unt speech hearing center functional assessment differences handouts... · audiotools app from...

42
9/12/2014 1 Functional Assessment of Children with Hearing Loss and Auditory Listening Differences Erin C. Schafer, Ph.D. Associate Professor, Audiology UNIVERSITY OF NORTH TEXAS Department of Speech and Hearing Sciences UNT Speech and Hearing Center Hearing services: Audiol. evaluations Hearing aids Cochlear implant programming Vestibular testing Educational consulting: 2 large school districts UNT Speech Perception Laboratory Mission: Improve communication abilities of children and adults with hearing loss! Assessment: Speech recognition: noise Amplification: FM Systems/DM Hearing Aids Cochlear Implants Opening Considerations www.handsandvoices.org

Upload: others

Post on 08-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

1

Functional Assessment of Children with Hearing Loss and Auditory 

Listening Differences

Erin C. Schafer, Ph.D.Associate Professor, Audiology

UNIVERSITY OF NORTH TEXASDepartment of Speech and Hearing Sciences

UNT Speech and Hearing Center

•Hearing services:•Audiol. evaluations•Hearing aids•Cochlear implant programming

•Vestibular testing•Educational consulting: 

• 2 large school districts

UNT Speech Perception Laboratory

•Mission: Improve communication abilities of children and adults with hearing loss!•Assessment: 

• Speech recognition: noise 

•Amplification:• FM Systems/DM

• Hearing Aids• Cochlear Implants

Opening Considerations

www.handsandvoices.org

Page 2: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

2

Please share…..

• How do you define an evaluation in the child’s customary environment?

• Classroom observation?

• Speech recognition in noise?

• Teacher questionnaires?

• AAA Remote Guidelines: http://www.audiology.org/resources/documentlibrary/documents/hatguideline.pdf

Evidence‐Based Practice + Educational Hearing Services

Should we develop ongoing evidence‐based protocols in the provision of 

hearing services?

II. Validation of HAT efficacy &

effectiveness

I. Functional evaluation protocol for assessing educ. need for HATa. specific to various populationsb. supported by up-to-date

research evidence

EBP + Ed. hearing services

Current Best Evidence

Student Characteristics

& Preferences

Clinical Expertise & 

Savvy

EBP + Educational Hearing Services = Awesomeness

Determining Educational Need

• IDEA: an evaluation in the child’s customary environment• 1. Cite acoustics research & measure classroom acoustics

• 2. Perform classroom observation

• 3. Measure speech recognition & comprehension

• 4. Utilize teacher questionnaires

• 5. Other informal assessments: interviews, academic standing, review file, & trial period

• 6. Cite research on the population you are assessing

Page 3: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

3

EB Component #1: Cite Literature on Classroom Acoustics

•1a. Begin with Guidelines:•ASHA 

–Acoustics in Educational Settings (2005)

•ANSI S12.60‐2010–Acoustical Performance Criteria, Design Requirements and Guidelines for Schools

•Offer guidelines for:–1. Unoccupied noise levels: 35 dBA–2. Reverberation times: .6 to .7 seconds

–3. Signal‐to‐noise ratio: +15 dB

1a. Noise Criteria Ratings

Noise Criteria (NC) Rating

› Single number to describe noise level based on series of frequency‐intensity curves›Derived from equal loudness curves consistent with human hearing

›Suggested ratings given for various facilities (e.g. worship centers, performance halls)

1a. AAA Guideline 1b. What are the acoustics of typical classrooms?

Page 4: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

4

1b. Study One: Classroom Acoustics 

•Knecht, Nelson, & Whitelaw (2002)• 32 classrooms selected randomly from 3 school districts

• Included 12 newer schools in suburban areas, 12 in older in suburban areas, 8 in rural areas

• Averaged sound level meter measurements at 5 points in each classroom 

1b. Unoccupied Noise in Typical Classrooms

Range:34 to 66 dBA

4 met level

Fish Tank

* HVAC on

1b. Reverberation in Typical Classrooms

Knecht, Nelson, & Whitelaw (2002)

Range:0.2 to 1.27 sec

10 met level

1b. Reverberation in Typical Classrooms

Knecht, Nelson, & Whitelaw (2002)

• Larger roomshad longerreverberationtimes

• Rooms with lowerceilings (< 10 ft.)were more likely to meet RT criteria

Page 5: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

5

1b. Effects of Reverberation

Reverberation masks direct sound energy by reflected energyReflected signals are temporally delayed and reach child’s ear same time as a direct signal

Words may overlap causing alterations to temporal aspects of speech

Causes prolongation of spectral energy (no gaps)Primarily vowel energy in low‐frequency region

These low‐freq intense vowels then mask consonants (particularly consonants in the final position)

1b. Study Two: Classroom Acoustics

• Nelson, Smaldino, Erler, & Garstecki (2007/2008)• 36 classrooms including urban and suburban

• 16 were built after 2002: “new”• 20 built prior to 1960: “old”• Averaged 5head‐level sound level meter measurements in each room 

• Determined noisecriteria (NC) rating

• Measured reverb.

1b. Unoccupied Noise (dBA)

“New” Range: 31 - 53 dBA“Old” Range: 34 - 54 dBA

Rooms for DHH

Significant Difference

Mostly window unit HVAC Central HVAC

1b. Noise Criteria Ratings

Rooms for DHH

Only 2 classrooms met the recommended NC Rating

Page 6: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

6

1b. Reverberation Times

“New” Range: .4 - .6 s“Old” Range: .5 - .6 s

All met except 1

Most rooms carpeted and had ceiling tiles; absorptive materials were covering

almost all wall space

1b. Studies on Signal‐to‐Noise Ratio

Typical occupied classrooms:

Sanders (1965) reports average SNRs from 47 classrooms

17 Kindergarten: ‐1 dB

12 Elementary: +5

12 High school: +5

Arnold & Canning (1999 ) report typical occupied classrooms as loud as 73 dB

With typical conversational speech is around 55 dB, this could result in a ‐18 SNR

1b. Study Three: Occupied Classroom Acoustics

• Cruckley et al. (2011) 

• Noise levels varyacross & within children’s listening environments

Dosimeter measurements

71 73

61 63

75% of the day sound levels between 60 to 80 dBA

1b. Occupied Classroom Acoustics

• Cruckley et al. (2011) 

•Dosimeter measurement throughout the day in various children’s listening environments

Page 7: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

7

1b. Occupied Classroom Acoustics

• Cruckley et al. (2011) 

Dosimeter measurements Toddler Room at Daycare

1b. Occupied Classroom Acoustics

• Cruckley et al. (2011) 

Dosimeter measurementsPre-school Room at Daycare

1b. Occupied Classroom Acoustics

• Cruckley et al. (2011) 

Dosimeter measurementsElementary School

1. Occupied Classroom Acoustics

• Cruckley et al. (2011) 

Dosimeter measurementsHigh School

Page 8: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

8

1b. What’s missing from ASHA & ANSI 

recommendations?

• Issues related to distance from the teacher:

• Not every seat provides  a high‐quality speech signal from teacher

• These effects examined by Leavitt & Flexer (1991)

• Used Rapid Speech Transmission Index (RASTI) to examine fidelity of speech at various locations in a typical classroom

• Incorporates perception of sound and speech intelligibility of normal‐hearing listeners

Ear & Hearing, 12

1b. Issues Related to Distance

• Leavitt & Flexer (1991)–Combines effects of 

unoccupied noise, 

reverberation, & SNR

–Less critical speech

information as 

distance increases 

–Perfect RASTI

transmission = 1.0

Transmitter

Best

Worst!

Ear & Hearing, 12

1b. Issues Related to Distance

•Crandall & Smaldino (2000)• Measured children’s speech perception at various distances from teacher 

• Room with RT of .45 s• 6 ft: 89% • 12 ft: 55%• 24 ft: 36%

1b. OK…so what do I do with this info?

•1. Use it in your reports!•I use citations in my reports (see reference list provided)

• Yes…I will admit this is dorky, but it seems to get attention, and it is EVIDENCE‐BASED PRACTICE

• Since I started doing this, teachers, parents, administrators, deaf educators, etc. request the articles

•See sample report in handouts

Page 9: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

9

1c. Measure Classroom Acoustics 

•Anyone can easily assess classroom acoustics with a smartphone and an app!•ASHA & ANSI: 

• Unoccupied noise: 35 dBA

• Reverberation: 0.7 seconds 

• Estimate SNR

1c. Measuring Classroom Acoustics

•Ostergren & Smaldino: Journal of Educational Audiology (2012)

Figure 1. AudioToolsApp from Studio Six Digital.

1c. AudioTools: Studio Six Digital

Figure 2. iPhone with Analog Sound Level Meter App running.

1c. AudioTools: Studio Six Digital

Figure 3. Sound study graph of an unoccupied classroom.

This can also be done in

an occupiedclassroom

Page 10: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

10

1c. AudioTools: Studio Six Digital

Figure 5. RT60 measures displayed in octave bands.

