uranium content of thirty-three rock reference samples determined by the delayed fission neutron...

3
21 7 Uranium Content of Thirty -Three Rock REferEnce Samples DEtErmined by thE Delayed Fission Neutron Counting Method G.R. REDDY, D.R. PANT AND M. SANKAR DAS Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India The delayed fission neutron counting method has been used for the analysis of thirty-three international geochemical reference samples for their uranium contents in the range of 0.2 to 1500 ppm. These include three from the Canada Centre for Mineral and Energy Technology, three from Atomic Energy Commission, USL, New Bmnswick Laboratory, two from Bhabha Atomic Research Centre. India, fourteen from Centre de Recherches Pe’trographiques e t Ggochimiques and eleven from US Geological Survey. The experimental set up has a detection limit of 0.08 rg and a determination limit of 0.25 pg U. At the lower limit the precision of determination i s about 20 percent while at concentrations higher than 1 ppm it is better than 10 percent. The development and application of the well known delayed fission neutron counting (DFNC) method for the analysis of uranium in various ma- terials of geological interest has been reported earlier from this laboratory (1). The theory and practice of the DFNC method is adequately dealt in the literature and they have been referred to in the earlier study, hence will not be consi- dered here. This note presents the results on the determination of uranium in thirty-three diffe- rent standard rocks. Subsequent to the earlier study, the pneu- matic irz-adiation facility of t h e CIRUS r e a c t o r has been shifted from a high flux (-6 x lo” n cm-2S-’) to a medium flux (- 1 x lO”n cm-’S-‘) position. Hence it was f e l t desirable t o re-evaluate the analytical para- meters such as sensitivity, precision and accu- racy attainable with the facility. These data are also presented in this note. RESULTS AND DISCUSSION Experimental procedures such as preparation of the samples and standards, irradiation and delay periods are essentially the same as reported earlier. The counting equipment i n the present work consisted of more stable solid state units (Electronics Corporation of India Ltd., make) which replaced the valve units used in the earlier work. The present experimental parameters under normal working conditions of the system are given in Table 1. The detection limit of uranium with the facility computed as the absolute amount of uranium corresponding to the magnitude of four times the standard deviation of a single measu- rement of the system background is 0.08 rg. The ‘determination limit‘ corresponding to a count rate equal to the background on the use of a 0.5 g sample is 0.15 ppm. Concentrations of uranium down to about 0.2 ppm can be determined, though with a poorer precision (RSD 22%) is demonstrated by the data on MRG-1 given in Table 2. At high levels of uranium concentrations (> 0.05%) the sample weights are suitably chosen as to avoid counting losses. The data on thorium show that its influence in the measurement of uranium, when p r e s e n t at equal concentrations is about 0.02%. This represents an improvement by a factor of 4 over our earlier value (1) of 0.08%. Thus the method permits the analysis of uranium in samples high in thorium content. An example of this is the analysis of sample No.AEC-NBL-79 (Table 2) which was prepared out of monazite and has a Th/U ratio of 25. The sample TKT-1 is an in-house trachyte standard prepared for routinely checking the accuracy of our measurements. The analytical precision of the 54 results on this sample (Table 2) obtained over a period of more than 2 years represent the precision of our uranium analysis by delayed fission neutron counting, which is generally better than 10% at lower levels and better than 5% at higher levels of uranium concentration.

Upload: gr-reddy

Post on 21-Jul-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

21 7

Uranium Content of Thirty -Three Rock REferEnce Samples DEtErmined by thE Delayed Fission Neutron Counting Method

G.R. REDDY, D.R. PANT AND M. SANKAR DAS

A n a l y t i c a l Chemistry D i v i s i o n , Bhabha Atomic Resea rch C e n t r e , Trombay, Bombay 400 085, I n d i a

The delayed f i s s i o n neutron counting method has been used f o r the analysis of thir ty- three international geochemical reference samples f o r t h e i r uranium contents i n the range of 0.2 t o 1500 ppm. These include three from the Canada Centre f o r Mineral and Energy Technology, three from Atomic Energy Commission, USL, New Bmnswick Laboratory, two from Bhabha Atomic Research Centre. India, fourteen from Centre de Recherches Pe’trographiques e t Ggochimiques and eleven from US Geological Survey. The experimental set up has a detection limit of 0.08 r g and a determination l imit of 0 . 2 5 pg U. A t the lower l i m i t the precision of determination i s about 20 percent while a t concentrations higher than 1 p p m it i s bet ter than 1 0 percent.

