariable.

    5=NS Maximize:

    imim

    iism

    QQ

    QQ

    NS2

    ,

    2

    1

    NashSutcliffe (1970), where Q is a variable (e.g., discharge), and m and s stand for measured and

    simulated, respectively,and thebar stands foraverage. If there ismore thanone variable, then the

    objectivefunctionisdefinedas:

    j

    jjNSwg

    Wherewjistheweightofjthvariable.

    6=bR2 Maximize:

    1

    1

    21

    2

    bifRb

    bifRb

    WhereCoefficientofdeterminationR2 ismultipliedby the coefficientof the regression linebetween

    measuredandsimulateddata,b.Thisfunctionallowsaccountingforthediscrepancy inthemagnitude

    oftwosignals(depictedbyb)aswellastheirdynamics(depictedbyR2).Ifmorethanonevariable,the

    objectivefunctionisexpressedas(Krauseetal.,2005):

  • 7/18/2019 Usermanual Swat Cup

    57/100

    57

    incaseofmultiplevariables,gisdefinedas:

    j

    jjwg

    Wherewjistheweightofjthvariable.

    7=SSQR Minimize:

    , ,

    whereQisavariable(e.g.,discharge),andmandsstandformeasuredandsimulated,respectively.Here

    irepresentstherank.TheSSQRmethodaimsatfittingthefrequencydistributionsoftheobservedand

    the simulated series. After independent ranking of the measured and the simulated values (van

    GriensvenandBauwens,2003):

    incaseofmultiplevariables,gisdefinedas:

    j jjSSQRwg

    Wherewjistheweightofjthvariable.

    8.PBIAS Minimize:

    n

    i

    im

    n

    iism

    Q

    QQ

    PBIAS

    1

    ,

    1*100

    whereQ isavariable (e.g.,discharge),andmand s stand formeasuredand simulated, respectively.

    Percentbiasmeasures the average tendencyof the simulateddata tobe largeror smaller than the

    observations. The optimum value is zero, where low magnitude values indicate better simulations.

    Positive values indicate model underestimation and negative values indicate model over estimation

    (Guptaetal.,1999).

    incaseofmultiplevariables,gisdefinedas:

    j

    jjPBIASwg

    Wherewjistheweightofjthvariable.

  • 7/18/2019 Usermanual Swat Cup

    58/100

    58

    9.KGE Maximize: 1 1 1 1

    Where

    ,and

    ,andristhelinearregressioncoefficientbetweensimulatedandmeasured

    variable, s and m are means od simulated and measured data, and s and m are the standard

    deviationofsimulatedandmeasureddata.KlingGuptaefficiency(Guptaetal.,2009).

    incaseofmultiplevariables,gisdefinedas:

    j

    jjKGEwg

    Wherewjistheweightofjthvariable.

    10.RSR Minimize:

    n

    i

    mim

    n

    iism

    QQ

    QQ

    RSR

    1

    2

    ,

    1

    2

    whereQisavariable(e.g.,discharge),andmandsstandformeasuredandsimulated,respectively.RSR

    isthestandardizestheRMSEusingtheobservationstandarddeviation.RSRisquitesimilartoChiin4.It

    variesfrom0tolargepositivevalues.ThelowertheRSRthebetterthemodelfit(Moriasietal.,2007).

    incaseofmultiplevariables,gisdefinedas:

    j

    jjRSRwg

    Wherewjistheweightofjthvariable.

    11.MNS Maximize:

    i

    p

    imim

    i

    p

    ism

    QQ

    QQ

    NS

    ,

    1

    Modified NaschSutcliffe efficiency factor. Ifp=2, then this is simply NS as in 5 above. Ifp=1, the

    overestimationofapeakisreducedsignificantly.Themodifiedformisreportedtobemoresensitivetosignificantover orunderpredictionthanthesquareform.Increasingthevalueofpbeyond2resultsin

    an increase inthesensitivitytohighflowsandcouldbeusedwhenonlythehighflowsareof interest,

    e.g.forfloodprediction(Krauseetal.,2005)

    NOTE:Afteraniteration,trychangingthetypeofobjectivefunctionandrunSUFI2Post.bataloneto

    see the effect of different objective functions, without having to run SWAT again. This is quite

    informativeasitshowshowthechoiceofobjectivefunctionaffectsthecalibrationsolution.

