use of surface joint and photo linear data for predicting coal cleat orientation data

Upload: salahudin

Post on 10-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    1/17

    Bureau of Mines Repor t of Inves t iga t ions / l976

    Use of Surface Joint and Photolinear

    Data for Predicting Subsurface

    Coal Cleat Orientation

    U N I T E D S TAT E S D E PA R T M E N T O F T H E IN T E RI O R

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    2/17

    Repor t of Inves t igat ions 8120

    U se of Surface Joint and Photolinear

    Data for Predicting SubsurfaceCoal Cleat Orientation

    B y W . P.'D iam on d, C. M. McCulloch, and B. M. B enchPittsburgh Mining and Safety Research Center, Pittsburgh, Pa.

    U N I T E D S TAT E S D E PA RT M E N T O F T H E I NT ER IO RThom as S . Kleppe, Secre ta ry

    B U R E A U OF MINEST h o m a s V . F a l k i e , D i r e c t o r

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    3/17

    Th is publication has been cataloged as follows:

    d

    Diamond, W P

    Use of su rfac e joint and photolinear dat a for predictingsubsur face coa l c lea t o r ien ta t ion , by W. P. Diamond, C. M.McCulloch, and B. M. Bench . [Wash ington] U.S. Bur eau ofMines C1976I

    13 p . i l lu s . , tabl es . (U.S. Bureau of Mines . Repor t of inves t i -g a t i o n s 8 1 2 0 )

    Inc ludes b ib l i ography.

    1. C oa l mi nes and mining. I. McC ulloch , Ch ar le s M., jt . auth.11. B en ch , Bern ard M., jt. auth. 111. U.S. Bure au of Mi nes . IV.Ti t l e . ( S e r i e s )

    TN23.U7 no . 8120 622.06173

    U.S. Dept. of the Int. Library

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    4/17

    CONTENTS

    Page

    A b s t r a c t ................................................................. 1I n t r o d u c t i o n . ........................................................... 1D e te rm i na t io n and a n a l y s i s o f c l e a t o r i e n t a t i o n .......................... 2Tech niq ues f o r p r e d i c t i o n of c l e a t o r i e n t a t i o n .. ........................ 5A n a ly s i s of r e g i o n a l d i r e c t i o n a l d a t a .................................... 5A n al y si s of l o c a l d i r e c t i o n a l d a t a ....................................... 9C r i t e r i a f o r c l e a t p r e d i ct i o n ............................................ 11Conclus ion ............................................................... 11References ............................................................... 13

    ILLUSTRATIONS

    1 . P la n view of d i r e c t i o n a l p e rm e a bi l it y due t o c l e a t o r i e n t a t i o n ....... 22 . S t r u c t u r e . c l e a t o r i e n t a t i o n . and mine l o c a t i o n s i n s tu d y a r e a ....... 33 . Cle a t o r i en ta t i on . Osage No . 3 mine. Monongalia County. W . Va ........ 44 . Composi te r o se d i ag ra m o f c l e a t o r i en t a t i on .......................... 45 . C l e a t o r i e n t a t i o n . B l a c k s v i l l e No . 1 mine. Gre ene Coun ty. Pa .

    and Monongalia County. W . Va ....................................... 56 . Compo s i t e r o se d i ag ram o f p r i nc ipa l su r f ace j o in t t r ends ............. 67 . Composi te ro se d iagram of p r i nc ip a l in f r a r ed photograph

    p h o t o l i n e a r s ....................................................... 6 .8 Composi te ros e d iagram of p r i nc ip a l photo index phot o l i nea rs .......... 7

    T A B U S

    1 . P r i n c i p a l d i r e c t i o n a l s e t s i n o r d e r o f dominance ..................... 72 . Fun dame n ta l r eg iona l sy s t e m s f rom d i r ec t i ona l da t a ................... 83 . C oa l c l e a t . d um in an t s u r f a c e j o i n t . and p h o t o l i n e a r o r i e n t a t i o n s of

    t h e s t u d y a r e a ..................................................... 10

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    5/17

    USE OF SURFACE JOINT AND PHOTOLINEAR DATA FOR PREDICTINGSUBSURFACE COAL CLEAT ORIENTATION

    byWo Po Diamond, 1 C, Mo McCul och, 1 and Bo Me Bench 1

    ABSTRACT

    Coalbeds e xh ib i t a d ir e c t i o n a l permea bil i t y, with the maximum permeabil-i t y o r i e n t e d p a r a l l e l t o th e f ac e c l e a t . T hus, t h e most e f f i c i e n t p a t t e r n ofv e r t i c a l d e g a s i f i c a ti o n h o le s fo r a coa lbed i s dependent upon c l ea t o r i en t a -t i o n . Su r f ace j o in t s , i n f r a r ed pho to l i ne a r s , and Ronch i g r a t i n g pho to l i nea r sw ere i n v e s t i g a t e d a s p o t e n t i a l e s t i m a t o r s of s u bs u rf a ce c l e a t o r i e n t a t i o n .C lea t o r i en t a t i on s were ma su re d i n 18 mines, i n t he P i t t sbu rgh coa lbed i nsouthw estern Pennsylvania and nor ther n West Virg ini a t o be used a s a s tandardag ain s t which pre dic t io n techniques would be eva lua ted . Two c l e a t systemswi t h a s t ro ng geographic seg rega t ion were measured i n the s tudy area :N 67" W - N 28" E (95" s e pa ra t i on ) fo r t he no r th , and N 76" W - N 17" E(93" s epa ra t i on ) fo r t he sou th .