The development and a p p l i c a t i o n of t h e well known de layed f i s s i o n n e u t r o n c o u n t i n g (DFNC) method f o r t h e a n a l y s i s of uranium i n v a r i o u s ma- te r ia l s of g e o l o g i c a l i n t e r e s t h a s been r e p o r t e d ear l ie r from t h i s l a b o r a t o r y (1). The t h e o r y and p r a c t i c e o f t h e DFNC method is a d e q u a t e l y d e a l t i n t h e l i t e r a t u r e and t h e y have been r e f e r r e d t o i n t h e ear l ie r s t u d y , hence w i l l n o t be c o n s i - de red h e r e . T h i s n o t e p r e s e n t s t h e r e s u l t s on t h e d e t e r m i n a t i o n o f uranium i n t h i r t y - t h r e e d i f f e - r e n t s t a n d a r d r o c k s .

Subsequent t o t h e ear l ie r s t u d y , t h e pneu- matic i r z -ad ia t ion f a c i l i t y of t h e CIRUS r e a c t o r h a s been s h i f t e d from a h igh f l u x ( - 6 x l o ” n cm-2S-’) t o a medium f l u x ( - 1 x l O ” n cm-’S-‘) p o s i t i o n . Hence i t was f e l t d e s i r a b l e t o r e - e v a l u a t e t h e a n a l y t i c a l para- meters such as s e n s i t i v i t y , p r e c i s i o n and accu- r a c y a t t a i n a b l e wi th t h e f a c i l i t y . These d a t a a r e a l so p r e s e n t e d i n t h i s n o t e .

RESULTS AND DISCUSSION

Exper imen ta l p r o c e d u r e s such as p r e p a r a t i o n of t h e samples and s t a n d a r d s , i r r a d i a t i o n and d e l a y p e r i o d s are e s s e n t i a l l y t h e same as r e p o r t e d earlier. The c o u n t i n g equipment i n t h e p r e s e n t work c o n s i s t e d of more s t a b l e s o l i d s ta te u n i t s ( E l e c t r o n i c s C o r p o r a t i o n of I n d i a L t d . , make) which r e p l a c e d t h e v a l v e u n i t s used i n t h e ear l ie r work. The p r e s e n t e x p e r i m e n t a l pa rame te r s unde r normal working c o n d i t i o n s of t h e system are g i v e n i n T a b l e 1. The d e t e c t i o n l i m i t of uranium w i t h t h e f a c i l i t y computed as t h e a b s o l u t e amount of uranium c o r r e s p o n d i n g t o t h e magnitude of f o u r times t h e s t a n d a r d d e v i a t i o n of a s i n g l e measu- rement of t h e sys t em background is 0.08 rg. The ‘ d e t e r m i n a t i o n l i m i t ‘ c o r r e s p o n d i n g t o a coun t r a t e equal t o t h e background on t h e use of a 0.5 g sample i s 0.15 ppm. C o n c e n t r a t i o n s o f uranium down t o abou t 0 .2 ppm c a n be de t e rmined , though w i t h a p o o r e r p r e c i s i o n (RSD 22%) is demons t r a t ed by t h e d a t a on MRG-1 g i v e n i n Tab le 2. A t h i g h l e v e l s o f uranium c o n c e n t r a t i o n s ( > 0.05%) t h e sample w e i g h t s a re s u i t a b l y chosen as t o avo id c o u n t i n g losses .