  • 7/18/2019 Usermanual Swat Cup

    59/100

    59

    SensitivityAnalysis

    1 GlobalSensitivityanalysis

    Parametersensitivitiesaredeterminedby calculating the followingmultiple regressionsystem,which

    regresses the Latin hypercube generated parameters against the objective function values (in file

    goal.txt):

    m

    i

    iibg1

    A ttest is thenused to identify the relative significanceofeachparameterbi.The sensitivitiesgiven

    aboveareestimatesof theaveragechanges in theobjective function resulting from changes ineach

    parameter, while all other parameters are changing. This gives relative sensitivities based on linear

    approximations and, hence, only provides partial information about the sensitivity of the objective

    functiontomodelparameters.Inthisanalysis,thelarger,inabsolutevalue,thevalueoftstat,andthe

    smallerthepvalue,themoresensitivetheparameter. Intheexamplebelow,CN2,ESCO, followedby

    GE_DELAY,CH_N2,andALPHA_BFarethefivemostsensitiveparameters.

  • 7/18/2019 Usermanual Swat Cup

    60/100

    60

    tstatandpvalue

    Amultipleregressionanalysisisusedtogetthestatisticsofparametersensitivity.Thetstatis

    thecoefficientofaparameterdividedbyitsstandarderror.Itisameasureoftheprecisionwith

    whichtheregressioncoefficientismeasured.Ifacoefficientislargecomparedtoitsstandard

    error,thenitisprobablydifferentfrom0andtheparameterissensitive.Whatislarge?

    YoucouldcomparethetstatofaparameterwiththevaluesintheStudent'stdistributiontable

    todeterminethepvalue,whichisthenumberthatyoureallyneedtobelookingat.The

    Student'stdistribution(youfindattheendofmoststatisticsbook)describeshowthemeanof

    asamplewithacertainnumberofobservationsisexpectedtobehave.Thepvalueforeach

    termteststhenullhypothesisthatthecoefficientisequaltozero(noeffect).Alowpvalue(

  • 7/18/2019 Usermanual Swat Cup

    61/100

    61

    bymuch.Therefore,thevaluesofthefixedparametersmakeadifferencetothesensitivityofa

    changingparameter.

    Toperformtheoneatatimesensitivityanalysis:

    1 DoasshowninthefollowingFigure.SetthenumberofparametersinthePar_inf.txtfileto1,and

    performaminimumof3simulations.

    2 ThensetthevaluesoffileSUFI2_swEdit.defasfollows:

    3 FinallyperformtheiterationbyrunningunderCalibration,SUFI2_pre.batandthenSUFI2_run.bat.

    4 Now,thethreesimulationcanbevisualizedforeachvariablebyexecutingoneat

    atimecommand

    underSensitivityanalysisasshownbelow:

  • 7/18/2019 Usermanual Swat Cup

    62/100

    62

    ThedashedlineistheobservationandthedischargesignalforFLOW_OUT_1isplottedforthreevalues

    ofCN2withinthespecifiedrange.Clearly,CN2issensitiveandneedstohavelargervalues.

    NOTE:TheusersmustbeawarethattheparametersintheSWATfilesinthemainSWATCUPproject

    directoryarealwayschanging.Onceyouperformasensitivityiteration,thentheparametervaluesin

    thosefilesarethevaluesofthelastrun(lastparameterset)ofthelastiteration.Toperformtheoneat

    atimesensitivityanalysis,oneshouldsetthevaluesoftheparametersthatarekeptconstanttosome

    reasonablevalues.Thesereasonablevaluescould,forexample,bethebestsimulation(simulationwith

    thebestobjectivefunctionvalue)ofthelastiteration,ortheinitialmodelparametersthatresideintheBackupdirectory.

  • 7/18/2019 Usermanual Swat Cup

    63/100

    63

    ParallelProcessing

    Parallel processing is a licensed product. Its function is to speed up the calibration process by

    parallelizingtherunsinSUFI2.Thespeedoftheparallelprocessingdependsonthecharacteristicsofthe

    computer.Newlaptopsnowhaveatleast4CPUs.Theparallelprocessingmodulecanutilizeall4CPUs

    sothata1000runiterationcanbedividedinto4simultaneousrunsof250eachperCPU.Thespeedup

    willnotbe4timesbecauseofprogramandWindowsoverheads;but therunwithparallelprocessing

    willbesubstantiallyfasterthanasingle1000runsubmission.

