untitled2.pdf

4
82 dimensional stresses xx and xz , respectively of a square sandwich plate under point load at center (TYPE-3). It is seen that xx is almost same for clamped and simply supported plates whereas transverse shear stress xz is more for simply supported sandwich plate. Table-1 Nonlinear transverse central deflection ( ) w of a simply supported [0/90/90/0] cross-ply square plate subjected to uniformly distributed load (Load TYPE-5) , (Mat-1, TSF-2) P Present References RBF4 RBF4 RBF4 RBF1 RBF2 RBF3 Kant [22] Kant [22] Zhang [2] Zhang [2] THE-1 THE-2 THE-3 THE-3 THE-3 THE-3 Analytical HOST RDKQ- NL24 RDKQ- NL20 50 0.3387 0.3379 0.3393 0.3434 0.3258 0.3434 0.3560 0.3704 0.3704 0.3631 100 0.4954 0.4947 0.4960 0.4988 0.4665 0.4965 0.5100 0.5249 0.5249 0.5141 150 0.6033 0.6026 0.6039 0.6059 0.5610 0.6021 0.6100 0.6290 0.6290 0.6158 200 0.6874 0.6866 0.6881 0.6881 0.6456 0.6817 0.6890 0.7099 0.7099 0.6949 250 0.7421 0.7416 0.7423 0.7458 0.7120 0.7457 0.7470 0.7770 0.7770 0.7605 Table-2 Linear and non-linear transverse central deflection ( ) w of a simply supported [0/90/90/0] cross-ply square Plate subjected to various types of loadings,( Mat-1, TSF-2,RBF-4) P Linear Nonlinear TYPE-5 TYPE-4 TYPE-3 TYPE-2 TYPE-1 TYPE-5 TYPE-4 TYPE-3 TYPE-2 TYPE-1 10 0.10375 0.06853 0.31400 0.17475 0.14364 0.09891 0.06716 0.23716 0.15917 0.13450 15 0.15563 0.10280 0.47100 0.26213 0.21547 0.14133 0.09829 0.28637 0.21987 0.18903 20 0.20750 0.13707 0.62800 0.34950 0.28729 0.17885 0.12736 0.30777 0.26824 0.23456 25 0.25938 0.17133 0.78500 0.43688 0.35911 0.21213 0.15431 0.31539 0.30630 0.27202 30 0.31125 0.20560 0.94200 0.52425 0.43093 0.24189 0.17917 0.31688 0.33624 0.30287 40 0.41500 0.27414 1.25600 0.69900 0.57458 0.29353 0.22342 0.36958 0.34574 50 0.51875 0.34267 1.57000 0.87375 0.71822 0.33791 0.26191 0.36664 60 0.62250 0.41120 1.88400 1.04850 0.86187 0.37207 0.29594

Upload: pavan-kishore

Post on 16-Jul-2016

217 views

Category:

Documents


0 download

DESCRIPTION

plates

TRANSCRIPT

Page 1: Untitled2.pdf

82

dimensional stresses xx and xz

, respectively of a square sandwich plate under point load at center (TYPE-3). It is seen that

xxis almost same for clamped and simply

supported plates whereas transverse shear

stress xzis more for simply supported

sandwich plate.

Table-1 Nonlinear transverse central deflection ( )w

of a simply supported [0/90/90/0] cross-ply square plate

subjected to uniformly distributed load (Load TYPE-5) , (Mat-1, TSF-2)

P Present References

RBF4 RBF4 RBF4 RBF1 RBF2 RBF3

Kant [22] Kant

[22]

Zhang

[2]

Zhang [2]

THE-1 THE-2 THE-3 THE-3 THE-3 THE-3 Analytical HOST

RDKQ-

NL24

RDKQ-

NL20

50 0.3387 0.3379 0.3393 0.3434 0.3258 0.3434 0.3560 0.3704 0.3704 0.3631

100 0.4954 0.4947 0.4960 0.4988 0.4665 0.4965 0.5100 0.5249 0.5249 0.5141

150 0.6033 0.6026 0.6039 0.6059 0.5610 0.6021 0.6100 0.6290 0.6290 0.6158

200 0.6874 0.6866 0.6881 0.6881 0.6456 0.6817 0.6890 0.7099 0.7099 0.6949

250 0.7421 0.7416 0.7423 0.7458 0.7120 0.7457 0.7470 0.7770 0.7770 0.7605

Table-2 Linear and non-linear transverse central deflection ( )w

of a simply supported [0/90/90/0] cross-ply square

Plate subjected to various types of loadings,( Mat-1, TSF-2,RBF-4)