    D i r e c t i on a l da t a ob t a ined f rom the t h r ee t e chniques i nve s t i ga t ed y i e ldeds a t i s f a c t o r y r e g i o n a l p r e d i c t i o n s of c l e a t o r i e n t a t i o n . A n a ly s is o f s u r f a c ejo i n t s was t he on ly t e chn ique cons ide red su ff i c i e n t l y r e l i ab l e on a l o ca lb a s i s . P r e d i c t i o n of c l e a t o r i e n t a t i o n i s based on th e p a i r i n g of t h e p r i n c i -p a l d i r e c t i o n a l s e t s in to a l l reasonable combinat ions of fundamental sys tems.The system o r systems composed of the most dominant s e t s n ea re st t o 90 " separa-t i o n a r e l i k e l y t o be a r e l i a b l e p r e d i c ti o n of c l e a t o r i e n t a t io n . The mostdominan t s e t o f t he sy st em se l e c t ed i s l i k e l y t o be t he f ace c l e a t .

    INTRODUCTION

    C l ea t i s t he n a t u r a l l y o c c ur ri ng v e r t i c a l f r a c t u r e i n co al . Two c l e a ts e t s a r e c m o n l y o r i e n t e d p e r pe n d ic u la r t o ea ch o t h e r t o form a f un da me nta lsystem (&).2 The more dominant f ra c t ur e i s th e face c l e a t , which cu ts acros sbedding sur fac es i n the c oa l and may extend fo r many f e e t hor iz on ta l ly . Theb u t t c l e a t i s a s h o r t , p o or ly d evelop ed f r a c t u r e t h a t commonly i s tru nc at edby the f ace c l ea t .

    l ~ e o l o g i s t .a ~ n d e r l i n e d umbers i n pa re nt he se s r e f e r t o t h e l i s t o f r e f e r e nc e s a t t h e end

    of t h i s r e p o rt .

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    6/17

    (Butt cleat , , /Face cleatII t has been demon-1-

    II t r a te d by the Bureau ofMines (L) h a t c o a l b e d s1e x h i b i t a d i r e c t i o n a l perme-

    Degasi f ica t~on a b i l i t y d i r e c t l y r e l a t e d t oA- hole ---- -L---- t h e c l e a t s ys te m . D eg as i--J-1 I -r rainoge ellipse f i c a t i o n e x p e ri m e n ts c o n-

    / ' - A,' , _i_. duc ted underground i n co a lI I I I I mines have shown t h a t- - 1 -- o r i z o n t a 1 h ol e s d r i l l e dp e r p e n d i c u l a r t o , a n d t h e r e -FIGURE 1. - Plan v iew of d i rec t iona l pe rmeobi l i t y du e f o r e i n t e r s e c t i n g , t h e

    to c le a t o r i enta tion . l a rg es t number o f f ac ec l e a t s w i l l y i e l d 2.5 t o 10

    t im e s asm uch g a s a s h o l es d r i l l e d p e r p e nd i c ul a r t o t h e b u t t c l e a t . Thiso b s er v a ti o n c a n i n t u r n be r e l a t e d t o t h e plac em en t o f v e r t i c a l d e g a s i f i c a t i o n

    h o l e s d r i l l e d from t h e s u r f a c e i n t o a co a lb e d. A v e r t i c a l h o le i n t o a co al be dw i t h a we 11-deve loped face and bu t t c l e a t ( f o r example , th e P i t t sb urg h coa lbed )w i l l c o l l e c t g as a t a h i g he r r a t e from t h e f a c e c l e a t d i r e c t i o n t h an from t h eb u t t c l e a t d i r e c t i o n . T he re fo re , an e l l i p t i c a l d ra in ag e p a t t e r n ( f i g . 1 ) w i l lbe d ev el op ed w i t h t h e l on g a x i s p a r a l l e l t o t h e f a c e c l e a t .

    To d et er m in e t h e most e f f i c i e n t p a t t e r n f o r v e r t i c a l d e g a s i f i c a t i o n ho l e si n a n a r e a o f v i r g i n c o a l , t h e s u b s ur f a ce c l e a t o r i e n t a t i o n must b e d e te rm in ed ,I n c o n j u n c t i o n w i t h a n e x t e n s i v e i n v e s t i g a t i o n of t h e P i t t s b u rg h c oa l be d i n a39-quadrangle a r ea i n sou thwes te rn Pennsy lvan ia and nor the rn West Vi rg in ia , as t u d y was u n de r ta k en t o e v a l u a t e s e v e r a l te c h n iq u e s f o r e s t i m a t i n g c l e a t o r i -e n t a t i o n . The a r e a of s t u d y was p a r t i c u l a r l y w e l l s u i t e d f o r t h e p r o p o s e d

    i n v e s t i g a t i o n owing t o t h e w e ll -d e ve l op e d c l e a t s ys te m o f t h e P i t t s b u rg h c o a land th e numerous underground mines, which provided ex ce l l en t c on tr o l da t a onc l e a t o r i en t a ti o n .

    DETERMINATION AND ANALYSIS OF CLEAT ORIENTATION

    C l e a t o r i e n t a t i o n s w ere me asu re d i n 1 8 mines o p e r a t i n g i n t h e P t t t s b u rg hc o a l b e d ( f i g . 2 ) . D a ta w ere p l o t t e d o n a s e m i c i r c u l a r r o s e d i a g ra m f o r e v a l u -a t i o n of c l e ' a t o r i e n t a t i o n f o r e a ch m ine. A s i n g l e , w e ll -d e fi n ed c l e a t s y s -tem, such as fo r th e Osage No. 3 mine ( f i g . 3 ) , was ty p i c a l ly observed. Themean fac e and bu t t c l e a t o r i en ta t i on of each mine was p lo t t ed on a compos i ter o s e d i ag ra m ( f i g . 4 ) t o de m on s tr at e t h e r e g i o n a l t r e n d s .