    Nowadaysitispossibletobuildquiteinexpensivelyacomputerwith48to64CPUsandmorethan96

    GBofRAM.MostSWATmodelsofanydetailcouldberunonsuchmachineswithouttheneedforcloud

    orgridcomputing(seeRouholahnejad,etal.,2012formoredetail).

    Currently,20 simulationsareallowed tobemadewithout theneed fora license.Toobtaina license

    follow the direction under license and activation and send the hardware ID, for the time being, to

    ([email protected]).Afterobtainingalicensefilebyemail,followtheactivationprocess.

    Torunparallelprocessing,simplyclicktheParallelProcessingbuttononthecommandbar.Anewsetof

    command icons appear. Press parallel Processing to seehowmanyjobs canbe submitted to your

    computer.UnderProcesscountyoucanchoosehowmanyparalleljobsyouwanttosubmitIfthesize

    oftheprojectislargeandthereisnotenoughmemory,thensmallernumberofparallelprocessesthan

    thenumberofCPUsmaybepossible.TheCalibrationiconworksasbefore.

  • 7/18/2019 Usermanual Swat Cup

    64/100

    64

    ValidationinSUFI2

    Forvalidation,youshouldusethecalibratedparameterrangeswithoutanyfurtherchangesandrun

    aniteration(withthesamenumberofsimulationsasyouusedforcalibration).

    Toperformvalidation inSUFI2,editthefilesobserved_rch.txt,observed_hru.txt,obsrved_sub.txt,and

    observed.txtasnecessary forthevalidationperiod.Also,theextraction filesand the file.ciotoreflect

    thevalidationperiod.Thensimplyusethecalibratedparameterrangestomakeonecompleteiteration

    (usingthecalibrationbutton).The95PPUandtheSummary_statfileshouldreflectthevalidationresults.

    Thevalidationkeybringsupthefollowingmenu,whichexplainsthevalidationsteps.

  • 7/18/2019 Usermanual Swat Cup

    65/100

    65

    Thesequenceofprogramexecution

    Thesequenceofprogramexecutionandinput/outputsareshowninbelow.Inthefollowing,eachinput

    andoutputfileisdescribedindetail.