.45 seconds

Determining Educational Need

• IDEA: an evaluation in the child’s customary environment• 1. Cite acoustics research & measure classroom acoustics

• 2. Perform classroom observation

• 3. Measure speech recognition & comprehension

• 4. Utilize teacher questionnaires

• 5. Other informal assessments: interviews, academic standing, review file, & trial period

• 6. Cite research on the population you are assessing

EB Component #2: Perform a Classroom Observation

•Assess the child’s listening behaviors during direct instruction:

• Where is child seated?

• Unusual ambient noise in room?• On/off‐task behavior relative to other children?

• Independent worker?• Need help from other students?• Class participation? • Student interview: ask about hearing specific teachers

See sample observationform in digital handouts

Page 11: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

11

EB Component #3: Assess speech recognition and comprehension

•Speech Recognition in Noise•Recommended by HAT guideline

• Please note the importance of using materials with list equivalency in noise (equal difficulty)

• If they are not equal, you cannot use them to compare conditions: FM vs. no FM

3. Assessing Speech Recognition in Noise

•Adolescent/Adult tests designed for use in noise:•HINT‐C: Starkey Pro•Connected Speech Test (CST): Robyn Cox, http://www.memphis.edu/ausp/harl/ ($50)

•BKB‐SIN: Etymotic ($195)•Quick‐SIN: Etymotic ($160)

3. Assessing Speech Recognition in Noise

•Pediatric Tests Designed for Use in  Noise:• BKB‐SIN: Ages 6+• HINT‐C: Ages 5+

Schafer, J Ed Aud, 2010

Page 12: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

12

3. Assessing Speech Recognition in Noise Pediatric Tests Designed for Use in  Noise:

›PSI: Ages 3+›LiSN‐S: 

Problems:›Limited number of tests›Cannot use standard clinical tests because of vocabulary level  and lists not equivalent in noise: WIPI, PBK, NU‐CHIPS, NU‐6, W‐22

›Only test for young children, requires fixed intensities: longer test time, multiple lists, what SNR?, ceiling/floor effects

3. Speech Recognition

• Stimuli:– Phrases in Noise Test (PINT): children 3+

– BKB‐SIN: children 6 years+ and adults

• Conditions:– No FM

– FM 1– FM 2 (if applicable)

• Test Environment:– Soundbooth: speakers at 0 and 180°azimuth, transmitter placed 3 to 6” from signal speaker

– Classroom

3. Speech Recognition: BKB‐SIN

•18 list pairs equated for difficulty•Each pair has 8‐10 sentences and takes approximately 3 minutes to administer and score

•Score based on number of key words repeated correctly, then use formula to calculate SNRloss

•Recorded Split track or Standard CD

3. Speech Recognition: PINT

Lab Goal: Create or assess reliability and validity of new speech recognition tests:

›Phrases in Noise Test (PINT) Initial stimuli used in Schafer & Thibodeau, 2006

New version: Schafer et al., 2012 Available via email: [email protected]

•AzBio Sentence Lists in Noise (> 9 years)• Sphar & Dorman, Arizona State, $155

• http://auditorypotential.com/

• Listening Comprehension Test 2• Recorded existing test in background noise

Page 13: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

13

3. Phrases in Noise Test (PINT) Is it needed?

›1. There is no sensitive speech recognition test in noise for young children Current tests are not designed for testing in noise (NU‐CHIPS, WIPI, PBK) or they are subject to ceiling effects (PSI)

›2. We need a reliable, valid, and portable speech‐in‐noise test for young children to: Examine those who are at‐risk for listening difficulties in the classroom 

Assess “educational need” for assistive technology Measure the benefit from assistive technology (i.e., FM systems)

Schafer et al., 2012, Ear & Hearing

3. PINT Goals

•Goals of study:•1. Create a reliable and valid 

test for 3‐6 year olds•2. Equipment & set‐up for real 

classrooms or soundbooth•3. Normative data on 3‐6 year 

olds: NH & CIs•4. Assess effects of spatial 

separation of speech and noise sources

Schafer et al., 2012, Ear & Hearing

3. PINT: Stimuli

• PINT consists of 12 phrases–May be acted out with a doll & objects–Sample phrases:

• Phrases are of equal duration & equal intelligibility in 4‐classroom noise

–Pilot data with 20 adults established that the phrases were equally‐intelligible in noise

Brush his teeth Comb his hair Pull his toes

Find his shoe Blow his nose Hide his face

Schafer et al., 2012, Ear & Hearing

3. PINT Scoring

• Estimates 50% correct speech‐in‐noise thresholds (e.g., BKB‐SIN)

–Conditions:–1. Speech/noise: same loudspeaker (S0/N0)

–Speech/noise: separate loudspeakers (S0/N180)

HARDER EASIERTHRESHOLD = -1.5 dB

Page 14: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

14

3. PINT Equipment/Set‐up

Desk with Signal/Noise Speaker

Desk with Noise Speaker

Boom Box

Examiner

Child

SpeakerWire

1. Attached speaker wire to boom box speakers

2. Placed speakers on desksequidistant to child’s seat (3 feet)

4. Verified output of eachspeaker using calibrationtrack on CD and radio shack SLM

3. PINT Results: Normal Hearing

• Good test‐retest reliability (each child repeated 2 lists)

• Significant effect of spatial separation (S0/N0 and S0/N180)

• 3‐year‐old children perform significantly worse in noise than children ages 4 ‐6 years and adults

-16.0

-14.0

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

3 4 5 6 Adult

Th

res

ho

ld i

n N

ois

e (d

B S

NR

)

Age Group

S0/N0

S0/N180

Schafer et al., 2012, Ear & Hearing

3. PINT Results: Hearing Loss

No group comparisons because of small samples Significant effect of spatial separation (S0/N0 and S0/N180)

-6

-4

-2

0

2

4

6

8

Bilateral CI Bilateral HA Bimodal

PIN

T T

hre

sho

ld i

n d

B S

NR

Group

S0/N0

S0/N180

n=13 n=10 n=6

3. PINT Results: NH vs. Hearing Loss

-16-14-12-10

-8-6-4-2024

Th

resh

old

in

No

ise

(dB

SN

R)

Group

S0/N0

S0/N180

Page 15: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

15

3. PINT vs. Teacher S.I.F.T.E.R. 

•Significant medium to large correlations for all Preschool S.I.F.T.E.R.  areas

• Poorer PINT performance related to poorer teacher ratings 

R² = 0.5595

0

2

4

6

8

10

12

14

‐2 0 2 4 6 8

Average S.I.F.T.E.R. Rating: 

Attention

S0/N0 Threshold in Noise (dB SNR)

3. AzBio Sentence Lists

•Used in several CI research studies: Spahr & Dorman, 2004; Gifford et al, 2008; Spahr et al, 2011, 2012

•CD version: • 15 lists: Channel 1 • 10‐talker babble: Channel 2• Four talkers: 2 male; 2 female

3. AzBio Sentence Lists

•No clear evidence: list equivalency in noise

•Our Method:  •Assessed equivalency of all 15 lists in noise‐‐

• 14 adults with normal‐hearing sensitivity at 0 SNRand ‐3 SNR

• 12 adults and adolescents with CIs +10 SNR

Schafer et al., 2012, JAAA

3. AzBio List Equivalency: NH

Not equivalent: 1, 6, 7, 12, & 14  different from more than one other list

0102030405060708090

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ave

rage

% C

orre

ct S

core

List Number

0 SNR-3 SNR

Schafer et al., 2012, JAAA

Page 16: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

16

3. AzBio List Equivalency: CI

0102030405060708090

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ave

rage

% C

orre

ct S

core

List Number

Not equivalent Deleted 1, 6, 7, 12, & 14: now equivalent

Schafer et al., 2012, JAAA

3. Group Comparison

•Significant difference between 0 vs. +10•Same for ‐3 vs. +10: 13 dB difference!!!

Schafer et al., 2012, JAAA

NH: 0NH: -3

CI: +10

3. Listening Comprehension

• Valente et al. (2012)

• Examined speech recognition & comprehension of NH students for two tasks: discussion and lecture

• Tested at +5 and +10 SNR and at two reverberation times:.6 and 1.5 seconds

• Performance compared to adults and to sentence recognition in the same conditions

3. Listening Comprehension

• Speech recognition ≠ comprehension

• Valente et al., 2012

Page 17: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

17

3. Listening Comprehension

Significant effect of age

Significant effect of SNR condition

Significant effect of RT condition

3. Listening Comprehension

• What specific areas of comprehension most affected? • Tested listening comprehension in 18, 6‐10 yr olds

• Listening Comprehension Test 2 (Linguisystems):• 1. main idea

• 2. details

• 3. reasoning

• 4. vocabulary

• 5. understanding messages

Schafer et al., 2013, J Educ Audiol

Compared performance to 95% confidenceintervals in quiet from test manual

3. ListeningComp.Results

0

2

4

6

8

10

12

14

16

6;9

6;10

6;11

7;6

8;2

8;5

8;11

8;11

9;0

9;1

9;11

10;1

10;3

10;4

10;7

10;8

10;11

10;9

DetailsRaw

 Scores

Age (yrs;mo)

Score

CI 95%

0

2

4

6

8

10

12

14

16

6;9

6;10

6;11

7;6

8;2

8;5

8;11

8;11

9;0

9;1

9;11

10;1

10;3

10;4

10;7

10;8

10;11

10;9

Main Idea

Raw

 Scores

Age (yrs;mo)