    The composi te ro se d iagram ( f ig . 4 ) in d i ca te s th e p resence of two nea r lyo r t h o g o n a l c l e a t s y st e ms . The two f u nd a m en t al c l e a t s y st e ms c a l c u l a t e d f o rt h e s t u d y a r e a a r e N 67" W - N 28" E ( 9 5 " s e p a r a t i o n ) , a n d N 76" W - N 17" E( 9 3 " s e p a r a t i o n ) . The f i r s t sys tem i s composed of the r ead i ngs f rom minesl o c a t e d i n t h e n o r t h e r n p a r t o f t h e s t u d y a r e a ( Nos. 1 - 7 , f i g . 2 ) p l u s on emine (No. 9 ) more c l os e l y asso c ia ted geog raph ica l l y wi th the sou ther n pa r t .The second system i s composed of re ad in gs from th e mines (Nos. 8 and 10-18)l o c a t e d i n t h e s o u t h e r n p a r t o f t h e a r e a .

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    7/17

    FIGURE 2. - Structure , c le at or ientat ion, and mine locat ions in s tudy area .

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    8/17

    Face cleat

    NI Butt cleatT

    250 readings total0 20u

    cale of reodings

    FIGURE 3. - Cleat or ientat ion, Osage No. 3 mine,Monongalia County, W. Va.

    N4 Butt cleat

    Face

    cleat

    Nickelsen and Hough (4 ) ,i n t h e i r s t ud y of j o i n t i n gin the Appalach ian P la teauof Pennsy lvan ia , repor ted

    s i m i l a r s e g r e g a t i o n s , c o n -c lu d in g t h a t t h e r e e x i s t e da "number of l o c a l l y domi-nan t t rends . " They alsonoted an "overlap of t r e n d sd om in an t i n a d j a c e n t l o c a la r e a s and t h a t i s o l a t e doccurrenc es of any giv enj o i n t s e t may o cc u r f a r f ro mt h e a re a of i t s g r e a t e s tdominance. " The l a t t e r co n-c lus ion was observed fo r th e

    Humphrey No. 7 mine (No. 9 ) ,which was geographical lyw i t h i n t h e s o u t h e r n g r ou p ofm i ne s, b u t t h e c l e a t o r i e n -t a t i o n was s i m i l a r t o t h o seof th e no rth ern mines. TheBl ack sv i l l e No. 1 mine(No. 10) t o the wes t o f th eHumphrey No. 7 mine has ab imodal face c lea t peak(f ig . 5) . The most dominantf a ce c l e a t , N 75" W , i s

    s i m i l a r t o t h a t of t h eso uth ern group of mineswhere the mine i s geograph-i c a l l y l o c a t e d . The s e co n d-a r y f ac e c l e a t , N 63 " W , i ss i m i l a r t o t h a t o bs er ve d i n

    36 readings tota l 0 10 the nor thern group of mines .Uhe Pu rs gl ov e No. 15 mine

    Scale of readings (No. 1 2) , loc ate d adj ace ntt o mines 9 and 10, has a

    FIGURE 4. - Composite rose diagram of clea t or ientat ion. sugg es t io n of a b imodal fa cea n d b u t t c l e a t s i m i l a r t o

    t h a t o f t h e B l a c k s v i l l e No. 1 mine. However, th e se pa ra t i on of th e peaks i sn o t c o n si d e re d s u f f i c i e n t t o c a l c u l a t e two s e p a r a t e fu n da m en t al s y st em s .

    Th e s e p a r a t i o n of t h e c l e a t r e a d i n gs i n t o two d i s t i n c t s ys tem s i n d i c a t e sapproximate ly a 10" ro ta t i o n of t he c l e a t sys tem, c lockwise northward th rought h e a r e a. The r o t a t i o n o f t h e c l e a t sy s te m i s s i m i l a r t o t h e c h a n g e i n t r e n do bs er ve d f o r t h e f o l d a x i s of t h e a r e a ( f i g . 2 ) . The b u t t c l e a t s a r e e s s e n -t i a l l y p a r a l l e l t o t h e a x i a l t r en ds of f o l d s , and t h e f a c e c l e a t s a r e pe rp en -d i c u l a r t o t h e m . I t has been proposed by Nickelsen and Hough (5) n d r e i t -erated by McCulloch and others (2) h a t t h e f a c e c l e a t s w ere f orm ed a s

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    9/17

    N B u t t cleat

    Facecleat

    I

    250 readings total 0 20-

    cale of read ings

    FIGURE 5. - Cleat orientation, Blacksvil le No. 1 mine,Greene County, Pa., and Monongal iaCounty, W e Va .

    e x t e n s i o n f r a c t u r e s o r i e n t e dp a r a l l e l t o t he g r e a t e s tp r i n c i p a l c o m p r e s s i o n s t r e s s

    a x i s t h a t p ro du ce d t h ea r e a ' s f o l d s . The o r i g i n ofb u t t c l e a t s i s o b s c u r e , b u tt he y a r e p o s s i b ly r e l e a s ef rac tures fo rmed perpendic -u l a r t o t he g r e a t e s t p r in c i -p a l c o m p r e s s i o n a l s tr e s s a x i sd u r i n g e r o s i o n a n d u p l i f t .I f t h i s i s t r u e , t h e n r o ck so t h e r t ha n c o a l p o t e n t i a l l yhave s i m i l a r j o i n t o r i e n t a -t i o n a n d dominance, hence

    t h e s t u d y of s u r f a c e j o i n t sand p h o t o l i n e a r s t o d e t e r -m in e i f t h e y c a n b e u se d t op r e d i c t c l e a t o r i e n t a t i o n i nv i r g i n c o a l a r e a s .