    INPUTFILES OUTPUTFILES

    SUFI2_Extract_*_No_obs.exe

    - model.in

    - Absolute_SWAT_Values.txt

    - BACKUP file

    -New SWAT parameter files

    -Swat EditLo .txt

    SUFI2_make_input.exe- SUFI2.IN\\trk.txt- SUFI2.IN\\par_inf.txt

    - SUFI2.IN\\par_val.txt

    -Echo\echo_make_par.txt

    -model.in

    SWAT_Edit.exe

    SUFI2_LH_sample.exe- SUFI2.IN\\trk.txt

    - SUFI2.IN\\par_inf.txt

    -ECHO\\echo_LH_sample.txt

    -SUFI2.IN\\par_val.txt

    -SUFI2.IN\\str.txt

    SWAT.exe-SWAT output files

    SUFI2_Extract_*.exe

    - SUFI2_Extract_*.def- output.*

    - SUFI2.IN\var_file_*.txt

    - SUFI2.IN\trk.txt

    - SUFI2.IN\observed *.txt

    -Echo\echo_extract_*.txt

    -SUFI2.OUT\files listed in

    var_file_*.txt

    SUFI2_goal_fn.exe

    SUFI2_95ppu.exe

    SUFI2_new_pars.exe

    -Echo\echo_goal_fn.txt-SUFI2.OUT\\goal.txt

    -SUFI2.OUT\best_sim.txt-SUFI2.OUT\\best_par.txt

    -SUFI2.OUT\\beh_pars.txt

    -SUFI2.OUT\\no_beh_sims.txt

    -SUFI2.OUT\best_sim_nr.txt

    - SUFI2.IN\par_inf.txt

    - SUFI2.IN\observed.txt

    - SUFI2.IN\par_val.txt- SUFI2.IN\\var_file_name.txt

    -Echo\echo_95ppu.txt

    -SUFI2.OUT\95ppu.txt-SUFI2.OUT\\95ppu_g.txt

    -SUFI2.OUT\\summary_stat.txt

    - SUFI2.IN\par_inf.txt

    - Files liste in var_file_name.txt

    - SUFI2.IN\observed.txt

    - SUFI2.IN\\best_sim.txt

    Echo\new_pars_all.txt

    SUFI2.OUT\new_pars.txt

    SUFI2.IN\observed.txt

    SUFI2.OUT\\goal.txt

    SUFI2.OUT\\best_par.txt

    SUFI2_Post.bat

    SUFI2_Run.bat

    - extract_*_No_Obs.def

    - output.*

    - SUFI2.IN\var_file_*_No_obs.txt

    - SUFI2.IN\trk.txt

    SUFI2.OUT\files listed in

    var_file_*_No_obs.txt

    95ppu_No_Obs.exe- 95ppu_No_Obs.def- SUFI2.IN\par_inf.txt

    SUFI2.OUT\95ppu_No_Obs.txt

    SUFI2.OUT\95ppu_g_No_Obs.txt

    NO_Observation

    SUFI2_95ppu_beh.exe

    -Echo\echo_95ppu_beh.txt-SUFI2.OUT\\summary_stat.txt

    - SUFI2.IN\par_inf.txt

    -SUFI2.OUT\\no_beh_sims.txt

    - Files liste in var_file_name.txt

    - SUFI2.IN\observed.txt- SUFI2.IN\\best_sim.txt

  • 7/18/2019 Usermanual Swat Cup

    66/100

    66

    Howtoseetheresultsofmyinitialmodel?

    BeforestartingiterationsinSWATCUP,youshouldchecksimulationofyourinitialmodelsetup.Itis

    assumedthatsomethoughtandinvestigationhasgoneintodatacollectionandthebestinformationis

    usedtobuildtheSWATmodel.Tochecktheinitial(default)simulationofyourmodelinSWATCUPdo

    thefollowing:

    1InPar_inf,putthenumberofsimulationsandthenumberofparametersto1andsetupadummy

    parameterchangesuchas

    r__SFTMP.bsn 0 0 (thisdoesnotchangeanything)

    2InSUFI2_swEditputthebeginningandtheendingsimulationalsoto1

    3Thenexecute:Pre,Run,andPostprocessing.

    Nowlookatthe95PPUresultofyourdefaultorinitialmodelrun.Ifsimulationsandobservationsaretoo

    different,thenyouneedtotakeacloserlookatyourswatmodel,includingrainfall,etc.

    Iftheyarenottoodifferent,thenforeachoutletadjustrelevantparametersintherelevantsubbasins

    (referredtoasparameterization),anddoafewiterationsbasedonthat.

    Foraprotocolseetheopenaccesspaper:

    http://www.sciencedirect.com/science/article/pii/S0022169415001985

    HowtosettheparametersinSWATtextfilestothebestparametervaluesof

    thelast

    iteration?

    IfyouwanttheSWATTxtInOutfilesreflectthebestparametersyouobtainedinaniterationdothe

    following:

    1 NotethenumberofthebestsimulationintheSummary_Stat.txtfile

    2 IntheSUFI2_swEdit.txtsetthestartingandendingsimulationvaluesbothtothenumberofthebest

    simulationinstep1.

    3 UnderCalibration,runSUFI2_run.bat.DonotrunSUFI2Pre.bat.

    Thiscommandwillreplacetheparametervaluesandsetthemtothebestvaluesofthelastiteration.

  • 7/18/2019 Usermanual Swat Cup

    67/100

    67

    HowtodoLatinHypercubeSampling

    ThebatchfileSUFI2_pre.batrunstheSUFI2_LH_sample.exeprogram,whichgeneratesLatinhypercube

    samples.Thesesamplesarestoredinpar_val.txtfile.

    ThisprogramusesLatinhypercubesamplingtosamplefromtheparameterintervalsgiveninpar_inf.txt

    file.The sampledparametersaregiven inpar_val.txt file,while the structureof the sampleddata is

    writtentostr.txtjustforinformation.Ifthenumberofsimulationsis3,thenthefollowinghappens:

    1)Parameters(say2)aredividedintotheindicatednumberofsimulations(say3)

    2)Parametersegmentsarerandomized

    3)Asampleistakenatthemiddleofeverysegment

    Everyverticalcombinationisthenaparameterset.

    2 31

    1 2 3

    2 1 3

    3 2 1

    2 1 3

    3 2 1

  • 7/18/2019 Usermanual Swat Cup

    68/100

    68

    HowtoCalibratemorethanoneVariable

    Ifyouwanttocalibrateusing,forexampledischarge,nitrate,andphosphate,youshouldfirstcalibrate

    fordischarge.Thisisbecauseflowisthemaincontrollingvariable.Aftercalibratingforflow,keepflow

    parameterrangesasyouobtainedfromflowcalibrationandaddsedimentparameters.Therearetwo

    typesofsedimentparameters,thosethataffectonlysediment,andthosethataffectflowandsediment.