The d a t a on tho r ium show t h a t i ts i n f l u e n c e i n t h e measurement of uranium, when p r e s e n t a t e q u a l c o n c e n t r a t i o n s is a b o u t 0.02%. T h i s r e p r e s e n t s a n improvement by a f a c t o r of 4 o v e r our ear l ie r va lue (1) of 0.08%. Thus t h e method p e r m i t s t h e a n a l y s i s o f uranium i n samples h igh i n thorium c o n t e n t . An example of t h i s is t h e a n a l y s i s o f sample No.AEC-NBL-79 ( T a b l e 2 ) which w a s p repa red o u t of monazi te and h a s a Th/U r a t i o of 25. The sample TKT-1 is a n in-house t r a c h y t e s t a n d a r d p repa red f o r r o u t i n e l y check ing t h e accu racy o f ou r measurements. The a n a l y t i c a l p r e c i s i o n o f t h e 54 r e s u l t s on t h i s sample ( T a b l e 2 ) o b t a i n e d o v e r a p e r i o d o f more than 2 y e a r s r e p r e s e n t t h e p r e c i s i o n of o u r uranium a n a l y s i s by delayed f i s s i o n neu t ron c o u n t i n g , which is g e n e r a l l y b e t t e r t han 10% a t lower l e v e l s and b e t t e r t h a n 5% a t h i g h e r l e v e l s o f uranium c o n c e n t r a t i o n .

218

Table 1 . Character is t ics of t h e DFNC system

Flux = - + I x l o i 3 n S-' ( 4 0 M W . o p e r a t i n g power of t h e r e a c t o r )

I r r a d i a t i o n time = 60 S

Delay time = 30 S

Count time = 50 S

Sample weight = 0.5 g

G a m m a d e s c r i m i n a t o r = 3 V b i a s

Counter background = 65 2 8 ( n = 12) with empty i r r a d i a t e d i.abbit i n count ing p o s i t ion

Coun t s p e r rg U n a t = 420 5 (Computed)*

Counts p e r mg Th = 90

* Measured v a l u e = 11990 120 for 28.2 pg U ( n = 6)

Table 2 . Uranium content o f reference samples

Sample Source No.of Uranium content (ppm)+ analyses This work Literature data

MRG-1 CCRMP

SY-2 CCRMP

SY-3 CCRMP

NBL-1 AEC-NBL

NBL-4 AEC-NBL

NBL-79 AEC-NBL

8-78 ACD-BARC

TKT-1 ACD-BARC

9

13

8

6

8

6

16

54

CCRMP = Canadian C e r t i f i e d Reference Materials Project

AEC-NBL = U.S. Atomic Energy Commission, N e w Bruns- wick Laboratory.

ACD-BARC = 'In-house' Standards of the Analytical Chemistry Div is ion, Bhabha Atomic R e - search Centre, INDIA,

+ Uranium Solution evaporated on polythene s h e e t s a1.e used as standards.

$ Personal communication t o the Editor (Dec. 1982) .

Our r e s u l t s on NBL s t a n d a r d s are w i t h i n 4% of t h e c e r t i f i e d v a l u e s (2). A va lue o f 280 ppm for SY-2 obta ined i n t h i s work agrees very w e l l w i t h t h e u s a b l e va lue of 290 ppm by Abbey (3) or 278 ppm by Ledger e t a1 (4 ) . However, a value of 730 ppm f o r SY-3 o b t a i n e d i n t h i s work or 695 ppm r e p o r t e d ear l ier by us (5) are high compared t o e i t h e r t h e u s a b l e va lue o f 650 ppm by Abbey (3) or 631 ppm r e p o r t e d by Ledger e t a1 (4).

Table 3. Uranium content o f twenty-f ive new CRPG and USGS standards

Sample Uranium (ppml Mean Literature da ta*

CRPG (Cent re de Recherches PetrograDhisues e t Geochimiques )

BX-N

BR

DR-N

FK-N

GA

GH

GS-N

Mica-Fe

DT-N

BE-N

MA-N

Mica-Mg

UB-N

AN-G

9.2, 8.8, 9.3

2.5, 2.7, 2.8

1.7, 1.2, 1.7

0.32, 0.21, 0.22

4.6, 6.2, 5.7

18.7, 18.9. 18.1

8.7, 8.3, 8.3

86, 90, 90

3.2, 2.2, 2.5

2.5, 2.6, 2.6

See t a b l e 4

9.1

2.7

1.5

0.25

5.5

18.6

8.4

88.6

2.6

2.6

13.0

10.2

h0.2

40.2

U B (U.S. Geological Survep)