    TECHNIQUES FOR PREDICTION OF CLEAT ORIENTATION

    T hre e t ec h n iq u e s w ere i m r e s t i g a t e d f o r p o s s i b l e u s e i n c l e a t p r e d i c t i o n .Sur face jo in t s were measured f o r each of the 39 q u a d ra n g le s o f t h e s t u d y a r e a .A minimum of 10 sample lo ca t ion s pe r quadrangle ; wi th a t l e a s t 10 read ings p erl o c a t i o n , w e r e o b t a i n e d . J o i n t s o f vary ing prominence were measured i n a l l

    l i t h o l o g i e s i n v a r y i n g bed t h i c k n e s s e s t o o b t a i n a b ro ad e s t i m a t e of j o i n ts e t s p r e s e n t i n e a c h q u a d ra n g le . I n f r a r e d a e r i a l p h ot o gr a ph s w ere exam ineds t e r e o s c o p i c a l l y f o r l i n e a r s . Owing t o t h e m as ki ng e f f e c t of t h e u r ba n andm in in g c u l t u r e o n t h e a r e a , p h o t o l i n e a r i n t e r p r e t a t i o n was ba se d p re d om i na n tl yon s t r a i g h t w a te r c o u r s e s , s t r ea m v a l l e y s , and a b r u p t r i g h t - a n g l e b e nd s ofs t r e a m s . T h i r t e e n ph o t o in d e x s h e e t s c o v e r i n g t h e s t u d y a r e a w er e i n s p e c t e df o r p h o t o l i n e a r s u s i n g a R on ch i d e f r a c t i o n g r a t i n g . T h is t e ch n iq u e (5 ) com-b i n e s many i n d i s t i n g u i s h a b l e s m a l l p a r a l l e l l i n e a r f e a t u r e s i n t o a more r e ad -i l y o b s er v a b le d i r e c t i o n a l t r e n d . B ec au se t h e s c a l e o f t h e ph ot oi nd ex s h e e t si s 1 i n c h e q u a l s 1 m i l e, o n ly v e r y g en e r al t r e n d s c a n be d i f f e r e n t i a t e d ;i n d i v i d u a l l i n e a r s , w hich c o u ld be s e e n w i t h t h e i n f r a r e d p ho to gr ap hs a t as c a l e o f 1 i n c h e q u a l s 2 , 0 0 0 f e e t , c o u l d n o t b e i d e n t i f i e d .

    ANALYSIS OF REGIONAL DIRECTIONAL DATA

    F or t h e t h r e e t e ch n iq u es i n v e s t i g a t e d , t h e d i r e c t i o n a l d a t a were o r i g i -n a l ly compiled and p lo t te d on ro se d iagrams fo r in d i v i du a l 7 -1/2-minute quad-r a n g l e o r photoinde x sh ee t ar ea s . Peaks were defin ed by comparing th e numberof r ead ing s compris ing each high poin t on a ro se diagram with th e number ofr e a di n g s i n t h e a d j ac e n t 5" i n t e r v a l s . A de c l in e of o ne- t h i rd the number ofread ings compr i s ing a h igh po in t was used t o def in e th e l i m i t s o f a n i n d i v i d -u a l pea k, w i th t h e f i r s t 5' i n t e r v a l c o n t a i n in g l e s s t h a n t w o - th i r ds o f t h eh i g h p o i n t n o t be i n g i n c l u d e d w i t h i n t h e p ea k. However, i f t h e f i r s t 5 Oi n t e r v a l t o d e c l i n e o n e - t h i r d t h e number of r e a d i n g s , and t h e n e x t a d j a c e n t

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    10/17

    N5" i n t e r v a l d e c l in e s a na d d i t i o n a l o n e - t hi r d , t h e nt h e f i r s t 5' i n t e r v a l t od e c l i n e one - t h i r d i s

    i n cl ud ed a s p a r t o f t h epeak. To be inc luded i n th ea n a l y s i s of d i r e c t i o n a l

    I t r e n d s , t h e p ea ks a s d e f i n ed76 Average number of readings must (1 ) ex tend ab w e the

    per 5 O nterval (5.8) l i n e o f th e average numberof read ings , and (2 ) b e

    0 10 composed o f a t l e a s t 4207 readings totol

    -cale of read~ngs p e r c e n t o f t h e t o t a l number

    o f r e a d i n g s .

    FIGURE 6. - Composite rose diagram of principal sur- The values of theface joint trends. t r e n d s from a l l i n d i v i d u a l

    a r e a s w er e p l o t t e d o n aN s i n g l e r e g i o n a l c o m p o s i t e

    r o s e d i a g r a m f o r e a c ht e c h n i q u e ( f i g s . 6-8).Trends on the compos i te rosed ia g ra m s o f t h e s u r f a c ej o i n t and i n f r a r e d p h ot o

    veroge number of readings d a t a we re a s s i g n ed o r d e r s o fper 5 interval (6.5) dominance ( table 1) based on

    t h e t o t a l number of r e a d i n g scompris ing each peak. A

    d i f f e r e n c e o f 10 p e r c e n t i nth e number of re ad in gs i s

    0 10 c on s id e re d s u f f i c i e n t t o233 readings total

    Is s i g n d i f f e r e n t o r d e r s of

    Scale of readings dominance.

    FIGURE 7, - Compos i te rose diagram of ~r in c ip a l n f ra red Tre nd s e s t a b l i s h e d b yphotograph photolinears. t h e R on ch i i n s p e c t i o n o f

    p h o to i n de x s h e e t s c o u l d n o tbe ass igned meaningfu l o r de rs o f dominance based on th e compos i te ro se d i a -gram. This i s th e re s u l t o f a sma l l number o f read ing s and th e h igh degreeo f s i m i l a r i t y betw een t r e n d s o b t a i n ed f ro m a l l ph o to i nd ex s h e e t s , w hich p r e -

    clu de s th e enhancement of one t r en d over anothe r. However, i t w a s p o s s i b l e t oassign orders of dominance t o t h e ' d a t a b a se d o n a v i s u a l i m p re s si o n of image"s t ren g th" as each index s he e t was viewed th rough th e Ronchi g ra t in g .