Score

CI 95%

Main Idea: 9 above; 9 below

Details: 2 above; 14 below

3. ListeningComp.Results

0

2

4

6

8

10

12

14

6;9

6;10

6;11

7;6

8;2

8;5

8;11

8;11

9;0

9;1

9;11

10;1

10;3

10;4

10;7

10;8

10;11

10;9

Rea

soningRaw

 Scores

Age (yrs;mo)

Score

CI 95%0

Reasoning: 1 above; 17 below

0

2

4

6

8

10

12

14

16

6;9

6;10

6;11

7;6

8;2

8;5

8;11

8;11

9;0

9;1

9;11

10;1

10;3

10;4

10;7

10;8

10;11

10;9

Vocabulary Raw

 Scores

Age (yrs;mo)

Score

CI 95%0

Vocabulary: 8 above; 10 below

Page 18: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

18

3. Listening Comp. Results

• Overall:

• Children have

poorer comp. in

background noise

• Most difficulty:

details, reasoning, 

& unders. messages

• New research suggests that these findings relate to working memory

• Although we cannot sell the stimuli, you could do this test live voice with background 

noise

0

2

4

6

8

10

12

14

16

6;9

6;10

6;11

7;6

8;2

8;5

8;11

8;11

9;0

9;1

9;11

10;1

10;3

10;4

10;7

10;8

10;11

10;9

Understanding M

essages Raw

 Scores

Age (yrs;mo)

Score

CI 95%0

Unders. Mess.: 5 above; 13 below

3. What does this mean??

•1. Recogni on ≠ Comprehension  

•2. We can do better than recognition

•3. This is critical for determining educational need 

in children

•4. Specific areas of comprehension affected by 

noise:

•Details, reasoning, vocabulary, understanding messages

•½ are able to identify the main idea, which is similar to 

recognition

3. Listening Comprehension & Working Memory

•Sullivan, Homira, & Schafer, submitted• Examined relationship between two skills in quiet and in noise: 20 NH children

• Sections of Listening Comprehension Test 2• Backward digit recall and listening recall: subsets from the Working Memory TestBattery for Children (WMTB‐C) 

3. Working Memory

29.9

20.6

0

5

10

15

20

25

30

35

40

Quiet  Noise

AUDITORY WORKING M

EMORY TO

TAL

CONDITION

Page 19: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

19

3. Listening Comprehension

1.0 1.0

0.8

1.0 1.01.0

0.7

0.1

0.5

0.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Main Idea Details Reasoning Vocabulary Und. Mess.

Listening Comprehension Score

Listening Test2 SubtestQuiet Noise

3. Listening Comprehension vs. Working Memory: Quiet

0

1

2

3

4

5

6

20 22 24 26 28 30 32 34 36 38 40

Listening Comprehension Total: Quiet

Auditory Working Memory Total: Quiet

r = .50

3. Listening Comprehension vs. Working Memory: Noise

0

1

2

3

4

5

6

10 15 20 25 30 35

Lis

ten

ing

Com

pre

hen

sion

Tot

al:

Noi

se

Auditory Working Memory Total: Noise

r = .75

3. Listening Comprehension vs. Working Memory: Noise

0.0

1.0

2.0

3.0

4.0

5.0

10 12 14 16 18 20 22 24 26 28 30

Vocabulary Sbbtest: Noise

Backward Digit Recall in Noise

r = .71

Page 20: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

20

EB Component #4: Teacher & Student Questionnaires

•Almost all of our research includes questionnaires, which correlate to behavioral  results

• SIFTER: Screening Instrument for Targeting Educational Risk

• CHAPS: Children’s Auditory Performance Scale

• LIFE: Listening Inventory for Education

• www.successforkidswithhearingloss.com

Incorporates classroom acoustics

Page 21: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

21

Determining Educational Need

• IDEA: an evaluation in the child’s customary environment• 1. Cite acoustics research & measure classroom acoustics

• 2. Perform classroom observation

• 3. Measure speech recognition & comprehension

• 4. Utilize teacher questionnaires

• 5. Other informal assessments: interviews, academic standing, review file, & trial period

• 6. Cite research on the population you are assessing

Page 22: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

22

EB Component #5: Other Informal Evaluations

•Parent/Student Interview:

–Ask about listening problems in 

specific classes (e.g., science)

–Ask student/parent about grades

–Ask parent about concerns

–Ask student about hearing different 

teachers

–Ask parent about hearing aid use/ 

problems with hearing aids

5. Other Informal Evaluations

•Review of Sp Ed File:• Audiological evaluations

• Noted teacher concerns

• Other evaluations (OT, PT, Autism, Medical, etc.)

• Review communication assessment from AI evaluation

• Review speech‐language evaluation & goals from SLP

• Oral/reading comprehension tests given in classroom

•Neale Analysis of Reading Ability (NARA), Oral and Written Language Scales (OWLS)

5. Other Informal Evaluations

•Academic standing• Should not be a major contributing factor• BIG difference between academic need and educational need

• Jake’s story

5. Other Informal Evaluations

•Trial with device• AT Specialist will train school staff on use and maintenance of equipment followed by 6 week trial

• Pre‐post measures:

• Classroom observation

• Teacher questionnaires• Teacher, parent, student interview

• Summary report created; Schedule IEP meeting/ARD meeting

Page 23: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

23

EB Component #6: Cite Research

• All children are affected: classroom noise, 

reverberation, signal‐to‐noise ratios, and distance 

from the teacher

Teachers suffer from significant vocal fatigue!

Data for several populations:

Normal hearing Mild to moderate SNHL

Younger students Cochlear implants

English language learners Autism spectrum disorders

Otitis Media ADHD

Unilateral hearing loss

Mild or minimal hearing loss

6. Children with Normal Hearing•Finitzo‐Heiber & Tillman (1978)

• Examined word recognition of 12 children with normal hearing

• Tested in noise and reverberation conditions

Scores decrease asreverberation and

noise increase

Even in a quiet room, scores in the presence of long

RTs declined to 80%

In a typical classroom with+6 SNR and 0.8 RT,

scores declined to 60%

6. Younger Listeners • Jamieson, Kranjc, Yu, Hodgetts (2004)

• Speech recognition in noise of 40 children in Kindergarten, 1st, 2nd, and 3rd grades

Similar

Significantly different

Older can toleratehigher levels of

classroom noise, butyounger cannot

UnfortunatelyKindergarten rooms

are the noisiest Sanders (1965)

JAAA, 15(7)

•Nelson, Kohnert, Sabur, & Shaw (2005)

• Examined speech recognition of 7 English only speakers and 15 Spanish speakers

6. English Language Learners

Similar performance in quiet

Significantly poorer performance in noise

Lang., Speech, Hearing Services in Schools, 36

Page 24: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

24

6. Children with OM

•Gravel & Wallace (1992)

• Speech recognition using adaptive stimuli: 13 children with OM‐ and 10 children with OM+

Better

High Risk

Full Term

Significantlypoorer

6. Children with Unilateral Loss

•Bess, Tharpe, & Gibler(1986)• Speech perception of 25 children with mild to severe unilateral hearing loss; 25 with normal hearing

Similar performance in quiet

Dark Bars = NH, White Bars = HI speech at betterGray Bars = HI speech at worse ear

Significantly worse in noise

6. Children with Mild/Minimal SNHL

•Alarming number of children, 

many not be identified

• Niskar et al. (1998) [JAMA 279(14)]

• 14.9% of 6166 children, ages 6 to 19, hadlow‐frequency or high‐frequency hearing

loss of 16‐dB HL or greater 

• Bess, Dodd‐Murphy, & Parker (1998)

• 11.3% of 1218 3rd through 9th grade students had hearing loss > 20 dB HL

6. Children with Minimal SNHL

•Children mild/ minimal SNHL:• Crandell, Smaldino, & Flexer (1995)

• Compared speech perception of normal‐hearing to children with minimal degrees of SNHL

Consistently poorer performancein noise for children with hearing loss

Similar performance in quiet

In Book: Sound-field FM Amplification Theory and Practical Applications

Page 25: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

25

6. Children with Mild‐Mod SNHL

•Finitzo‐Heiber & Tillman (1978)• Word recognition: 12 normal‐hearing children vs. 12 with hearing impairment

• Tested in noise and reverberation conditions

In a quiet room, scores in the presence of long

RTs declined to below 70%

In a typical classroom with+6 SNR and 0.8 RT,

scores declined to 50%

Scores decrease as noise andreverberation increase, significantlyWorse performance than NH children

in previous slide

6. Children with Cochlear Implants

•Schafer & Thibodeau (2004)• 10 normal‐hearing adults; 8 with CIs

• Speech recognition significantly poorer for CI group

Similar decrement noted for children between quiet and noise conditions(Davies et al, 2001; Schafer & Thibodeau, 2003, 2006)

6. Children with ASD & ADHDLower scores are better!

-14

-12

-10

-8

-6

-4

-2

0

No FM: ASD & ADHD No FM: Typical FM: ASD & ADHD

BK

B-S

IN T

hre

sho

ld i

n d

B S

NR

Condition: Group

Significantly poorer than typical peers

Same as peers when using FM

p < .001 p > .05

Schafer et al., 2012, J Comm Dis

6. Teachers

•Roy et al. (2004)• Prevalence of teachers who had voice disorders

• During lifetime, teachers had significantly more voice disorders versus non‐teachers

• More likely to consult physician or SLP

• Woman higher prevalence than men

Average: 58%

Average: 29%

Page 26: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

26

Determining Educational Need

• IDEA: an evaluation in the child’s customary environment• 1. Measure classroom acoustics

• 2. Perform classroom observation

• 3. Measure speech recognition & comprehension

• 4. Utilize teacher questionnaires

• 5. Other informal assessments: interviews, academic standing, review file, & trial period

• 6. Cite research on the population you are assessing

Summary .…Yay!!