P Linear Nonlinear

TYPE-5 TYPE-4 TYPE-3 TYPE-2 TYPE-1 TYPE-5 TYPE-4 TYPE-3 TYPE-2 TYPE-1

10 0.10375 0.06853 0.31400 0.17475 0.14364 0.09891 0.06716 0.23716 0.15917 0.13450

15 0.15563 0.10280 0.47100 0.26213 0.21547 0.14133 0.09829 0.28637 0.21987 0.18903

20 0.20750 0.13707 0.62800 0.34950 0.28729 0.17885 0.12736 0.30777 0.26824 0.23456

25 0.25938 0.17133 0.78500 0.43688 0.35911 0.21213 0.15431 0.31539 0.30630 0.27202

30 0.31125 0.20560 0.94200 0.52425 0.43093 0.24189 0.17917 0.31688 0.33624 0.30287

40 0.41500 0.27414 1.25600 0.69900 0.57458 0.29353 0.22342 0.36958 0.34574

50 0.51875 0.34267 1.57000 0.87375 0.71822 0.33791 0.26191 0.36664

60 0.62250 0.41120 1.88400 1.04850 0.86187 0.37207 0.29594

Page 2: Untitled2.pdf

83

70 0.72625 0.47974 2.19800 1.22325 1.00551 0.40719 0.32637

Fig. 5

Fig. 6

Fig. 7

Fig.8.

Fig. 9.

Fig.10:

5*5 7*7 9*9 11*11 13*13 15*15

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.015

w

Number of Nodes

Present

Timoshenko [21]

0 5000 10000 15000 20000 25000 300000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

q0

w

TYPE-5

TYPE-4

TYPE-3

TYPE-2

TYPE-1

5x5 7x7 9x9 11x11 13x13 15x15 17x170.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

1000P

w

Number of Nodes

TYPE-1

TYPE-2

TYPE-3

TYPE-4

TYPE-5

0 50 100 150 200 250 300 350 400 450 500 5500.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

P

w

TYPE-5

TYPE-4

TYPE-3

TYPE-2

TYPE-1

0 2000 4000 6000 8000 10000 12000 14000 160000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

q0

w TYPE-5

TYPE-4

TYPE-3

TYPE-2

TYPE-1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.10.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

R= 5

q0 = 1000

( )w

Length of the plate (a)

TYPE-1

TYPE-2

TYPE-3

TYPE-4

TYPE-5

Page 3: Untitled2.pdf

84

Fig. 11.

Fig. 12.

Fig. 13

Fig. 14.

Fig. 15.

Fig. 16. Conclusions The nonlinear displacement response of laminated and sandwich composite plates subjected to different type of loadings are obtained using various RBFs and quadratic extrapolation technique. Effects of different loadings, core thickness and radial basis functions on nonlinear flexural responses are presented. It is observed that Gaussian function used as RBF underestimates the transverse deflection. The results presented herein show the applicability of present solution methodology. It is seen that selection of shape parameters plays important role in convergence of the solution. However, choice of shape parameter for better and faster convergence of deflection for the plate under point loads is still matter of further investigations.

0 5000 10000 15000 20000 25000 300000.0

0.2

0.4

0.6

0.8

1.0

1.2

q0

w

RBF-1

RBF-2

RBF-3

RBF-4

0 5000 10000 15000 20000 25000 300000.0

0.2

0.4

0.6

0.8

1.0

1.2

q0

w h

c = 0.8h

hc = 0.6h

hc = 0.333h

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-50 -40 -30 -20 -10 0 10 20 30 40 50

q0 = 10000

xx

z/h

TYPE-1

TYPE-2

TYPE-4

TYPE-5

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-4 -3 -2 -1 0 1 2 3 4

q0 = 10000

xz

z/h

TYPE-1

TYPE-2

TYPE-4

TYPE-5

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-200 -150 -100 -50 0 50 100 150 200

q0 = 5000

xx

z/h

TYPE-3 SSSS

TYPE-3 CCCC

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-15 -10 -5 0 5 10 15

q0 = 5000

xz

z/h

TYPE-3 SSSS

TYPE-3 CCCC

Page 4: Untitled2.pdf

85

References

[1] ZhangY.X, Yang C.H., A family of simple and robust finite elements for linear and geometrically nonlinear analysis of laminated composite plates, Composite Structures. 75 (2006) 545–552..