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    11/17

    NThe p r i n c i p a l r e g i o n a l

    s e t s of t a b l e 1 a r e p a i r e di n t o combina tions of funda-m e n ta l s ys te ms i n t a b l e 2 .

    Two su r f ac e jo in t sy s -tems (Nos. 2 and 4 ) a r e com-p os ed o n l y o f j o i n t s e t s oft h e f i r s t o r d e r o f dominance.Both syste ms a r e composed oft h e N 15" E ' s e t . S ys te m 4 ,w i t h a 9 1" s e p a r a t i o n , morec l o s e l y ap p ro a ch e s t h e i d e a l

    0 10 fundamental system's 90"104 readings total

    -e p a r a t i o n t h a n d oe s s y s -

    Scale of readings tern 2, which has a 72"s e p a r a t i o n . S ys te m 4

    FIGURE 8. - Composi te rose diagram of pr incipal photo- (*N 76" W' - N 15 " E ' ) i sq u i t e s i m i l ar i n o r i e n t a t i o n

    index ineors.t o t he *N 76" W ' - N 17" E 'c l e a t s y st em e s t a b l i s h e d

    underground. The N 76" W' s e t of system 4 i s th e most dominant se t of sy s-tem 4, and i t p a r a l l e l s t h e fa ce c l e a t . The N 76" W' s e t c o ul d a l s o be p a i r e dw i t h t h e N 27" E" s e t ( s y st e m 5 ) , b u t t h e s e p a r a t i o n of 103" i s g r e a t e r a n dt h e N 27" E " s e t i s l e s s d o m i n a n t t h a n t h e N 15" E ' s e t .

    TABLE 1. - P r i n c i p a l d i r e c t i o n a l s e t s i n o rd e r of dominance

    NOTE.--Sets o f equ a l dominance a r e l i s t e d i n th e same column of a da ta sou rce .

    Data source

    S u r f a c e j o i n t s ...................P h o t o l i n e a r s (TR photographs) ....P h o t o l i n e a r s ( p h ot o in d e x s h e e t s ) .

    ...................u r f a c e j o i n t sP h o t o l i n e a r s ( IR p h o t o g ra p h s ) . ...P h o t o l i n e a r s ( p h ot o in d e x s h e e t s ) .

    WestI

    N 57" WN 76" WN 65" W-N 70" W

    I1--

    N 25" W-N 44 " W

    E a s tI

    N 15" EN 20" E

    N 27" E

    v--

    N 13" W-- -

    I11

    N 34" W,-N 79" WN 40" WN 23" W

    I V----

    N 09" W

    I1

    N 27" EN 01" E

    N 77" E

    I11

    N 37" EN 75" E

    N 12" E

    I V

    N 47 " E-N 55 " E

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    12/17

    TABLE 2.-

    F un da me nt al r e g i o n a l s y st e ms fro m d i r e c t i o n a l d a t a

    NOTE. - - S u p e r s c r i p t s i n d i c a t e t h e o r d e r of d om in an ce w i t h i n t h e d i r e c t i o n a lg ro up ( e a s t o r w e s t ) f o r e ac h d a ta s o u r c e , and a n a s t e r i s k i n d i c a t e st h e d o mi n an t t r e n d o f e a c h s y s t e m .

    D a t a s o u r c e

    C l e a t :1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    S u r f a c e j o i n t s :1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 .....................................

    P h o t o l i n e a r s (IR p h o t o g r a p h s ) :1 .................................. .2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 .....................................

    ............... . . . . . . . . . . . . . . . . . . . ...6 ............................. .. . . . .

    P h o t o l i n e a r s ( p ho t oi n de x s h e e t s ) :1 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...2 . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . ..3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . .

    The N 57 " W ' s e t , i f n ot p a i re d wi th N 15O E ' , c a n b e p a i r e d w i t hN 2 7 " E" ( s y s te m 1 ) f o r a n 84O s e p a r a t i o n o r w i t h N 37" El ' ( s ys te m 3 ) f o ra 94" s e p a r a t i o n . System 1 (*N 57" W'

    -N 2 7 " E l ' ) i s r e as o na b ly s i m i l a r t o

    t h e *N 67 " W'-

    N 28 " E ' c l e a t s y s t em e s t a b l i s h e d u n de r gr o un d . S ys te m 3(*N 57" W' - N 37" E ' ' ) , th ou gh n o t s u b s t a n t i a l l y d i s s i m i l a r from t h e

    *N 67" W' - N 28 " E' ' c l e a t s y s te m, i s , however, composed of one se t of t het h i r d o r d e r o f d o m in an ce . The *N 57" W' s e t o f s y st em s 1 and 3 i s t h e mostdominant s e t of the sys tems and i s r ea so na bl y s i m i l a r t o t h e f a c e c l e a to r i e n t a t i o n .

    The f i r s t i n f r a r e d p h o t o l i n e a r s y st e m (*N 65" W' - N 20 " E ' ) i s composedo f t h e m os t do m in an t w e s t e r l y s e t an d t h e m os t d om in an t e a s t e r l y s e t . T h i ss ys te m b e s t e s t i m a t e s t h e e s t a b l i s h e d *N 67" W '

    -N 28 " E ' c o a l c l e a t s y s t e m .