•Classroom acoustics does not have to be boring.•OK…maybe the guidelines are boring, but…assessing acoustics with an app is FUN!

•Observing children in their customary environment is INTERESTING!

•Assessing speech recognition and comprehension in noise out in a child’s classroom is pretty EXCITING!

•Teacher questionnaires are super NEAT!•Other assessments are extremely HELPFUL!

•Don’t be afraid to use research on populations!

What do you do once you find educational need?

1. Classroom modifications

2. Behavioral management

3. Amplification & Wireless Tech

1. Classroom Modifications

http://www.allnoisecontrol.com/

III. Modifications

Lower ceilings are better, install ceiling tiles, baffles, 

banners

Using carpet and rugs, or adding tennis balls or rubber tips to legs of chairs, desks, 

and tables

Drapes, panels, corkboard, or 

acoustical fabrics on windows and walls

Page 27: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

27

2. Behavior Management: Occupied Noise Management Techniques

Non‐verbal cues to get attention:1. Light switch or hand signals 

to gain attention

2. Hands up, mouths closed3. Noise Thermometer4. Monkey Meter

5. Chatter Tracker6. Talk Light: $7507. Yacker Tracker: 

$40–100

33 44

55

66 77

2. Calmness Counter

• http://www.ictgames.com/resources.html

2. Occupied Noise Management Techniques

•Get the entire school involved to reduce noise in hallways:

• Line leader reviews hallway rules before leaving classroom

• Line leader carries a quiet sign in the halls

• Whole school implements a quiet hand signal

NECKLOOP

PhonakML 12i

PhonakMLxi

PhonakMyLink+

OticonAmigoR2

OticonAmigo 

R7

OticonArc

DEDICATEDUNIVERSAL

PhonakML14i for Nucleus 5

Page 28: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

9/12/2014

28

3. Amplification: Personal DevicesNormal Hearing

Phonak DynamicSoundfield

Oticon Amigo Star Phonak iSense Micro

If you have questions…

• Email:• [email protected]

[email protected]

Page 29: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

Helpful References! Erin C. Schafer, Ph.D.

Typical Classroom Acoustics Arnold, P., & Canning, D. (1999). Does classroom amplification aid comprehension? British Journal of

Audiology, 33(3), 171-178. Bess, F. H., Sinclair, J. S., & Riggs, D. E. (1984). Group amplification in schools for the hearing impaired. Ear

& Hearing, 5(3), 138-144. Crandell, C. & Smaldino J. (1996). An update of classroom acoustics for children with hearing impairment.

Volta Review, 1, 4-12. Cruckley, J., Scollie, S., & Parsa, V. (2011). An exploration of non-quiet listening at school. Journal of

Educational Audiology, 17, 23-35. Knecht, H. A., Nelson, P. B., Whitelaw, G. M., & Feth, L. L. (2002). Background noise levels and reverberation

times in unoccupied classrooms: predictions and measurements. American Journal of Audiology, 11, 65-71.

Leavitt, R., & Flexer, C. (1991). Speech degradation as measured by the Rapid Speech Transmission Index (RASTI). Ear Hear, 12(2), 115-118.

Markides, A. (1986). Speech levels and speech-to-noise ratios. British Journal of Audiology, 20, 115-120. Nelson, E. L.., Smaldino, J., Erler, S., Garsteki, D. (2007/2008). Background Noise Levels and Reverberation

Times in Old and New Elementary School Classrooms Journal of Educational Audiology, 14, 12-18. Sanders, D. A. (1965). Noise Conditions in Normal School Classrooms. Except Child, 31, 344-353.

Recommended Classroom Acoustics & Measuring Acoustics American National Standards Institute. (2010). American National Standard Acoustical Performance Criteria,

Design Requirements, and Guidelines for Schools, Part 1: Permanent Schools (No. ANSI S12.60-2010). Melville, NY.

American Speech-Language-Hearing Association. (2005). Acoustics in educational settings: Position statement. [Position Statement]. Available from www.asha.org/policy.

Ostergren, D., & Smaldino, J. (2013). Technology in educational settings: It may already be in your pocket or purse! Journal of Educational Audiology, 18, 10-13.

Effects of Noise on Younger Listeners Eisenberg, L. S., Shannon, R. V., Martinez, A. S., Wygonski, J., & Boothroyd, A. (2000). Speech recognition

with reduced spectral cues as a function of age. Journal of the Acoustical Society of America, 107(5 Pt 1), 2704-2710.

Elliott, L. L. (1979). Performance of children aged 9 to 17 years on a test of speech intelligibility in noise using sentence material with controlled word predictability. Journal of the Acoustical Society of America, 66(3), 651-653.

Elliott, L. L., Connors, S., Kille, E., Levin, S., Ball, K., & Katz, D. (1979). Children's understanding of monosyllabic nouns in quiet and in noise. Journal of the Acoustical Society of America, 66(1), 12-21.

Gravel, J. S., Fausel, N., Liskow, C., & Chobot, J. (1999). Children's speech recognition in noise using omni- directional and dual-microphone hearing aid technology. Ear and Hearing, 20(1), 1-11.

Jamieson, D. G., Kranjc, G., Yu, K., & Hodgetts, W. E. (2004). Speech intelligibility of young school- aged children in the presence of real-life classroom noise. J Am Acad Audiol, 15, 508-517.

Schafer, E. C., Beeler, S., Ramos, H., Morais, M., Monzingo, J., & Algier, K. Developmental effects and spatial hearing in young children with normal-hearing sensitivity. Ear Hear, 33(6), e32-43.

Soli, S. D., & Sullivan, J. A. (1997). Factors affecting children's speech communication in classrooms. Journal of the Acoustical Society of America, 101, S3070.

Stelmachowicz, P. G., Hoover, B. M., Lewis, D. E., Kortekaas, R. W., & Pittman, A. L. (2000). The relation between stimulus context, speech audibility, and perception for normal-hearing and hearing-impaired children. Journal of Speech, Language, and Hearing Research, 43(4), 902-914.

Page 30: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

Effects of Noise: Normal Hearing Listeners Dubno, J. R., Dirks, D. D., & Morgan, D. E. (1984). Effects of age and mild hearing loss on speech recognition

in noise. Journal of the Acoustical Society of America, 76(1), 87-96. Duqesnoy, A. J., & Plomp, R. (1983). The effect of hearing aid on the speech-reception threshold of hearing-

impaired listeners in quiet and noise. Journal of the Acoustical Society of America, 73(2166-2173). Erber, N. P. (1971). Auditory and audiovisual reception of words in low-frequency noise by children with normal

hearing and by children with impaired hearing. Journal of Speech and Hearing Research, 14, 496-512.

Finitzo-Hieber, T., & Tillman, T. (1978). Room acoustics effects on monosyllabic word discrimination ability for normal and hearing impaired children. Journal of Speech and Hearing Research, 21, 440-458.

Valente, D. L., Plevinsky, H. M., Franco, J. M., Heinrichs-Graham, E. C., & Lewis, D. E. (2012). Experimental investigation of the effects of the acoustical conditions in a simulated classroom on speech recognition and learning in children. J Acoust Soc Am, 131(1), 232-246.

Nabelek, A., & Pickett, J. M. (1974). Monaural and binaural speech perception through hearing aids under noise and reverberation with normal and hearing-impaired listeners. Journal of Speech and Hearing Research, 17, 724-739.

Nabelek, A., & Pickett, J. M. (1974). Reception of consonants in a classroom as affected by monaural and binaural listening, noise, reverberation, and hearing aids. Journal of the Acoustical Society of America, 56, 628-639.

Effects of Noise: English Language Learners Crandell, C.C. & Smaldino, J.J. (1996). Speech perception in noise by children for whom English is a second

language. American Journal of Audiology, 5, 47-51. Hasegawa, M., Carpenter, P. A., & Just, M. A. (2002). An fMRI study of bilingual sentence comprehension and

workload. Neuroimage, 15(3), 647-660. Nabelek, A.K. & Donahue, A.M. (1984). Perception of consonants in reverberation by native and non-native

listeners. Journal of the Acoustical Society of America, 75, 632-634. Nelson, P., Kohnert, K., Sabur, S., & Shaw, D. (2005). Classroom noise and children learning through a

second language: double jeopardy? Lang Speech Hear Serv Sch, 36(3), 219-229. Takata, Y. & Nabelek, A.K. (1990). English consonant recognition in noise and in reverberation by Japanese

and American listeners. Journal of the Acoustical Society of America, 88, 663-666.