STM-1

MAG-1

BHVO-1

sco-1 SGR-1

QLO-1

RGM-1

SDC-1

w-2

BIR-1

DNC

9.3, 9.0, 8.7

3.0, 3.2, 3.0

0.5, 0.71. 0.65

3.2, 2.8, 2.7

5.5, 6.4, 5.8

2.0, 1.6, 2.2 6.3, 6.4, 5.3

3.9, 3.0, 3.0 0.70, 0.72, 0.50 0.60, 0.76

9.0

3.1

0.62

2.9

5.9

1.9 6.0

3 . 3

0.66

10.2 40.2

8.6

2.42

1.58

40.2

5.5

19.5

8.4

85.4

1.94

2.55 2.4(9)

13.2 12.1(9)

10.2 10.2 10.2

9.1

2.82

0.48

3.15

5.60

2.01 5.85

3.12

0.42

c0.1 10.1

A l l t h e L i t e r a t u r e va lues f o r the CRPG samples are those of Rowe (7) and those for t h e USGS samples a r e of Mi l la rd (8), u n l e s s otherwise i n d i c a t e d .

219

Table 4 . Homogeneity study of t h e g ran i t e MA-N

W t . of t h e 34.8 56.4 79.8 82.8 86.8 134.3 172.4 206.1 320.2 354.5 512 sample (rng)

u (ppm) 12.4 14.4 13.7 17.7 12.2 13.2 13.6 12.8 13.4 13.7 12.4

Mean = 13.0 2 0.7

n = 11

Twenty-five s t a n d a r d r o c k s from CRPG, F r a n c e and USGS have been a n a l y s e d i n t h e p r e s e n t work f o r t h e i r uranium c o n t e n t s . These r e s u l t s a r e g i v e n i n T a b l e 3 . R e c e n t l y Ledger e t a1 (6) have r e p o r t e d t h e uranium v a l u e s f o r t h e F rench s t a n d a r d s . Subsequen t ly t h e s e were c o r r e c t e d f o r a c o m p u t a t i o n a l e r r o r and r e p o r t e d by R o w e ( 7 ) . These v a l u e s are g i v e n i n T a b l e 3 f o r comparison. The d a t a by M i l l a r d (8) on t h e new USGS s t a n d a r d r o c k s are a lso g i v e n i n T a b l e 3 f o r comparison and t h e agreement between v a r i o u s v a l u e s i s f a i r l y good.

Of t h e new French s t a n d a r d s , t h e g r a n i t e MA-N w a s t r e a t e d d i f f e r e n t l y because o f two f a c t o r s v i z .

1. The sample i s r e p o r t e d (9) t o be inhomo- geneous w i t h r e s p e c t t o s t r o n t i u m i s o t o p i c compos i t ion . I n o r d e r t o see whe the r t h i s inhomogeneity is r e f l e c t e d i n t h e e l e m e n t a l compos i t ion as well. a t least i n r e s p e c t of uranium, r e p l i c a t e a n a l y s e s of t h e sample were made u s i n g sample w e i g h t s r a n g i n g from 35 - 512 mg and t h e r e s u l t s o b t a i n e d are g i v e n i n T a b l e 4. I t i s s e e n t h a t w i t h i n t h e a n a l y t i c a l c a p a b i l i t y of t h e t e c h n i q u e i t i s n o t p o s s i b l e t o conf i rm t h e inhomogenei ty o f t h e sample i n r e s p e c t of uranium.

2. The sample c o n t a i n s 1.06% L i , O and hence t h e r e is a p o s s i b i l i t y of el-rors due t o se l f s h i e l d i n g . T h i s w a s examined by d i l u t i n g t h e sample w i t h d u n i t e i n t h e r a t i o of 1:1, 1:1.6 and 1:3 and t h e n ana lysed . The r e s u l t s o b t a i n e d are r e s p e c t i v e l y , 13.9, 11.6 and 12.9 ppm of uranium. These r e s u l t s are n o t ve ry d i f f e r e n t f r o m t h e o n e s o b t a i n e d d i r e c t l y on t h e sample ( T a b l e 4) and hence e x c l u d e s t h e p o s s i b i l i t y o f se l f s h i e l d i n g errors .