    The *N 65 " W1 s e t i s t h e mo st do mi na nt o f t h e s y s t e m , a nd i t n e a r l y p a r a l l e l st h e fa c e c l e a t . The N 20 " E ' s e t , i f n o t p a i r e d w i t h N 65" W' , cou ld bep a i r e d w i t h N 79 " W' " ( s y s t e m 2 ) , w h i c h i s s i m i la r t o t he +N 76 " W' - N 17" E '

    Degrees ofs e p a r a t i o n

    9593

    8472949 1

    1038 1

    85998 060

    1008 8

    9782

    1009986

    West

    *N 67" w1*N 76 " W I

    *N 57" w1*N 57" W~*N 57" W1*N 76 " w t*N 76 " w r*N 34" w l i r

    *N 65" W 'N 7 9 " ~ " ~N 7 9 " ~ ' ~ ~N 4 0 ~ ' f t

    * N 2 5 " w nN 1 3 " W V

    *N 70 " W f*N 70" W'

    N 2 3 " W 1 "* N 4 4 " w 1 '

    N 0 9 " ~ ' "

    SystemE a s t

    N 28' E 'N 17' E '

    N 27 " E"N 15' E 'N 37" E N 'N 15" E 'N 27 " E"N 47" E r V

    N 20 " E '* N 2 0 E t* N O l O E r l

    * N 2 0 E fN 7 5 " ~ * ~ '

    * N 7 5 " E 1 "

    N 27 " E 'N 12" E I I 1

    * N 7 7 " E "N 5 5 " E I v

    * N 7 7 " E r 1

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    13/17

    c l e a t sy s te m . However, p h o t o l i n e a r s y s te m 2 c o n t a i n s one s e t o f t h e t h i r do r d e r a n d h a s a l a rg e r d i v e rg e n c e f ro m 90' t h a n d o es s y s te m 1. The N 79" W"

    '

    s e t c a n a l s o be p a i r e d w i th N 01" E ''

    ( s y s t e m 3 ) f o r a n 80' s e p a r a t i o n . T h i ssys tem , wh il e havi ng one s e t (*N 01' E" ) t h a t d i v e rg e s 1 6" fro m t h e b u t tc l e a t o f t h e *N 76' W' - N 17 " El c l e a t s y s t e m , h a s one s e t (N 79" W' ' ' ) t h a to n ly d i v e rg e s 3 " f ro m t h e f a c e c l e a t . However, sy st em 3 i s composed of ones e t 0 2 t h e t h i r d o r d e r , an d more s i g n i f i c a n t l y t h e mos t do min an t s e t o ft h e s y s t e m *N 01 " E '

    'i s i n th e b u t t c l e a t d i re c t i on . The f o u r t h , f i f t h , and

    s i x t h pho to l ine ar sys tems a r e each composed of one component of t h i r d o r lowero r d e r o f d om in anc e and ha ve n o s i m i l a r i t y t o t h e e s t a b l i s h e d c l e a t s y st e ms .

    The f i r s t photoindex system (*N 70" W'-

    N 27 " E ' ) i s composed of the twomos t dominan t se t s . T h i s s y s t e m i s s i m i l a r t o t h e *N 67" W'

    -N 28" E ' c l e a t

    system. The *N 70" W' s e t i s t h e m os t do mi na nt o f t h e s y s t e m , a n d p a r a l l e l st h e f a c e c l e a t . The *N 70 " W' s e t c o u ld a d d i t i o n a l l y be p a i r ed w i th N 1 2 " ~ " 's e t t o a p pr ox im at e t h e *N 76' W '

    -N 17" E ' c l e a t s y s t e m . This second sys tem,

    however, co n ta in s one component o f th e t h i r d o rd er . The remaining th r ee photo-ind ex systems a r e composed of s e t s of second and lower ord er s of dominance anda r e n o t s i m i l a r t o t h e e s t a b l i sh e d c l e a t s ys te ms .

    ANALYSIS OF LOCAL DIRECTIONAL DATA

    The r e l a t i o n s h i p b et we en c o a l c l e a t s me as ur ed i n i n d i v i d u a l m in es a n dt h e d i r e c t i o n a l t r e n d s e s t a b l i s h e d by m ea su ri ng j o i n t s and p h o t o l i n e a r sd i r e c t l y o v e r l y in g t h e m ine s i s g iv en i n t a b l e 3 . S u r f a c e j o i n t s p r ov id ed t h eb e s t e s t i m a t o r o f c l e a t , a v e ra g in g w i t h i n 27 .4 " of t h e f a c e c l e a t a nd 5 6 - 6 "of t h e b u t t c l e a t . It was p o s s i b le t o c o r r e c t l y p r e d i c t t h e f a c e c l e a td i r e c t i o n f o r 14 of t h e 1 8 m in es u s i n g t h e s u r f a c e j o i n t d a t a . The p h ot o-l i n e a r d a t a w er e c o n s i de r a b l y l e s s r e l i a b l e , w i t h av e r ag e s o f '23.7" f o r t h ef a c e c l e a t a nd '19.4" f o r t h e b u t t c l e a t . The f a c e c l e a t d i r e c t i o n was co r -r e c t l y p r e d i c t e d i n on ly 7 o f t h e 18 m in es .

    The h ig h d e g r e e of d i v e rge n c e o b se rv e d f o r t h e p h o t o l i n e a r a n a l y s i s i sp r i m a ri l y t h e r e s u l t of a d ominant w e s t e r ly p h o t o l i ne a r s e t i n t h e v i c i n i t yof N 15"

    -30" W . Th is i s s i m i l a r t o t h e *N 25 " W" s e t o b s er v e d on t h e

    p h o t o l i n e a r c o m po s it e r o s e d i ag r am ( f i g . 7 ) , an d t h e N 34" W'' '

    s e t on t h es u r f a c e j o i n t c om po si te r o s e di ag r am ( f i g . 6 ) . Lat tman and Nickelsen (2)i n a n i n v e s t i g a t i o n of t h e c o r r e l a t i o n be twe en s u r f a c e j o i n t s and p h o t o l i n e a r si n a s m a l l ( 6 -s q u ar e - mi le ) a r e a of c e n t r a l P e n n s yl v a n ia , d et er m in e d t h a t e v e ntho ug h t h e f a c e c l e a t g e n e r a l l y c o r r e l a t e d w i t h t h e d om in an t s u r f a c e j o i n t andp h o to l in e a r s e t s , c o a l c l e a t o r i e n t a t i o n s were n o t n e c e s s a r i l y r e f l e c t e d i ns u r f a c e j o i n t s i n s h a l e and s a n d s to n e s. I t was a l s o f ou nd t h a t t h e j o i n t s i ns h a l e s a nd s a n d st o n e s pr od uc ed t h e s t r o n g e s t p h o t o l i n e a r s . I t seems possiblet h a t i n l i g h t of t h e s e o b s e r v at i o n s, a s u rf a c e j o i n t t r e n d t h a t i s n o t p a r-a l l e l t o a c l e a t o r i e n t a t i o n may be i n t e n s i f i e d a s a p h o to l in e a r i n l o c a la r e a s .