Effects of Noise: Hearing Loss and Hearing Aids Crandell, C. (1992). Noise effects on the speech recognition of children with minimal hearing loss. Ear and

Hearing, l7, 210-217. Crandell, C. & Flannagan, R. (1999). Effects of conductive hearing loss on speech recognition in quiet and

noise. Journal of Educational Audiology, 8, 5-14. Dubno, J. R., Dirks, D. D., & Morgan, D. E. (1984). Effects of age and mild hearing loss on speech recognition

in noise. Journal of the Acoustical Society of America, 76(1), 87-96. Duqesnoy, A. J., & Plomp, R. (1983). The effect of hearing aid on the speech-reception threshold of hearing-

impaired listeners in quiet and noise. Journal of the Acoustical Society of America, 73(2166-2173). Erber, N. P. (1971). Auditory and audiovisual reception of words in low-frequency noise by children with normal

hearing and by children with impaired hearing. Journal of Speech and Hearing Research, 14, 496-512. Finitzo-Hieber, T., & Tillman, T. (1978). Room acoustics effects on monosyllabic word discrimination ability for

normal and hearing impaired children. Journal of Speech and Hearing Research, 21, 440-458. Nabelek, A., & Pickett, J. M. (1974). Monaural and binaural speech perception through hearing aids under noise

and reverberation with normal and hearing-impaired listeners. Journal of Speech and Hearing Research, 17, 724-739.

Nabelek, A., & Pickett, J. M. (1974). Reception of consonants in a classroom as affected by monaural and binaural listening, noise, reverberation, and hearing aids. Journal of the Acoustical Society of America, 56, 628-639.

Effects of Noise: Unilateral Hearing Loss Bess, F.H. & Tharpe, A.M. (1986). Case history data on unilaterally hearing-impaired children. Ear and

Hearing, 7, 14-17. Bess, F.H. & Tharpe, A.M. (1986). An introduction to unilateral sensorineural hearing loss in children. Ear

and Hearing, 7, 3-13.

Page 31: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

3 Bess, F.H., Tharpe, A.M. & Gibler, A.M. (1986). Auditory performance of children with unilateral sensorineural

hearing loss. Ear and Hearing, 7, 20-26. Culbertson, J.L. & Gilbert, L.E. (1986). Children with unilateral sensorineural hearing loss: cognitive, academic,

and social development. Ear and Hearing, 7, 38-42. Kenworthy, O.T., Klee, T. & Tharpe, A.M. (1990). Speech recognition ability of children with unilateral

sensorineural hearing loss as a function of amplification, speech stimuli and listening condition. Ear and Hearing, 11, 264-270.

Effects of Noise: Cochlear Implants Fetterman, B. L., & Domico, E. H. (2002). Speech recognition in background noise of cochlear implant patients.

Otolaryngology Head and Neck Surgery, 126(3), 257-263. Garnham, C., O'Driscoll, M., Ramsden, & Saeed, S. (2002). Speech understanding in noise with a Med-El

COMBI 40+ cochlear implant using reduced channel sets. Ear and Hearing, 23(6), 540-552. Gantz, B. J., Tyler, R. S., Rubinstein, J. T., Wolaver, A., Lowder, M. W., Abbas, P., et al. (2002). Binaural

cochlear implants placed during the same operation. Otology & Neurotology, 23(2), 169-180. Hamzavi, J., Franz, P., Baumgartner, W. D., & Gstoettner, W. (2001). Hearing performance in noise of

cochlear implant patients versus severely-profoundly hearing-impaired patients with hearing aids. Audiology, 40(1), 26-31.

Nelson, P. B., Jin, S. H., Carney, A. E., & Nelson, D. A. (2003). Understanding speech in modulated interference: cochlear implant users and normal-hearing listeners. Journal of the Acoustical Society of America, 113(2), 961-968.

Schafer, E. C., Pogue, J., & Milrany, T. List equivalency of the AzBio sentence test in noise for listeners with normal-hearing sensitivity or cochlear implants. J Am Acad Audiol, 23(7), 501- 509.

Wolfe, J., Schafer E. C., John, A., Hudson, M. (2011). The effect of front-end processing on cochlear implant performance of children. Otology & Neurotology, 32(4), 533-538.

Effects of Noise: Otitis Media Friel-Patti, S. & Finitzo, T. (1990). Language learning in a prospective study of otitis media with effusion in the

first two years of life. Journal of Speech and Hearing Research, 33, 188-194. Gravel, J.S. & Wallace, I.F. (1992). Listening and language at 4 years of age: effects of early otitis media.

Journal of Speech and Hearing Research, 35, 588-595. Silva, P.A., Kirkland, C., Simpson, A., Stewart, I.A. & Williams, S.M. (1982). Some developmental and

behavioral problems associated with bilateral otitis media with effusion. Journal of Learning Disabilities, 15, 417-421.

Zumach, A., Gerrits, E., Chenault, M. N., & Anteunis, L. J. (2009). Otitis media and speech-in-noise recognition in school-aged children. Audiol Neurootol, 14(2), 121-129.

Other Effects: Listening Comprehension Schafer, E. C., Bryant, D., Sanders, K., Baldus, N., Lewis, A., Traber, J., et al. (2013). Listening comprehension

in background noise in children with normal hearing. Journal of Educational Audiology, 19(58-64). Working Memory Osman, H. & Sullivan, J. (2013). Children’s auditory working memory performance in degraded listening

conditions. Journal of Speech, Language, and Hearing Research, 57(4), 1503-1511. Listening Effort (see pubmed.com for more studies on this): Picou, E. M., & Rickets, T. A. (in press). The effect of changing the secondary task in dual-task paradigms for

measuring listening effort. Ear & Hearing. Ross, M. (1992). Room acoustics and speech perception. In M. Ross (ed.), FM Auditory Training Systems:

Characteristics, Selection, and Use, 40-41. Timonium, MD: York Press. Processing Time: Downs, D., & Crum, M. (1978). Processing demands during auditory learning under degraded listening

conditions. Journal of Speech and Hearing Research, 21, 702-714. Teacher Vocal Fatigue Rogerson, J. & Dodd, B. (2005). Is there an effect of dysphonic teachers’ voices on children’s processing of

spoken language? Journal of Voice, 19(1), 47-60.

Page 32: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

Roy, N., Merrill, R.M., Thibeault, S., Parsa, R.A., Gray, S.D., & Smith, E.M. Prevalence of voice disorders in teachers and the general population. Journal of Speech, Language, and Hearing Research, 47(2), 281- 293.

Remote-Microphone Technology Guidelines American Academy of Audiology Clinical Practice Guidelines. (2008, April). Remote Microphone Hearing

Assistance Technologies for Children and Youth from Birth to 21 Years.

FM System Research: Young Children American Speech-Language-Hearing Association. (1991). The use of FM amplification instruments for infants

and preschool children with hearing impairment, ASHA, 33, (suppl.5). 1-2.

Benoit, R. (1989). Home use of FM amplification systems during the early childhood years. Hearing Instruments, 40, 8-10.

Moeller, M.P., Donagy, K.F., Beauchaine, K.L., Lewis, D.E. & Stelmachowicz, P.G. (1996). Longitudinal study of FM system use in non-academic settings: effects on language development. Ear and Hearing, 17, 28- 40.

FM/DM System Research: Normal Hearing Arnold, P. & Canning, D. (1999). Does classroom amplification aid comprehension?. British Journal of

Audiology, 33,171-178. Crandell, C.C., Charlton, M., Kinder, M., and Kreisman, B.M. Effects of portable sound field systems on speech

perception in noise. Journal of Educational Audiology, 9, 8-12. Mendel, L.L., Roberts, R.A., & Walton, J.H. (2003). Speech perception benefits from sound field FM

amplification. American Journal of Audiology, 12(2), 114-124. Picard, M. & Lefrancois, J. (1986). Speech perception through FM auditory trainers in noise and

reverberation. Journal of Rehabilitation Research and Development, 23, 53-62. Rosenberg, G.G., Blake-Rahter, P., Heavner, J., Allen, L., Redmond, B.M., Phillips, J. & Stigers, K. (1999).

Improving classroom acoustics (ICA): a three-year FM sound field classroom amplification study. Journal of Educational Audiology, 7, 8-21.

Schafer, E.C., Bryant, D., Sanders, K., Baldus, N., Algier, K., Lewis, A., Traber, J., Layden, P., Amin, A. (in press). Fitting and verification of frequency modulation (FM) systems on children with normal hearing Journal of the American Academy of Audiology.

Wolfe, J.,Morais, M., Neumann, S., Schafer, E. C., Wells, N., Mülder, H. E., John, A., & Hudson, M. (2013). Evaluation of speech recognition with personal FM and classroom audio distribution systems. Journal of Educational Audiology, 19, 65-79.

FM System Research: English Language Learners Lederman, N., DeConde Johnson, C., Crandell, C.C. & Smaldino, J.J. (2000). The development and

validation of an "intelligent classroom sound field frequency modulation (FM) system. Journal of Educational Audiology, 8, 37-42.

Nabelek, A.K. & Donahue, A.M. (1986). Comparison of amplification systems in an auditorium. Journal of Acoustical Society of America, 79, 2078-2082.