[2] Zhang Y.X., Kim K.S., Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements, Composite Structures. 72(2006) 301-310.

[3] Singh Jeeoot and Shukla K.K., Nonlinear flexural analysis of laminated composite plates using RBF based meshless method, Composite Structures. 94(2012) 1714-1720.

[4] Dash P., Singh B.N., Geometrically nonlinear bending analysis of laminated composite plate, Commun Nonlinear Sci Numer Simulat. 15(2010) 3170-3181.

[5] Shufrin I., O. Rabinovitch, M. Eisenberge, A semi-analytical approach for the non-linear large deflection analysis of laminated rectangular plates under general out-of-plane loading. International Journal of Non-Linear Mechanics.43( 2008) 328 – 340.

[6] Liew K.M., Wang J., M.J. Tan, S. Rajendran, Nonlinear analysis of laminated composite plates using the mesh-free kp-Ritz method based on FSDT, Comput. Methods Appl. Mech. Engrg. 193(2004) 4763–4779.

[7] Kansa E.J., Multiquadrics a scattered data approximation scheme with applications to computational fluid dynamics, i:Surface approximations and partial derivative estimates, Computers & Mathematics with Applications .19(1990) 127–145.

[8] Wang J.G., Liu G.R., On the optimal shape parameters of radial basis functions used for 2-D meshless methods, Comput. Methods Appl. Mech. Engrg. 191(2002) 2611–2630.

[9] Liew K.M., Huang Y.Q., Reddy J.N., Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method, Comput. Methods Appl. Mech. Engrg. 192(2003) 2203–2222.

[10] Chen J.T., I.L. Chen, K.H. Chen, Y.T. Lee, Y.T. Yeh, A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function, Engineering Analysis with Boundary Elements .28( 2004) 535–545.

[11] Misra R.K., Sandeep K., Misra A., Analysis of anisotropic plate using multiquadric radial basis function, Engineering Analysis with Boundary Elements. 31(2007) 28–34.

[12] Ferreira A.J.M., Fasshauer G.E., Batra R.C., . Rodrigues J.D, Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter, Composite Structures. 86(2009) 328–343.

[13] Xiang S., Wang K., Y. Ai, Y. Sha, H. Shi, Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories, Composite Structures. 91(2009) 31-37.

[14] Roque C.M.C., Cunha D., Shu C., Ferreira A.J.M., A local radial basis functions-finite differences technique for the analysis of composite plates, Engineering Analysis with Boundary Elements. 35(2011) 363–37.

[15] K.M. Liew, Xin Z., Ferreira A.J.M., A review of meshless methods for laminated and functionally graded plates and shells, Composite Structures . 93(2011)2031-2041.

[16] Aydogdu M. A new shear deformation theory for laminated composite plates.Compos Struct 89(2009)94–101.

[17] Levinson M. An accurate simple theory of statics and dynamics of elastic plates. Mech Res Commun 7(1980)343–50.

[18] Karama M, Afaq KS, Mistou S. Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity. Int J Solids Struct 40(2003)1525–46.

[19] Shukla K.K., Nath Y., Non-linear analysis of moderately thick laminated rectangular plates. Journal of Engineering Mechanics, ASCE . 126(2000) 831–838.

[20] Srinivas S, Rao A. Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int J Solids Struct 6(1970)1463–81.

[21] Timoshenko S. and Krieger S.W., Theory of Plates and Shells, Second Edition, McGraw-Hill Book Company, 1959.

[22] Kant T, Kommineni JR. C0 finite element geometrically nonlinear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory. Comput Struct 45(1992)511–20.