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    14/17

    TA

    3

    -

    C

    ce

    dmn

    sua

    on

    a

    p

    on

    oe

    ao

    o

    h

    su

    ae

    N

    I

    Mn

    F ce

    1

    2 3 4 5 6 7 8 9

    1 11

    1 1 1 1 1 1 1 -

    l

    B

    1wc

    ce

    Moo

    4

    .

    .

    .

    .

    .

    .

    .

    .

    Mahe

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    We

    a

    .

    .

    .

    .

    .

    .

    Sm

    N

    6

    .

    V

    aN

    5

    .

    .

    .

    .

    .

    .

    .

    Maa

    N

    5

    Gew

    .

    S

    n..

    .

    .

    .

    .

    .

    .

    .

    .

    Hm

    eN

    7

    Ba

    veN

    1

    .

    Ba

    veN

    2

    P

    go

    N

    1

    .

    O

    N

    3

    .

    .

    Akwg

    ..

    F

    aN

    2. .

    C

    oN

    9

    .

    L

    d

    .

    .

    .

    .

    .

    .

    .

    .

    .

    C

    oN

    2....

    A

    a

    dv

    g

    Inu

    ce

    d

    a

    jons

    E*N

    3

    E

    N 2

    E

    N 2

    E

    N 2

    E

    N

    1

    E

    N 1

    E

    N

    1

    E

    N 2

    E

    N 2

    E

    N 2

    E

    *N

    1

    E

    N

    1

    E

    N

    1

    E

    N

    1

    E

    N 2

    E

    *N

    1

    E

    N 1

    E

    a In

    emne

    D

    e

    o

    dvg

    We

    1 5 3 3 1 4 1 7 1 9 1 6 7 3 9 7 5 1 74

    We

    ,

    N

    -A

    ae

    skn

    ce

    h

    dmn

    s

    o

    e

    syem

    In

    aeska

    b

    hs

    sae

    o

    e

    dmn

    E 1 0 2 3 1 1 1 5 77 4 2 0 7

    11

    1

    2 9 66

    D

    e

    o

    E

    We -

    1

    -

    5 1 2 5 4 47

    11

    4 2 2 11

    2 2 2 27

    dvg

    E-

    1-

    5 3 6 4 5 2 4 0 3 1 18 3 7 2 1

    4

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    15/17

    A n a ly s is of d i r e c t i o n a l d a t a f o r a l i m i t e d a r e a i s hampered by problemsn o t n o n n al l y e n c o u nt e re d i n a r e g i o n a l a p p ro ac h. Sur face jo in t measurenren t sa r e l i m i t e d by t h e number an d l o c a t i o n o f o u t cr o p s i n t h e a r e a s o f i n t e r e s t .A s o u t c r o p s becoxre l e s s n um erous a nd f a r t h e r away f ro m t h e a r e a , t h e v a l i d i t y

    o f t h e a n a l y s i s d e c r e a s e s . Under t h e s e c o n d i t i o n s , p h o t o i n t e r p r e t a t i o n w ouldp e rh a ps b e b e n e f i c i a l b ec a us e i t d oe s n o t r e l y o n o u tc r op s f a r d a t a . However,p h o t o a n a l y s i s , w hi ch d ep en ds o n t h e a v a i l a b i l i t y o f q u a l i t y p h ot og ra ph s anda n e x pe r ie n ce d p h o t o i n t e r p r e t e r , as s i g n i f c. an t l y l e s s r e l i a b l e t h a n f i e l dm ea su re me nt s o f j o i n t s i n t h e a r e a i n v e s t i g a t e d . B ot h m et ho ds a r e l i m i t e d byt h e small number o f d i r e c t i o n a l m ea su re me nt s u s u a l l y o b t a i n a b l e f o r a smalla r e a . Wit h s m a l l s a m pl e s, i n d i v i d u a l t r e n d s s t a n d o u t l e s s c l e a r l y , w hi chmakes a n a l y s i s d i f f i c u l t .

    CRITERIA FOR CLEAT EXEDICTION

    The p a i r i n g o f t h e e s t a b l i s h e d s e t s i n t o a l l re a so n ab l e c am b in at io ns of

    fundamenta l sys tems i s o f p r i ma ry i m p o rt a nc e i n a n a l y s i s o f e a c h ty p e o f d i r e c -t i o n a l d a ta . Which s y s te m o r s y s te m s a r e t o be u s ed t o p r e d i c t t h e c l e a to r i e n t a t i o n s i s b as ed on t h e r e l a t i v e d m i n a n c e o f t h e s e t s o f ea c h s ys te m asde te rmined by t he number o f r ead i ngs compr i s ing th e cor resp ond ing peaks onr o s e d i a g r a m s . A sy s e ln composed of th e most dominant s e t and a pe rpe nd ic ul ars e t o f t h e f i r s t o r s e co nd o r d e r of d om inance w i l l most l i k e l y g i v e t h e b e s te s t i m at i o n o f c l e a t o r i e n t a t i o n . The m o st d om i na nt s e t o f t h e s e l e c t e d s y s t emi s most l i k e l y t h e f a c e c l e a t d i - r ec t io n .