FM System Research: Auditory Processing Disorder, Autism Spectrum Disorders, ANSD, AD HD, & Other Needs Blake, R., Field, B., Foster, C., Platt, F. & Wertz, P. (1991). Effect of FM auditory trainers on attending

behaviors of learning-disabled children. Language, Speech, and Hearing Services in the Schools, 22, 111-114.

Clarke-Klein, S.M., Roush, J., Davis, K. & Medley, L. (1995). FM amplification for enhancement of conversational discourse skills: case study. Journal of American Academy of Audiology, 6, 230-234.

Flexer, C., Millin, J.P. & Brown, L. (1990). Children with developmental disabilities: the effect of sound field amplification on word identification. Language, Speech and Hearing Services in the Schools, 21, 177- 182.

Flexer, C. & Savage, H. (1993). Use of mild gain amplifier with preschoolers with language delay. Language, Speech, and Hearing Services in the Schools, 24, 151-155.

Friederichs, E. & Friederichs, P. (2005). Electrophysiologic and psycho-acoustic findings following one-year

Page 33: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

5 application of personal ear-level FM device in children with attention deficit and suspected central auditory processing disorder, Journal of Educational Audiology, 12, 29-34.

Hornickel, J., Zecker, S. G., Bradlow, A. R., & Kraus, N. Assistive listening devices drive neuroplasticity in children with dyslexia. Proc Natl Acad Sci U S A, 109(41), 16731-16736.

Johnston, K.N., John, A.B., Kreisman, N.V., Hall, J.W. 3rd, Crandell, C.C. (2009). Multiple benefits of personal FM system use by children with auditory processing disorder (APD). International Journal of Audiology, 48(6), 371-383.

Rance, G., Corben, L. A., Du Bourg, E., King, A., & Delatycki, M. B. (2010). Successful treatment of auditory perceptual disorder in individuals with Friedreich ataxia. Neuroscience, 171(2), 552-555.

Rance, G., Saunders, K., Carew, P., Johansson, M., & Tan, J. (2014). The use of listening devices to ameliorate auditory deficit in children with autism. J Pediatr, 164(2), 352-357.

Schafer, E.C., Bryant, D., Sanders, K., Baldus, N., Algier, K., Lewis, A., Traber, J., Layden, P., Amin, A. (in press). Fitting and verification of frequency modulation (FM) systems on children with normal hearing Journal of the American Academy of Audiology.

Schafer, E. C., Mathews, L., Mehta, S., Hill, M., Munoz, A., Bishop, R., & Maloney, M. (2012). Personal FM systems for children with autism spectrum disorders (ASD) and/or attention-deficit hyperactivity disorder (ADHD): An initial investigation. Journal of Communication Disorders, 46, 40-52.

Schafer, E. C., Traber, J., Layden, P., Amin, A., Sanders, K., Bryant, D., & Baldus, N. (in press). Use of wireless technology for children with APD, ADHD, and language disorders. Seminars in Hearing.

Smith, D.E., McConnell, J.V., Walter, T.L. & Miller, S.D. (1985). Effect of using an auditory trainer on the attentional, language, and social behaviors of autistic children. Journal of Autism and Developmental Disorders, 15, 285-302.

Stach, B.A., Loiselle, L.H., Jerger, J.F., Mintz, S.L. & Taylor, C.D. (1987). Clinical experience with personal FM assistive listening devices. The Hearing Journal, May, 24-30.

FM/DM System Research: Minimal and Mild Hearing Loss Ross, M. & Giolas, T.G. (1971). Effect of three classroom listening conditions on speech intelligibility.

American Annals of the Deaf, 116, 580-584. Sariff, L.S. (1981). An innovative use of free field amplification in regular classrooms. In R. Roeser & M.

Downs (Eds.) Auditory Disorders in School Children (p. 263-272). New York: Thieme Stratton, Inc. Wolfe, J.,Morais, M., Neumann, S., Schafer, E. C., Wells, N., Mülder, H. E., John, A., & Hudson, M. (2013).

Evaluation of speech recognition with personal FM and classroom audio distribution systems. Journal of Educational Audiology, 19, 65-79.

FM System Research: Unilateral Hearing Loss Bess, F.H., Klee, T. & Culbertson, J.L. (1986). Identification, assessment, and management of children with

hearing loss. Ear and Hearing, 7, 43-51. Updike, C.D. (1994). Comparison of FM auditory trainers, CROS aids, and personal amplification in

unilaterally hearing-impaired children. Journal of American Academy of Audiology, 5, 204-209.

FM System & Digital Transmission Research: Moderate to Profound Hearing Loss and Hearing Aids Anderson, K.L. & Goldstein, H. (2004). Speech perception benefits of FM and infrared devices to children with

hearing aids in a typical classroom. Journal of Speech, Language, and Hearing Services in the Schools, 35(2), 169-184.

Anderson, K. L., Goldstein, H., Colodzin, L., & Iglehart, F. (2005). Benefit of S/N enhancing devices to speech perception of children listening in a typical classroom with hearing aids or a cochlear implant. Journal of Educational Audiology, 12, 14-28.

Boothroyd, A. & Iglehart, F. (1998). Experiments with classroom amplification. Ear and Hearing, 19, 207-217. Flynn, T.S. & Gregory, M. (2005). The FM advantage in the real classroom. Journal of Educational Audiology,

12, 35-42. Lewis, M. S., Crandell, C. C., Valente, M., & Horn, J. E. (2004). Speech perception in noise: directional

microphones versus frequency modulation (FM) systems. Journal of the American Academy of Audiology, 15, 426-439.

Nabelek, A.K. & Donahue, A.M. (1986). Comparison of amplification systems in an auditorium. Journal of Acoustical Society of America, 79, 2078-2082.

Nabelek, A.K., Donahue, A.M. & Letowski, T.R. (1986). Comparison of amplification systems in a classroom.

Page 34: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

Journal of Rehabilitation Research and Development, 23, 41-52. Noe, C.M., Davidson, S.A. & Mishler, P.J. (1997). The use of large group assistive listening devices with and

without hearing aids in an adult classroom setting. American Journal of Audiology, 6, 48-63. Pittman, A.L., Lewis, D.E., Hoover, B.M. & Stelmachowicz, P.G. (1999). Recognition performance for four

combinations of FM system and hearing aid microphone signals in adverse listening conditions. Ear and Hearing, 20, 279-289.

Ross, M., Giolas, T. & Carver, P. (1973). Effect of classroom listening conditions of speech intelligibility. Language, Speech, and Hearing Services in the Schools, 4, 72-76.

Schafer, E. C., Sanders, K., Bryant, D., Keeney, K., & Baldus, N. (2013). Effects of Voice Priority in FM systems for children with hearing aids. Journal of Educational Audiology, 19, 12-24.

Toe, D. (1999). Impact of FM aid use on the classroom behavior of profoundly deaf secondary students. Seminars in Hearing, 20, 223-234.

Wolfe, J.,Morais, M., Neumann, S., Schafer, E. C., Wells, N., Mülder, H. E., John, A., & Hudson, M. (2013). Evaluation of speech recognition with personal FM and classroom audio distribution systems. Journal of Educational Audiology, 19, 65-79.

FM System/Digital Transmission Research: Cochlear Implants Aaron, R., Sonneveldt, V., Arcaroli, J., & Holstad, B. (2003, November). Optimizing microphone sensitivity

settings of pediatric Nucleus 24 cochlear implant patients using Phonak MicroLink CI+ FM system. Poster presented at ACCESS: Achieving Clear Communication Employing Sound Solutions - Proceedings of the First International Conference, Chicago, IL.

Acoustical Society of America, (n.d.). Position on the Use of Sound Amplification in the Classroom. Retrieved October 12, 2006 from http://asa.aip.org

Anderson, K. L., Goldstein, H., Colodzin, L., & Iglehart, F. (2005). Benefit of S/N enhancing devices to speech perception of children listening in a typical classroom with hearing aids or a cochlear implant. Journal of Educational Audiology, 12, 14-28.

Catlett, D. & Brown, C.J. (2003, November). Optimal audio mix settings for pediatric Clarion cochlear implant patient using a Phonak MicroLink CI-S FM system. Poster presented at ACCESS: Achieving Clear Communication Employing Sound Solutions - Proceedings of the First International Conference, Chicago, IL.

Crandell, C. C., Holmes, A. E., Flexer, C., & Payne, M. (1998). Effects of soundfield FM amplification on the speech recognition of listeners with cochlear implants. Journal of Educational Audiology, 6, 21-27.

Davies, M. G., Yellon, L., & Purdy, S. C. (2001). Speech-in-noise perception of children using cochlear implants and FM systems. Australian and New Zealand Journal of Audiology, 23, 52-62.

Iglehart, F. (2004). Speech perception by students with cochlear implants using sound-field systems in classrooms. American Journal of Audiology, 13, 62-72.

Schafer, E. C., Huynh, C., Romine, D., Jimenez, R. (2012). Speech recognition in noise and subjective perceptions of neckloop FM receivers with cochlear implants. American Journal of Audiology, 22(1), 53-64.