    SeetheTablebelowfromAbbaspouretal.,(2007).

    Initially,add theparameters thatonlyaffectsedimentand runan iteration.Youshouldget the same

    dischargeresultsasbefore,sotrycalibratingonlyforthesedimentparametersthatdontaffecttheflow

  • 7/18/2019 Usermanual Swat Cup

    69/100

    69

    first.After,oneortwoiterations,ifsedimentresultsarenotsatisfactory,thenaddtheotherparameters

    thataffectsedimentandflowanddoacoupleofiterationsbyallowingflowparameterstoalsochange

    slightly.

    ForNitraterepeatthesameprocedurewithnitrateparameters.Notethatforcalibratingphosphoryou

    mustcalibrateforsedimentfirst,becausemuchofthephosphormoveswithsediment,butnitratecan

    becalibratedwithoutsediment.

    Itisimportanttoalsonotethatthesolutiontothecalibratedmodelisthe95PPUgeneratedby

    theparameterranges.DONOTtrytoonlyusethebestparametersetforfurtheranalysis.By

    doing this youare assuming that the calibratedmodelonlyhasone solution and this isnot

    correct. It is never correct to assume that only one set of parameters can represent a

    watershed, which was modeled by very uncertain information about soil, landuse, climate,

    management, measured data used for calibration, etc. Always propagate the range of

    parametersyouobtainedduringcalibrationforallpurposesofmodeluse.

  • 7/18/2019 Usermanual Swat Cup

    70/100

    70

    PSO

    ParticleSwarmOptimization

  • 7/18/2019 Usermanual Swat Cup

    71/100

    71

    IntroductiontoPSO

    Particleswarmoptimization(PSO)isapopulationbasedstochasticoptimizationtechniquedevelopedby

    Dr.EberhartandDr.Kennedy in1995,inspiredbysocialbehaviorofbirdflockingorfishschooling.

    PSOsharesmanysimilaritieswithevolutionarycomputationtechniquessuchasGeneticAlgorithms(GA).

    The system is initializedwithapopulationof random solutionsand searches foroptimabyupdating

    generations.However,unlikeGA,PSOhasnoevolutionoperatorssuchascrossoverandmutation. In

    PSO, thepotential solutions, calledparticles, fly through theproblem spaceby following the current

    optimumparticles.Thedetailedinformationwillbegiveninfollowingsections.

    Compared to GA, the advantages of PSO are that PSO is easy to implement and there are few

    parameterstoadjust.PSOhasbeensuccessfullyappliedinmanyareas:functionoptimization,artificial

    neuralnetworktraining,fuzzysystemcontrol,andotherareaswhereGAcanbeapplied.

    There are two popular swarm inspired methods in computational intelligence areas: Ant colony

    optimization (ACO)andparticleswarmoptimization (PSO).ACOwas inspiredby thebehaviorsofants

    and has many successful applications in discrete optimization problems.

    (http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html)

    Theparticleswarmconceptoriginatedasasimulationofsimplifiedsocialsystem.Theoriginalintentwas

    tographicallysimulate thechoreographyofbirdofabirdblockor fishschool.However, itwas found

    that particle swarm model can be used as an optimizer.

    (http://www.engr.iupui.edu/~shi/Coference/psopap4.html)

    Thealgorithm

    Asstatedbefore,PSOsimulatesthebehaviorsofbirdflocking.Supposethefollowingscenario:agroup

    of birds are randomly searching food in an area. There is only one piece of food in the area beingsearched. All the birds do not know where the food is. But they know how far the food is in each

    iteration.Sowhat'sthebeststrategyto findthefood?Theeffectiveone istofollowthebirdwhich is

    nearesttothefood.

    PSOlearnsfromthescenarioandusesittosolvetheoptimizationproblems.InPSO,eachsinglesolution

    is a "bird" in the search space. We call it "particle". All of particles have fitness values which are

    evaluatedby the fitness function tobeoptimized, andhave velocitieswhichdirect the flyingof the

    particles.Theparticlesflythroughtheproblemspacebyfollowingthecurrentoptimumparticles.