    C l e a t s ys te ms o f s i m i l a r , b u t d i f f e r e n t , o r i e n t a t i o n may be p r e s e n t .H e r e , two r e g i o n a l f u n da m e nt a l j o i n t s y st e m s w e re i n f a c t composed o f s e t s oft h e r e q u i r e d o r d e r s o f d orninance a nd c o r r e l a t e d w i t h t h e o b s er v ed c l e a t

    s y st e ms . I n t h e a n a l y s i s o f l i n e a r s from i n f r a r e d ph ot og ra ph s and l i n e a r s onp h ot o in d ex s h e e t s , o ne s y st e m s a t i s f i e d t h e d m i n a n c y r e q u ir e m e n ts a n d wasc o r r e l a t i v e w i t h o ne c l e a t s y st e m , and o t h e r s y s ems we re r e a s o na b l y c o r r e l a -t i v e w i t h t h e r e m a in i ng c l e a t s ys te m. B ut t h e s e l a t t e r s ys te m s w ould b ere je c t ed because one component l acks th e nec essa ry r e l a t i v e dominance. Ther e j e c t i o n o f a n e s t i m a t o r f o r t h e second c l e a t s ys te m i s n o t d e t r i m e n t a l s i n c et h e two c l e a t s y s te m s a r e s e p a r a t e d by o n l y 1 0 " . T h e d i r e c t i o n a ls ys te ms n o t c o r r e l a t i v e w i th e s t a b l i s h e d c l e a t s ys te ms were r e j e c t e d i n a l lcas es because they d id no t meet t h e dominance requ i remen ts .

    CONCLUSION

    The r e g i o n a l o r i e n t a t i o n of s u b s u rf a c e c l e a t s y st em s i n s o ut h w es t er nPennsy lvan ia and nor t he rn West Vi r g i n i a i s r e f l e c t e d i n t h e f r a c t u r e t r e n d s ofo t h e r r o ck t y p e s . An a n a l y s i s of t h e d i r e c t i o n a l t r e n d s of s u r f a c e j o i n t s ,l i n e a r s d e t er m i n e d fr om e x a m i n at i o n o f i n f r a r e d p h ot o g r a ph y, and P i n e a r so b se r ve d on p h o t oi n d e x s h e e t s u s i n g a R o nc hi g r a t i n g s h o u l d p r o v i d e a r e l i a b l ee s t i m at e of c l e a t o r i e n t a t i o n i n a r e a s o f v i r g i n c o a l where s i m i l a r g e o l og i cc o n d i t i o n s e x i s t . The pr oc ed ur e de pe nd s upon a s s i g n i n g a r ~ l a t i v e om inancet o t h e p r in cT pa l d i r e c t i o n a l s e t s o b t a i n e d by the th re e methods and pa i r in gthem i n t o f un da m en ta l s y st e m s. The a n a l y s i s of s u r f a c e j o i n t s i s t h e o n l yt ec hn iq ue c o ns id er ed s u f f i c i e n t l y r e l i a b l e t o b e u se d on a l o c a l b a s i s , b u te v e n t h i s may f a i l i f t h e r e i s a s t r o ng d iv er ge nc e between c l e a t s i n c o a l and

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    16/17

    j o i n t s i n th e o ve rb ur de n. R e l i a b l e c l e a t p r e d i c t i o n f o r a s m a l l a r e a de pen dson t h e measurem ent of e nou gh l i n e a r f e a t u r e s t o pe r m i t d i f f e r e n t i a t i o n o fi n d i v i d u a l t r e n d s .

    Even t ho ug h i n s p e c t i o n o f p h o t o in d e x s h e e t s w i t h a R o nc hi g r a t i n g d i da l l o w p r e d i c t i o n of o ne of t h e r e g i o n a l c l e a t s y s te m s , l e s s co n f id e n ce i sp la c ed o n t h i s t e ch n i qu e t h a n i n t h e a n a l y s i s o f s u r f a c e j o i n t d a t a an di n f r a r e d p h o t o l i n e a r s . T h i s i s because t he dominance of Ronchi g r a t in g t r e nd si s ba se d o n a v i s u a l i m p r e s s i o n o f i mage " s t r e n g t h " a s opposed t o a morea n a l y t i c a l a pp ro ac h f o r t h e o t h e r t e ch n i qu e s .

  • 8/8/2019 Use of Surface Joint and Photo Linear Data for Predicting Coal Cleat Orientation Data

    17/17

    REFERENCES

    1. K i s s e l l , F. N. The Methane Mig rat io n and Storage Ch ar ac te r i s t ic s of theP it ts bu rg h , Pocahontas No. 3 , and Oklahoma Hartshorne Coalbed.

    BuMinesR I

    7667, 1972, 22 pp.

    2. Lattman , L. H. , and R . P. Nickelsen. Photogeo logic Frac ture- Trac e Mappingi n A pp a la c hi a n P l a t e a u . AAPG B u l l . , v. 4 2 , 195 8, pp. 2238-2245.

    3. McCulloch, C . M. , M. Deul , and P. W . Jer an. Cl ea t i n Bituminous Coalbeds.BuMines R I 7910, 1974, 25 pp.

    4 . N i c k e l s e n , R . , an d V . D . Hough. Jo in t i ng i n the Appalach ian P la te au ofPennsylva nia. Geol. Soc. Am. B u l l . , v. 7 8, 1967, pp. 609-630.

    5. Pohn, H. A . An aly sis of Images and Photographs by a Ronchi Gr ati ng .

    Remote Sensor App l ica t ion S tud ies Progress Repor t , Ju ly 1 , 1968 , t oJune 30, 1969, 9 pp. f a v a i l a b l e fr om N a t i o n a l Te c h n i c a l I n f o r m a t i o nS e r v i c e , S p r i n g f i e l d , Va . PB 197 108.