RESUME

Trente t r o i s echantil lons ont ete analyses pour leur teneur en U u t i l i s a n t l ' a c t i v a t i o n neutronique avec des neutrons re ta rdes . La game des valeurs o s c i l l e d e 0.2 8 1500 ppm. Les echant i l lons analyses sont: t r o i s provenant du Centre Canadien de l a Technoloqie des Mineraux e t

de l 'Energie, t r o i s de l a Commission Atomique des Etats-Unis, d e u x d e "Bhabha Atomic Research Centre" ( Inde ) , quatorze du CRPG e t onze de 1'USGS. La procedure appliquee permet une limite de detection de 0.08 g e t une l imi t e de dosage de 0.15 g U . Au niveau de f a i b l e s teneurs, l a r ep roduc t ib i l i t e e s t de l ' o rd re de 20% t andis qu'au niveau plus 6leves que 1 ppm, e l l e e s t de 10% ou m i l l e u r e .

REFERENCES

(1 ) G . R . Reddy and M. S a n k a r D a s ( 1 9 7 4 ) A n a l y s i s o f u ran ium by d e l a y e d f i s s i o n n e u t r o n c o u n t i n g method. I n d . J. Tech . 12: 405-409.

( 2 ) C . J . Rodden (L950) U n i t e d S t a t e s Atomic Energy Commission. N e w BurnswLck L a b o r a t o r y . P r o v i s i o n a l C e r t i f i c a t e s o f A n a l y s i s .

(3) S . Abbey (1980) S t u d i e s i n " s t a n d a r d samples ' ' f o r u s e i n t h e g e n e r a l a n a l y s i s of s i l i c a t e r o c k s a n d m i n e r a l s . P a r t 6 : 1979 E d i t i o n o f ' U s a b l e ' v a l u e s , P a p e r 80-14.

( 4 ) E . B . Ledge r , T . T . T i e h and M.W. R o w e (19801 De layed n e u t r o n a c t i v a t i o n d e t e r m i n a t i o n of u ran ium i n t w e l v e r o c k reference s t a n d a r d s , C e o s t a n d a r d s News- l e t t e r , 4 : 15.3-155.

(51 C . R . Reddy, D.R. P a n t , B . L . Rao and M . Sankai' Das ( 1 9 7 6 ) Neu t ron a c t i v a t i o n a n a l y s i s of 13 minor and trace e l e m e n t s i n g e o l o g i c a l s a m p l e s , J o u m a l R a d i o a n a l y t i c a l C h e m i s t r y , 33: 39-51.

( 6 ) E . B . Ledgel'. T.T. T i e h and M . W . Rowe (1980) I l e l ayed n e u t r o n a c t i v a t i o n d e t e r m i n a t i o n o f uranium i n t h i r t e e n F r e n c h P O C ~ !*efer-ence s a m p l e s , C e o s t a n d a r d s Newsletter, 4 : 5-8.

( 7 ) M . W . Rowe ( 1 9 8 1 ) De layed n e u t r o n a c t i v a t i o n d e t e r m i n a t i o n o f u ran ium i n t h i i ' t e e n F r e n c h r o c k r e f e r e n c e s a m p l e s , G e o s t a n d a r d s Newslettel.. 5: 220.

(8) H . T . M i l l a r d , J r . (1976) O e t e r m i n a t i o n of u ran ium and tho r ium i n USGS s t a n d a r d t w c k s by t h e d e l a y e d n e u t r o n t e c h n i q u e i n d e s c r i p t i o n s and a n a l y s i s o f e i g h t new 1ISGS r o c k s t a n d a r d s compi l ed by F . J . F l a n a g a n . G e o l o g i c a l S u r v e y F r o f e s s i o n a l P a p e r 8411: I;l-Bi..

(9) K . G o v i n d a r a j u ( lW<l ) Repui-1 (198~11 on t h r e e 2 I T - I W Z r o c k r e f e r e n c e s a m p l e s : A n o r t h o s i t e fl'oni G r e e n l a n d , AN-G; B a s a l t d ' E s s e y - l a - c 8 t e , RE-N; W a n l t e d e Beauvo i r . M A - N , G e o s t a n d a r d s N e w s l e t t e r . 4 : 49-139.