    PSOisinitializedwithagroupofrandomparticles(solutions)andthensearchesforoptimabyupdating

    generations.Inevery iteration,eachparticle isupdatedbyfollowingtwo"best"values.Thefirstoneis

    thebestsolution (fitness) ithasachievedso far. (The fitnessvalue isalsostored.)Thisvalue iscalledpbest.Another"best"valuethatistrackedbytheparticleswarmoptimizeristhebestvalue,obtainedso

    farbyanyparticle inthepopulation.Thisbestvalue isaglobalbestandcalledgbest.Whenaparticle

    takespartofthepopulationasitstopologicalneighbors,thebestvalueisalocalbestandiscalledlbest.

    After finding the two best values, the particle updates its velocity and positions with the following

    equations(a)and(b).

    v[]=v[]+c1*rand()*(pbest[] present[])+c2*rand()*(gbest[] present[]) (a)

  • 7/18/2019 Usermanual Swat Cup

    72/100

    72

    present[]=persent[]+v[] (b)

    v[]istheparticlevelocity,persent[]isthecurrentparticle(solution).pbest[]andgbest[]aredefinedas

    statedbefore.rand()isarandomnumberbetween(0,1).c1,c2arelearningfactors.usuallyc1=c2=2.

    Thepseudocodeoftheprocedureisasfollows:

    Foreachparticle

    Initializeparticle

    END

    Do

    Foreachparticle

    Calculatefitnessvalue

    Ifthefitnessvalueisbetterthanthebestfitnessvalue(pBest)inhistory

    setcurrentvalueasthenewpBest

    End

    ChoosetheparticlewiththebestfitnessvalueofalltheparticlesasthegBest

    Foreachparticle

    Calculateparticlevelocityaccordingequation(a)

    Updateparticlepositionaccordingequation(b)

    EndWhilemaximumiterationsorminimumerrorcriteriaisnotattained

    Particles' velocities on each dimension are clamped to a maximum velocity Vmax. If the sum of

    accelerations would cause the velocity on that dimension to exceed Vmax, which is a parameter

    specifiedbytheuser,thenthevelocityonthatdimensionislimitedtoVmax.

    ComparisonsbetweenGeneticAlgorithmandPSO

    Mostofevolutionarytechniqueshavethefollowingprocedure:

    1.Randomgenerationofaninitialpopulation

    2.Reckoningofafitnessvalueforeachsubject.Itwilldirectlydependonthedistancetotheoptimum.

    3.Reproductionofthepopulationbasedonfitnessvalues.

    4.Ifrequirementsaremet,thenstop.Otherwisegobackto2.Fromtheprocedure,wecanlearnthatPSOsharesmanycommonpointswithGA.Bothalgorithmsstart

    withagroupofarandomlygeneratedpopulation,bothhavefitnessvaluestoevaluatethepopulation.

    Bothupdatethepopulationandsearchfortheoptimumwithrandomtechniques.Bothsystemsdonot

    guaranteesuccess.

    However,PSOdoesnothavegeneticoperatorslikecrossoverandmutation.Particlesupdatethemselves

    withtheinternalvelocity.Theyalsohavememory,whichisimportanttothealgorithm.

    Compared with genetic algorithms (GAs), the information sharing mechanism in PSO is significantly

    different.InGAs,chromosomesshareinformationwitheachother.Sothewholepopulationmoveslike

    aonegrouptowardsanoptimalarea.InPSO,onlygBest(orlBest)givesouttheinformationtoothers.It

    isaonewayinformationsharingmechanism.Theevolutiononlylooksforthebestsolution.Compared

    withGA,alltheparticlestendtoconvergetothebestsolutionquicklyeveninthelocalversioninmostcases.

    7.OnlineResourcesofPSO

    ThedevelopmentofPSOisstillongoing.AndtherearestillmanyunknownareasinPSOresearchsuchas

    themathematicalvalidationofparticleswarmtheory.

  • 7/18/2019 Usermanual Swat Cup

    73/100

    73

    Onecanfindmuchinformationfromtheinternet.Followingaresomeinformationyoucangetonline:

    http://www.particleswarm.net lots of information about Particle Swarms and, particularly, Particle

    SwarmOptimization.LotsofParticleSwarmLinks.

    http://icdweb.cc.purdue.edu/~hux/PSO.shtml lists an updated bibliography of particle swarm

    optimizationandsomeonlinepaperlinks