Schafer, E.C. & Kleineck, M.P. (2009). Improvements in speech-recognition performance using cochlear implants and three types of FM systems: A meta-analytic approach. Journal of Educational Audiology, 15, 4-14

Schafer, E. C., Musgrave, E., Momin, S., Sandrock, C., & Romine, D. (2013). A proposed electroacoustic test protocol for personal FM receivers coupled to cochlear implant sound processors. Journal of the American Academy of Audiology, 24(10), 941-954.

Schafer, E. C., Pogue, J., Milrany, T. (2012). Equivalency of the AzBio Sentence Test in noise for listeners with normal-hearing sensitivity or cochlear implants. Journal of the American Academy of Audiology, 23(7), 501-509.

Schafer, E. C., Romine, D., Musgrave, E., Momin, S., & Huynh, C. (2013). Electromagnetic versus electrical coupling of personal frequency modulation (FM) receivers to cochlear implant sound processors. Journal of the American Academy of Audiology, 24(10), 927-940.

Schafer, E. C. & Thibodeau, L.M. (2006). Speech recognition in noise in children with cochlear implants while listening in bilateral, bimodal, and FM-system arrangements. American Journal of Audiology, 15(2), 114-126.

Schafer, E. C. & Thibodeau, L. M. (2004). Speech recognition abilities of adults using cochlear implants interfaced with FM systems. Journal of the American Academy of Audiology, 15(10), 678-691.

Page 35: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

7 Schafer, E. C. & Thibodeau, L. M. (2003). Speech recognition performance of children using cochlear implants

and FM systems. Journal of Educational Audiology, 11, 15-26. Schafer, E. C. & Wolfe, J. (2010). Hearing assistance technology for children: candidacy and selection.

Seminars in Hearing, 31(3), 219-232. Schafer, E. C. & Wolfe, J. (2010). Hearing assistance technology for children: candidacy and selection.

Seminars in Hearing, 31(3), 219-232. Schafer, E. C., Wolfe, J., Algier, K., Morais, M., Price, S., Monzingo, J., et al. (2012). Spatial hearing in

noise of young children with cochlear implants and hearing aids. Journal of Educational Audiology, 18, 38-52.

Schafer, E. C., Wolfe, J., Lawless, T., & Stout, B. (2009). Effects of FM-receiver gain on speech-recognition performance of adults with cochlear implants. International Journal of Audiology, 48(4), 196-203.

Wolfe, J., Morais, M., Schafer, E., Mills, E., Mulder, H. E., Goldbeck, F., et al. Evaluation of speech recognition of cochlear implant recipients using a personal digital adaptive radio frequency system. J Am Acad Audiol, 24(8), 714-724.

Wolfe, J., Morais, M., Schafer, E., Mills, E., Peters, R., Lianos, L., John, A., & Hudson, M. (2013). Better speech recognition with digital RF system in study of cochlear implants. The Hearing Journal, 66(7), 24-26

Wolfe, J. & Schafer E.C. (2008). Optimizing the benefits of Auria® sound processors coupled to personal FM systems with iConnect™ adaptors. Journal of the American Academy of Audiology, 19(8). 585-594.

Wolfe, J., Schafer, E.C., Heldner, B., Mulder, H., Ward, E., & Vincent, B. (2009). Evaluation of speech recognition in noise with cochlear implants and Dynamic FM. Journal of the

American Academy of Audiology, 20(7), 409-421. [Tier 1] Wolfe, J., Schafer, E. C., Parkinson, A., John, A., Hudson, M., Wheeler, J., & Mucci, A. (2013). Effects

of input processing and type of personal FM system on speech recognition performance of adults with cochlear implants. Ear and Hearing, 34(1), 52-62.

Wolfe, J., Thompson, K., Swim, L., Schafer, E.C. (2007/2008). Clinical evaluation of the FM advantage provided by contemporary personal FM systems. Journal of Educational Audiology, 14, 47-57.

Page 36: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

Observation of Attending Behaviors

Student:________________________________________ DOB:________ Grade:__________

Parent(s) Name(s):________________________________ Hm Phone:___________________

School: _______________________________ Teacher: _______________________________

Observed By:___________________________________________ Date: _________________

Current amplification in use: RE _____________________________________________________

LE _____________________________________________________

Is he/she a consistent user? Y N

Amplification compatible with telecoil and DAI? RE____________________________________

LE ___________________________________

Are other FM systems used at school? Y N

If yes, please list systems and channels in use: _________________________________________

_________________________________________________________________________________

Will the student be changing classes? Y N If yes, how many? _____________________

Classroom acoustics measurements:_____________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

Any unusual ambient noise in the classroom? ____________________________________________

___________________________________________________________________________________

Where is the student seated in room?____________________________________________________

___________________________________________________________________________________

Does he/she follow along with the lesson independently? ___________________________________

___________________________________________________________________________________

Does he/she look to other students to follow activities? _____________________________________

___________________________________________________________________________________

Does he/she do well with transitions? ____________________________________________________

___________________________________________________________________________________

Department of Speech and Hearing Sciences 907 W. Sycamore, Denton, TX 76201

Phone: (940) 565-2262; Fax: (940) 565-4058

Page 37: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

Target Student Time: Off Task Repetition Redirection

Comments:

Peer Time: Off Task Repetition Redirection

Comments:

Parent Interview

Parent Preference for FM: ___________________________________________________________

How does the student feel about using hearing aids/CI?

__________________________________________________________________________________

__________________________________________________________________________________

__________________________________________________________________________________

Additional Comments:

Page 38: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

Student Interview

Student Preference for FM: ____________________________________________________ Additional Comments:

Page 39: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

Functional Measures Erin C. Schafer, Ph.D., University of North Texas

* Developmental questionnaire/checklist~Good for validation of hearing assistance technology (HAT)

• *Auditory Behavior in Everyday Life (ABEL) Purdy, S.C., Farrington, D.R., Moran, C.A., Chard, L.L., & Hodgson, S. (2002). A parental questionnaire to evaluate children’s auditory behavior in everyday life (ABEL).

• *~Children’s Auditory Processing Scale (CHAPS)Smoski, W., Brunt, M., & Tannahill, C. (1998). Children’s Auditory Performance Scale. Available fromEducational Audiology Association, www.edaud.org;https://successforkidswithhearingloss.com/tests

• ~Children’s Abbreviated Profile of Hearing Aid Performance (CA-PHAP)Kopun, J.G., & Stelmachowicz, P.G. (1998, March). Perceived communication difficulties of childrenwith hearing loss. American Journal of Audiology, (1), 7: 30-38.

• ~Parent’s Abbreviated Profile of Hearing Aid Performance (PA-PHAP)Kopun, J.G., & Stelmachowicz, P.G. (1998, March). Perceived communication difficulties of childrenwith hearing loss. American Journal of Audiology, (1), 7: 30-38.

• *Children’s Home Inventory of Listening Difficulties (CHILD) Anderson K., & Smaldino, J. (2000). Children’s Home Inventory of Listening Difficulties (CHILD). Available from Educational Audiology Association,

• *~The Children’s Outcome Worksheets (COW)Available from Oticon:

https://successforkidswithhearingloss.com/tests

http://otikids.oticon.nl/eprise/main/Oticon/com/SEC_AboutHearing/LearnAboutHearing/Products/SEC_OtiKids/Parents/Networking/91180310cow_counsellingtool.pdf

• ~Developmental Index of Audition and Listening (DIAL)Palmer, C., & Mormer, E. (1999). Goals and expectations of the hearing aid fitting. Trends inAmplification, 4(2), 61–71. Available from Educational Audiology Association, www.edaud.org

• ~Early Listening Function (ELF)Anderson, K. (2002). Early Listening Function (ELF) instrument for infants and toddler with hearingloss. Available from Educational Audiology Association https://successforkidswithhearingloss.com/tests

• *Functional Auditory Performance Indicators (FAPI) Stredler-Brown, A. & Johnson, D. (2004). Functional auditory performance indicators: An integrated approach to auditory development. Retrieved from http://www.csdb.org/Early%20Education/resources/docs/fapi6_23.pdf

• ~The Functional Listening Evaluation (FLE)Johnson, C.D. (2004). The Functional Listening Evaluation. Retrieved March 2, 2007 fromhttp://www.cde.state.co.us/cdesped/download/pdf/s4-FunListEval.pdf Available from EducationalAudiology Association www.edaud.org

• ~Pediatric Hearing Demand, Ability, and Need Profile (HDAN)Palmer CV, Mormer E. (1997) A systematic program for hearing aid orientation and adjustment. HearReview 1:45–52. Available from Educational Audiology Association www.edaud.org

Page 40: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

• *Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS)

Zimmerman-Phillips S., Robbins A., & Osberger M. (2000). Assessing cochlear implant benefit in very young children. Ann Otol Rhinol Laryngol. 109(suppl 185, pt 2), 42-44. Available at Advanced Bionics Corporation, (2003): http://www.advancedbionics.com/content/dam/ab/Global/en_ce/documents/libraries/AssessmentTools/3-01015_ITMAIS%20brochure%20Dec12%20FINAL.pdf

• *Meaningful Auditory Integration Scale (MAIS) Robbins, A., Renshaw, J., & Berry, S. (1991). Evaluating meaningful auditory integration in

profoundly hearing-impaired children. American Journal of Otology, 12 (Suppl.); 144–150. http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0CFMQFjAF&url=http%3A %2F%2Fmedicine.iu.edu%2Foto%2Findex.php%2Fdownload_file%2Fview%2F252%2F267%2F&ei=zUAMUbr2F6K5ywHR9YCQBg&usg=AFQjCNHqmmT8NuPVXoCezeHnfNhX4_lXCg&bvm=bv.41867550,d.aWc

• *~Parents’ Evaluation of Aural/oral performance of Children (PEACH)

Ching, T.Y., & Hill, M. (2007) The Parents’ Evaluation of Aural/Oral Performance of Children (PEACH) scale: normative data. J Am Acad Audiol. 18 (3): 220-35. Available at National Acoustic Laboratories http://www.nal.gov.au/hearing-rehabilitation_tab_paediatric-amplification.shtml

• *~Teachers’ Evaluation of Aural/oral performance of Children (TEACH) Developed by Teresa Ching & Mandy Hill, copyright 2005 Australian Hearing Available at National Acoustic Laboratories http://www.nal.gov.au/hearing-rehabilitation_tab_paediatric-amplification.shtml

• *~Screening Instrument For Targeting Educational Risk (SIFTER)

Anderson, K. (1989). Screening Instrument For Targeting Educational Risk (S.I.F.T.E.R.). Austin, TX: Pro-Ed. Available from https://successforkidswithhearingloss.com/testschecklists

• *~Screening Instrument for Targeting Educational Risk in Preschool Children (age 3-Kindergarten) [Preschool SIFTER] Anderson, K., & Matkin, N. (1996). Screening Instrument for Targeting Educational Risk in Preschool Children (Preschool S.I.F.T.E.R.), Available from https://successforkidswithhearingloss.com/testschecklists

• *~Screening Instrument For Targeting Educational Risk in Secondary Students (Secondary SIFTER) Anderson, K. (2004). Screening Inventory For Targeting Educational Risk in Secondary Students (Secondary S.I.F.T.E.R.). Available from https://successforkidswithhearingloss.com/testschecklists

• ~Listening Inventory For Education An Efficacy Tool Student Appraisal of Listening Difficulty (Student LIFE)

Anderson K., & Smaldino, J. (1997). Learning Inventory For Education (L.I.F.E.). Available from https://successforkidswithhearingloss.com/tests

• ~Listening Inventory For Education An Efficacy Tool Teacher Appraisal of Listening Difficulty (Teacher LIFE) Anderson K., & Smaldino, J. (1997). Learning Inventory For Education (L.I.F.E.). Available from https://successforkidswithhearingloss.com/tests

Page 41: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

FM System Evaluation and Report ______________________________________________________________________________________________

Name: Joe Date of Report: 1/04/2012 School: Adler Elementary School Contact: Ann Helms Grade: Kindergarten Evaluation Requested By: Parent Eligibility Codes: AI, SI Birthdate: 3/12/2006

________________________________________________________________________________________________

Reason for Evaluation Joe was referred for a FM system evaluation at the request of his mother. She was concerned that he was not receiving adequate benefit from his current FM system, a desktop soundfield system.

Background Information Joe is a six-year old Kindergartner at Alder Elementary. Previous testing shows that he has a bilateral profound hearing loss. Joe uses an Advanced Bionics HiResolution 90K implant with Auria Sound Processor on his right ear and a digital hearing aid in his left ear. When using his implant, he has excellent word-recognition performance in quiet conditions in the sound booth. No speech recognition testing was conducted in a noise condition.

Typical school classrooms do not provide adequate acoustics that meet guidelines recommended by the American National Standards Institute (2010) or the American Speech-Language-Hearing Association (2005) for appropriate levels of unoccupied noise, reverberation, and signal-to-noise ratios (Arnold & Canning, 1999; Knecht et al., 2002). Furthermore, previous research shows that children with cochlear implants experience significant decreases in speech recognition in noise relative to performance in a quiet listening condition; however, personal frequency modulation (FM) systems that are directly coupled to the cochlear implant significantly improve speech recognition performance in noisy test conditions (Schafer & Thibodeau, 2003, 2006). Also according to previous research, personal FM systems provide significantly better speech recognition performance for individuals with cochlear implants than soundfield systems, which consist of wall-mounted or desktop loudspeakers (Schafer & Kleineck, 2009).

Existing Evidence

The functional evaluation to determine the need for the FM system consisted of formal and informal evaluations including speech recognition in noise testing, a teacher questionnaire, a classroom observation of listening behaviors, a parent interview, and a review of current academic performance and educational challenges.

Informal and Formal Evaluation Results

Joe’s speech-recognition performance in noise was evaluated in his classroom with the Phrases in Noise Test (PINT), which measures a 50% correct speech-in-noise threshold for simple, closed-set phrases in classroom noise. During testing, the signal speaker (phrases) was presented directly in front of him while the background noise (classroom noise) was presented directly behind him. Lower scores on this test indicate better performance or the ability to function in a more adverse listening environment. Joe was tested in three conditions: (1) cochlear implant alone, (2) desktop soundfield system, and (3) electrically-coupled personal FM receivers that directly connect to his cochlear implant and hearing aid. Scores for the three conditions were (95% critical difference level=3.2 dB):

1. Cochlear implant alone: +10.5 dB 2. Desktop soundfield system +1.5 dB 3. Electrically-coupled personal FM system -9.0 dB

The cochlear-implant alone condition results suggested that Joe requires the phrases to be at least 10.5 dB more intense than the background noise to hear the speech only half of the time. Both the desktop and electrically-coupled FM system significantly improved his ability to hear the closed-set, simple phrases; however, the electrically-coupled system provides significantly greater gains in speech recognition in noise. Given the substantially more difficult , open-set listening tasks expected of children in a real classroom environment, this simple speech-in-noise test substantially underestimates the

Department of Speech and Hearing Sciences 907 W. Sycamore, Denton, TX 76201

Phone: (940) 565-2262; Fax: (940) 565-4058

Page 42: UNT Speech Hearing Center Functional Assessment Differences Handouts... · AudioTools App from Studio Six 1c. AudioTools: Studio Six Digital Figure 2. iPhone with Analog Sound Level

difficulties he will face in a real listening situation. As a result, Joe should use the device that provides the greatest benefit.

The teacher questionnaire used for the evaluation was the Screening Instrument for Targeting Educational Risk (SIFTER). Results from both of his general education teachers indicated that he is at risk in the areas of attention, communication, and class participation when compared to his peers with normal hearing. The questionnaire results were validated by the classroom observation conducted by the audiologist. During the observation during center time, the classroom was particularly noisy with occupied noise levels ranging from 67 to 88 dBA across eight measurements throughout his classroom. These noise levels would make it difficult, if not impossible, to achieve the +15 signal-to-noise ratio recommended by the American Speech-Language-Hearing Association (2005) for children with hearing loss, even when the desktop system is in use. Furthermore, it was not feasible for Joe to carry around his desktop system to each center; therefore, he did not use it during center time and other similar periods throughout the day. As a result, during any given school day, it was only used during circle time, snack time, and music. Given the noisy conditions, Joe had substantial difficulty following directions and he relied on peers during transitions. Joe’s mother was concerned that he was not hearing well at school with the desktop soundfield FM system. He was performing well in the classroom in terms of academic performance, but his expressive and receptive language levels were delayed relative to normal-hearing peers.

Recommendation Given the results of the formal and informal evaluations, an electrically-coupled personal FM system is recommended for Joe. This recommendation is further supported by peer-reviewed literature cited above on FM systems for children and adults with cochlear implants. It is also recommended that Joe should be preferentially seated in the classroom away from noise producing equipment. The electrically-coupled system will need to be fit and regularly monitored by a licensed educational audiologist.

Erin C. Schafer, Ph.D., CCC/A Associate Professor [email protected]

References

American National Standards Institute. (2010). American National Standard Acoustical Performance Criteria, Design Requirements, and Guidelines for Schools, Part 1: Permanent Schools (No. ANSI S12.60-2010). Melville, NY.

American Speech-Language-Hearing Association. (2005). Acoustics in educational settings: Position statement. [Position Statement]. Available from www.asha.org/policy.

Arnold, P., & Canning, D. (1999). Does classroom amplification aid comprehension? British Journal of Audiology, 33(3), 171-178.

Knecht, H. A., Nelson, P. B., Whitelaw, G. M., & Feth, L. L. (2002). Background noise levels and reverberation times in unoccupied classrooms: predictions and measurements. American Journal of Audiology, 11, 65-71.

Schafer, E.C. & Kleineck, M.P. (2009). Improvements in speech-recognition performance using cochlear implants and three types of FM systems: A meta-analytic approach. Journal of Educational Audiology, 15, 4-14

Schafer, E.C. & Thibodeau, L.M. (2006). Speech recognition in noise in children with cochlear implants while listening in bilateral, bimodal, and FM-system arrangements. American Journal of Audiology, 15(2), 114-126.

Schafer, E. C. & Thibodeau, L. M. (2003). Speech recognition performance of children using cochlear implants and FM systems. Journal of Educational Audiology, 11, 15-26.